kernel_optimize_test/ipc/sem.c
Gustavo A. R. Silva df561f6688 treewide: Use fallthrough pseudo-keyword
Replace the existing /* fall through */ comments and its variants with
the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary
fall-through markings when it is the case.

[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-08-23 17:36:59 -05:00

2462 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/ipc/sem.c
* Copyright (C) 1992 Krishna Balasubramanian
* Copyright (C) 1995 Eric Schenk, Bruno Haible
*
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
*
* SMP-threaded, sysctl's added
* (c) 1999 Manfred Spraul <manfred@colorfullife.com>
* Enforced range limit on SEM_UNDO
* (c) 2001 Red Hat Inc
* Lockless wakeup
* (c) 2003 Manfred Spraul <manfred@colorfullife.com>
* (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
* Further wakeup optimizations, documentation
* (c) 2010 Manfred Spraul <manfred@colorfullife.com>
*
* support for audit of ipc object properties and permission changes
* Dustin Kirkland <dustin.kirkland@us.ibm.com>
*
* namespaces support
* OpenVZ, SWsoft Inc.
* Pavel Emelianov <xemul@openvz.org>
*
* Implementation notes: (May 2010)
* This file implements System V semaphores.
*
* User space visible behavior:
* - FIFO ordering for semop() operations (just FIFO, not starvation
* protection)
* - multiple semaphore operations that alter the same semaphore in
* one semop() are handled.
* - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
* SETALL calls.
* - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
* - undo adjustments at process exit are limited to 0..SEMVMX.
* - namespace are supported.
* - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
* to /proc/sys/kernel/sem.
* - statistics about the usage are reported in /proc/sysvipc/sem.
*
* Internals:
* - scalability:
* - all global variables are read-mostly.
* - semop() calls and semctl(RMID) are synchronized by RCU.
* - most operations do write operations (actually: spin_lock calls) to
* the per-semaphore array structure.
* Thus: Perfect SMP scaling between independent semaphore arrays.
* If multiple semaphores in one array are used, then cache line
* trashing on the semaphore array spinlock will limit the scaling.
* - semncnt and semzcnt are calculated on demand in count_semcnt()
* - the task that performs a successful semop() scans the list of all
* sleeping tasks and completes any pending operations that can be fulfilled.
* Semaphores are actively given to waiting tasks (necessary for FIFO).
* (see update_queue())
* - To improve the scalability, the actual wake-up calls are performed after
* dropping all locks. (see wake_up_sem_queue_prepare())
* - All work is done by the waker, the woken up task does not have to do
* anything - not even acquiring a lock or dropping a refcount.
* - A woken up task may not even touch the semaphore array anymore, it may
* have been destroyed already by a semctl(RMID).
* - UNDO values are stored in an array (one per process and per
* semaphore array, lazily allocated). For backwards compatibility, multiple
* modes for the UNDO variables are supported (per process, per thread)
* (see copy_semundo, CLONE_SYSVSEM)
* - There are two lists of the pending operations: a per-array list
* and per-semaphore list (stored in the array). This allows to achieve FIFO
* ordering without always scanning all pending operations.
* The worst-case behavior is nevertheless O(N^2) for N wakeups.
*/
#include <linux/compat.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/seq_file.h>
#include <linux/rwsem.h>
#include <linux/nsproxy.h>
#include <linux/ipc_namespace.h>
#include <linux/sched/wake_q.h>
#include <linux/nospec.h>
#include <linux/rhashtable.h>
#include <linux/uaccess.h>
#include "util.h"
/* One semaphore structure for each semaphore in the system. */
struct sem {
int semval; /* current value */
/*
* PID of the process that last modified the semaphore. For
* Linux, specifically these are:
* - semop
* - semctl, via SETVAL and SETALL.
* - at task exit when performing undo adjustments (see exit_sem).
*/
struct pid *sempid;
spinlock_t lock; /* spinlock for fine-grained semtimedop */
struct list_head pending_alter; /* pending single-sop operations */
/* that alter the semaphore */
struct list_head pending_const; /* pending single-sop operations */
/* that do not alter the semaphore*/
time64_t sem_otime; /* candidate for sem_otime */
} ____cacheline_aligned_in_smp;
/* One sem_array data structure for each set of semaphores in the system. */
struct sem_array {
struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
time64_t sem_ctime; /* create/last semctl() time */
struct list_head pending_alter; /* pending operations */
/* that alter the array */
struct list_head pending_const; /* pending complex operations */
/* that do not alter semvals */
struct list_head list_id; /* undo requests on this array */
int sem_nsems; /* no. of semaphores in array */
int complex_count; /* pending complex operations */
unsigned int use_global_lock;/* >0: global lock required */
struct sem sems[];
} __randomize_layout;
/* One queue for each sleeping process in the system. */
struct sem_queue {
struct list_head list; /* queue of pending operations */
struct task_struct *sleeper; /* this process */
struct sem_undo *undo; /* undo structure */
struct pid *pid; /* process id of requesting process */
int status; /* completion status of operation */
struct sembuf *sops; /* array of pending operations */
struct sembuf *blocking; /* the operation that blocked */
int nsops; /* number of operations */
bool alter; /* does *sops alter the array? */
bool dupsop; /* sops on more than one sem_num */
};
/* Each task has a list of undo requests. They are executed automatically
* when the process exits.
*/
struct sem_undo {
struct list_head list_proc; /* per-process list: *
* all undos from one process
* rcu protected */
struct rcu_head rcu; /* rcu struct for sem_undo */
struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
struct list_head list_id; /* per semaphore array list:
* all undos for one array */
int semid; /* semaphore set identifier */
short *semadj; /* array of adjustments */
/* one per semaphore */
};
/* sem_undo_list controls shared access to the list of sem_undo structures
* that may be shared among all a CLONE_SYSVSEM task group.
*/
struct sem_undo_list {
refcount_t refcnt;
spinlock_t lock;
struct list_head list_proc;
};
#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
static int newary(struct ipc_namespace *, struct ipc_params *);
static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
#endif
#define SEMMSL_FAST 256 /* 512 bytes on stack */
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
/*
* Switching from the mode suitable for simple ops
* to the mode for complex ops is costly. Therefore:
* use some hysteresis
*/
#define USE_GLOBAL_LOCK_HYSTERESIS 10
/*
* Locking:
* a) global sem_lock() for read/write
* sem_undo.id_next,
* sem_array.complex_count,
* sem_array.pending{_alter,_const},
* sem_array.sem_undo
*
* b) global or semaphore sem_lock() for read/write:
* sem_array.sems[i].pending_{const,alter}:
*
* c) special:
* sem_undo_list.list_proc:
* * undo_list->lock for write
* * rcu for read
* use_global_lock:
* * global sem_lock() for write
* * either local or global sem_lock() for read.
*
* Memory ordering:
* Most ordering is enforced by using spin_lock() and spin_unlock().
*
* Exceptions:
* 1) use_global_lock: (SEM_BARRIER_1)
* Setting it from non-zero to 0 is a RELEASE, this is ensured by
* using smp_store_release(): Immediately after setting it to 0,
* a simple op can start.
* Testing if it is non-zero is an ACQUIRE, this is ensured by using
* smp_load_acquire().
* Setting it from 0 to non-zero must be ordered with regards to
* this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
* is inside a spin_lock() and after a write from 0 to non-zero a
* spin_lock()+spin_unlock() is done.
*
* 2) queue.status: (SEM_BARRIER_2)
* Initialization is done while holding sem_lock(), so no further barrier is
* required.
* Setting it to a result code is a RELEASE, this is ensured by both a
* smp_store_release() (for case a) and while holding sem_lock()
* (for case b).
* The AQUIRE when reading the result code without holding sem_lock() is
* achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
* (case a above).
* Reading the result code while holding sem_lock() needs no further barriers,
* the locks inside sem_lock() enforce ordering (case b above)
*
* 3) current->state:
* current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
* The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
* happen immediately after calling wake_q_add. As wake_q_add_safe() is called
* when holding sem_lock(), no further barriers are required.
*
* See also ipc/mqueue.c for more details on the covered races.
*/
#define sc_semmsl sem_ctls[0]
#define sc_semmns sem_ctls[1]
#define sc_semopm sem_ctls[2]
#define sc_semmni sem_ctls[3]
void sem_init_ns(struct ipc_namespace *ns)
{
ns->sc_semmsl = SEMMSL;
ns->sc_semmns = SEMMNS;
ns->sc_semopm = SEMOPM;
ns->sc_semmni = SEMMNI;
ns->used_sems = 0;
ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
}
#ifdef CONFIG_IPC_NS
void sem_exit_ns(struct ipc_namespace *ns)
{
free_ipcs(ns, &sem_ids(ns), freeary);
idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
}
#endif
void __init sem_init(void)
{
sem_init_ns(&init_ipc_ns);
ipc_init_proc_interface("sysvipc/sem",
" key semid perms nsems uid gid cuid cgid otime ctime\n",
IPC_SEM_IDS, sysvipc_sem_proc_show);
}
/**
* unmerge_queues - unmerge queues, if possible.
* @sma: semaphore array
*
* The function unmerges the wait queues if complex_count is 0.
* It must be called prior to dropping the global semaphore array lock.
*/
static void unmerge_queues(struct sem_array *sma)
{
struct sem_queue *q, *tq;
/* complex operations still around? */
if (sma->complex_count)
return;
/*
* We will switch back to simple mode.
* Move all pending operation back into the per-semaphore
* queues.
*/
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
struct sem *curr;
curr = &sma->sems[q->sops[0].sem_num];
list_add_tail(&q->list, &curr->pending_alter);
}
INIT_LIST_HEAD(&sma->pending_alter);
}
/**
* merge_queues - merge single semop queues into global queue
* @sma: semaphore array
*
* This function merges all per-semaphore queues into the global queue.
* It is necessary to achieve FIFO ordering for the pending single-sop
* operations when a multi-semop operation must sleep.
* Only the alter operations must be moved, the const operations can stay.
*/
static void merge_queues(struct sem_array *sma)
{
int i;
for (i = 0; i < sma->sem_nsems; i++) {
struct sem *sem = &sma->sems[i];
list_splice_init(&sem->pending_alter, &sma->pending_alter);
}
}
static void sem_rcu_free(struct rcu_head *head)
{
struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
security_sem_free(&sma->sem_perm);
kvfree(sma);
}
/*
* Enter the mode suitable for non-simple operations:
* Caller must own sem_perm.lock.
*/
static void complexmode_enter(struct sem_array *sma)
{
int i;
struct sem *sem;
if (sma->use_global_lock > 0) {
/*
* We are already in global lock mode.
* Nothing to do, just reset the
* counter until we return to simple mode.
*/
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
return;
}
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
for (i = 0; i < sma->sem_nsems; i++) {
sem = &sma->sems[i];
spin_lock(&sem->lock);
spin_unlock(&sem->lock);
}
}
/*
* Try to leave the mode that disallows simple operations:
* Caller must own sem_perm.lock.
*/
static void complexmode_tryleave(struct sem_array *sma)
{
if (sma->complex_count) {
/* Complex ops are sleeping.
* We must stay in complex mode
*/
return;
}
if (sma->use_global_lock == 1) {
/* See SEM_BARRIER_1 for purpose/pairing */
smp_store_release(&sma->use_global_lock, 0);
} else {
sma->use_global_lock--;
}
}
#define SEM_GLOBAL_LOCK (-1)
/*
* If the request contains only one semaphore operation, and there are
* no complex transactions pending, lock only the semaphore involved.
* Otherwise, lock the entire semaphore array, since we either have
* multiple semaphores in our own semops, or we need to look at
* semaphores from other pending complex operations.
*/
static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
int nsops)
{
struct sem *sem;
int idx;
if (nsops != 1) {
/* Complex operation - acquire a full lock */
ipc_lock_object(&sma->sem_perm);
/* Prevent parallel simple ops */
complexmode_enter(sma);
return SEM_GLOBAL_LOCK;
}
/*
* Only one semaphore affected - try to optimize locking.
* Optimized locking is possible if no complex operation
* is either enqueued or processed right now.
*
* Both facts are tracked by use_global_mode.
*/
idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
sem = &sma->sems[idx];
/*
* Initial check for use_global_lock. Just an optimization,
* no locking, no memory barrier.
*/
if (!sma->use_global_lock) {
/*
* It appears that no complex operation is around.
* Acquire the per-semaphore lock.
*/
spin_lock(&sem->lock);
/* see SEM_BARRIER_1 for purpose/pairing */
if (!smp_load_acquire(&sma->use_global_lock)) {
/* fast path successful! */
return sops->sem_num;
}
spin_unlock(&sem->lock);
}
/* slow path: acquire the full lock */
ipc_lock_object(&sma->sem_perm);
if (sma->use_global_lock == 0) {
/*
* The use_global_lock mode ended while we waited for
* sma->sem_perm.lock. Thus we must switch to locking
* with sem->lock.
* Unlike in the fast path, there is no need to recheck
* sma->use_global_lock after we have acquired sem->lock:
* We own sma->sem_perm.lock, thus use_global_lock cannot
* change.
*/
spin_lock(&sem->lock);
ipc_unlock_object(&sma->sem_perm);
return sops->sem_num;
} else {
/*
* Not a false alarm, thus continue to use the global lock
* mode. No need for complexmode_enter(), this was done by
* the caller that has set use_global_mode to non-zero.
*/
return SEM_GLOBAL_LOCK;
}
}
static inline void sem_unlock(struct sem_array *sma, int locknum)
{
if (locknum == SEM_GLOBAL_LOCK) {
unmerge_queues(sma);
complexmode_tryleave(sma);
ipc_unlock_object(&sma->sem_perm);
} else {
struct sem *sem = &sma->sems[locknum];
spin_unlock(&sem->lock);
}
}
/*
* sem_lock_(check_) routines are called in the paths where the rwsem
* is not held.
*
* The caller holds the RCU read lock.
*/
static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
{
struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return ERR_CAST(ipcp);
return container_of(ipcp, struct sem_array, sem_perm);
}
static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
int id)
{
struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return ERR_CAST(ipcp);
return container_of(ipcp, struct sem_array, sem_perm);
}
static inline void sem_lock_and_putref(struct sem_array *sma)
{
sem_lock(sma, NULL, -1);
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
}
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
{
ipc_rmid(&sem_ids(ns), &s->sem_perm);
}
static struct sem_array *sem_alloc(size_t nsems)
{
struct sem_array *sma;
if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
return NULL;
sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
if (unlikely(!sma))
return NULL;
return sma;
}
/**
* newary - Create a new semaphore set
* @ns: namespace
* @params: ptr to the structure that contains key, semflg and nsems
*
* Called with sem_ids.rwsem held (as a writer)
*/
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
{
int retval;
struct sem_array *sma;
key_t key = params->key;
int nsems = params->u.nsems;
int semflg = params->flg;
int i;
if (!nsems)
return -EINVAL;
if (ns->used_sems + nsems > ns->sc_semmns)
return -ENOSPC;
sma = sem_alloc(nsems);
if (!sma)
return -ENOMEM;
sma->sem_perm.mode = (semflg & S_IRWXUGO);
sma->sem_perm.key = key;
sma->sem_perm.security = NULL;
retval = security_sem_alloc(&sma->sem_perm);
if (retval) {
kvfree(sma);
return retval;
}
for (i = 0; i < nsems; i++) {
INIT_LIST_HEAD(&sma->sems[i].pending_alter);
INIT_LIST_HEAD(&sma->sems[i].pending_const);
spin_lock_init(&sma->sems[i].lock);
}
sma->complex_count = 0;
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
INIT_LIST_HEAD(&sma->pending_alter);
INIT_LIST_HEAD(&sma->pending_const);
INIT_LIST_HEAD(&sma->list_id);
sma->sem_nsems = nsems;
sma->sem_ctime = ktime_get_real_seconds();
/* ipc_addid() locks sma upon success. */
retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
if (retval < 0) {
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return retval;
}
ns->used_sems += nsems;
sem_unlock(sma, -1);
rcu_read_unlock();
return sma->sem_perm.id;
}
/*
* Called with sem_ids.rwsem and ipcp locked.
*/
static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
{
struct sem_array *sma;
sma = container_of(ipcp, struct sem_array, sem_perm);
if (params->u.nsems > sma->sem_nsems)
return -EINVAL;
return 0;
}
long ksys_semget(key_t key, int nsems, int semflg)
{
struct ipc_namespace *ns;
static const struct ipc_ops sem_ops = {
.getnew = newary,
.associate = security_sem_associate,
.more_checks = sem_more_checks,
};
struct ipc_params sem_params;
ns = current->nsproxy->ipc_ns;
if (nsems < 0 || nsems > ns->sc_semmsl)
return -EINVAL;
sem_params.key = key;
sem_params.flg = semflg;
sem_params.u.nsems = nsems;
return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
}
SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
{
return ksys_semget(key, nsems, semflg);
}
/**
* perform_atomic_semop[_slow] - Attempt to perform semaphore
* operations on a given array.
* @sma: semaphore array
* @q: struct sem_queue that describes the operation
*
* Caller blocking are as follows, based the value
* indicated by the semaphore operation (sem_op):
*
* (1) >0 never blocks.
* (2) 0 (wait-for-zero operation): semval is non-zero.
* (3) <0 attempting to decrement semval to a value smaller than zero.
*
* Returns 0 if the operation was possible.
* Returns 1 if the operation is impossible, the caller must sleep.
* Returns <0 for error codes.
*/
static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
{
int result, sem_op, nsops;
struct pid *pid;
struct sembuf *sop;
struct sem *curr;
struct sembuf *sops;
struct sem_undo *un;
sops = q->sops;
nsops = q->nsops;
un = q->undo;
for (sop = sops; sop < sops + nsops; sop++) {
int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
curr = &sma->sems[idx];
sem_op = sop->sem_op;
result = curr->semval;
if (!sem_op && result)
goto would_block;
result += sem_op;
if (result < 0)
goto would_block;
if (result > SEMVMX)
goto out_of_range;
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
/* Exceeding the undo range is an error. */
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
goto out_of_range;
un->semadj[sop->sem_num] = undo;
}
curr->semval = result;
}
sop--;
pid = q->pid;
while (sop >= sops) {
ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
sop--;
}
return 0;
out_of_range:
result = -ERANGE;
goto undo;
would_block:
q->blocking = sop;
if (sop->sem_flg & IPC_NOWAIT)
result = -EAGAIN;
else
result = 1;
undo:
sop--;
while (sop >= sops) {
sem_op = sop->sem_op;
sma->sems[sop->sem_num].semval -= sem_op;
if (sop->sem_flg & SEM_UNDO)
un->semadj[sop->sem_num] += sem_op;
sop--;
}
return result;
}
static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
{
int result, sem_op, nsops;
struct sembuf *sop;
struct sem *curr;
struct sembuf *sops;
struct sem_undo *un;
sops = q->sops;
nsops = q->nsops;
un = q->undo;
if (unlikely(q->dupsop))
return perform_atomic_semop_slow(sma, q);
/*
* We scan the semaphore set twice, first to ensure that the entire
* operation can succeed, therefore avoiding any pointless writes
* to shared memory and having to undo such changes in order to block
* until the operations can go through.
*/
for (sop = sops; sop < sops + nsops; sop++) {
int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
curr = &sma->sems[idx];
sem_op = sop->sem_op;
result = curr->semval;
if (!sem_op && result)
goto would_block; /* wait-for-zero */
result += sem_op;
if (result < 0)
goto would_block;
if (result > SEMVMX)
return -ERANGE;
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
/* Exceeding the undo range is an error. */
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
return -ERANGE;
}
}
for (sop = sops; sop < sops + nsops; sop++) {
curr = &sma->sems[sop->sem_num];
sem_op = sop->sem_op;
result = curr->semval;
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
un->semadj[sop->sem_num] = undo;
}
curr->semval += sem_op;
ipc_update_pid(&curr->sempid, q->pid);
}
return 0;
would_block:
q->blocking = sop;
return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
}
static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
struct wake_q_head *wake_q)
{
get_task_struct(q->sleeper);
/* see SEM_BARRIER_2 for purpuse/pairing */
smp_store_release(&q->status, error);
wake_q_add_safe(wake_q, q->sleeper);
}
static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
{
list_del(&q->list);
if (q->nsops > 1)
sma->complex_count--;
}
/** check_restart(sma, q)
* @sma: semaphore array
* @q: the operation that just completed
*
* update_queue is O(N^2) when it restarts scanning the whole queue of
* waiting operations. Therefore this function checks if the restart is
* really necessary. It is called after a previously waiting operation
* modified the array.
* Note that wait-for-zero operations are handled without restart.
*/
static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
{
/* pending complex alter operations are too difficult to analyse */
if (!list_empty(&sma->pending_alter))
return 1;
/* we were a sleeping complex operation. Too difficult */
if (q->nsops > 1)
return 1;
/* It is impossible that someone waits for the new value:
* - complex operations always restart.
* - wait-for-zero are handled seperately.
* - q is a previously sleeping simple operation that
* altered the array. It must be a decrement, because
* simple increments never sleep.
* - If there are older (higher priority) decrements
* in the queue, then they have observed the original
* semval value and couldn't proceed. The operation
* decremented to value - thus they won't proceed either.
*/
return 0;
}
/**
* wake_const_ops - wake up non-alter tasks
* @sma: semaphore array.
* @semnum: semaphore that was modified.
* @wake_q: lockless wake-queue head.
*
* wake_const_ops must be called after a semaphore in a semaphore array
* was set to 0. If complex const operations are pending, wake_const_ops must
* be called with semnum = -1, as well as with the number of each modified
* semaphore.
* The tasks that must be woken up are added to @wake_q. The return code
* is stored in q->pid.
* The function returns 1 if at least one operation was completed successfully.
*/
static int wake_const_ops(struct sem_array *sma, int semnum,
struct wake_q_head *wake_q)
{
struct sem_queue *q, *tmp;
struct list_head *pending_list;
int semop_completed = 0;
if (semnum == -1)
pending_list = &sma->pending_const;
else
pending_list = &sma->sems[semnum].pending_const;
list_for_each_entry_safe(q, tmp, pending_list, list) {
int error = perform_atomic_semop(sma, q);
if (error > 0)
continue;
/* operation completed, remove from queue & wakeup */
unlink_queue(sma, q);
wake_up_sem_queue_prepare(q, error, wake_q);
if (error == 0)
semop_completed = 1;
}
return semop_completed;
}
/**
* do_smart_wakeup_zero - wakeup all wait for zero tasks
* @sma: semaphore array
* @sops: operations that were performed
* @nsops: number of operations
* @wake_q: lockless wake-queue head
*
* Checks all required queue for wait-for-zero operations, based
* on the actual changes that were performed on the semaphore array.
* The function returns 1 if at least one operation was completed successfully.
*/
static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
int nsops, struct wake_q_head *wake_q)
{
int i;
int semop_completed = 0;
int got_zero = 0;
/* first: the per-semaphore queues, if known */
if (sops) {
for (i = 0; i < nsops; i++) {
int num = sops[i].sem_num;
if (sma->sems[num].semval == 0) {
got_zero = 1;
semop_completed |= wake_const_ops(sma, num, wake_q);
}
}
} else {
/*
* No sops means modified semaphores not known.
* Assume all were changed.
*/
for (i = 0; i < sma->sem_nsems; i++) {
if (sma->sems[i].semval == 0) {
got_zero = 1;
semop_completed |= wake_const_ops(sma, i, wake_q);
}
}
}
/*
* If one of the modified semaphores got 0,
* then check the global queue, too.
*/
if (got_zero)
semop_completed |= wake_const_ops(sma, -1, wake_q);
return semop_completed;
}
/**
* update_queue - look for tasks that can be completed.
* @sma: semaphore array.
* @semnum: semaphore that was modified.
* @wake_q: lockless wake-queue head.
*
* update_queue must be called after a semaphore in a semaphore array
* was modified. If multiple semaphores were modified, update_queue must
* be called with semnum = -1, as well as with the number of each modified
* semaphore.
* The tasks that must be woken up are added to @wake_q. The return code
* is stored in q->pid.
* The function internally checks if const operations can now succeed.
*
* The function return 1 if at least one semop was completed successfully.
*/
static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
{
struct sem_queue *q, *tmp;
struct list_head *pending_list;
int semop_completed = 0;
if (semnum == -1)
pending_list = &sma->pending_alter;
else
pending_list = &sma->sems[semnum].pending_alter;
again:
list_for_each_entry_safe(q, tmp, pending_list, list) {
int error, restart;
/* If we are scanning the single sop, per-semaphore list of
* one semaphore and that semaphore is 0, then it is not
* necessary to scan further: simple increments
* that affect only one entry succeed immediately and cannot
* be in the per semaphore pending queue, and decrements
* cannot be successful if the value is already 0.
*/
if (semnum != -1 && sma->sems[semnum].semval == 0)
break;
error = perform_atomic_semop(sma, q);
/* Does q->sleeper still need to sleep? */
if (error > 0)
continue;
unlink_queue(sma, q);
if (error) {
restart = 0;
} else {
semop_completed = 1;
do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
restart = check_restart(sma, q);
}
wake_up_sem_queue_prepare(q, error, wake_q);
if (restart)
goto again;
}
return semop_completed;
}
/**
* set_semotime - set sem_otime
* @sma: semaphore array
* @sops: operations that modified the array, may be NULL
*
* sem_otime is replicated to avoid cache line trashing.
* This function sets one instance to the current time.
*/
static void set_semotime(struct sem_array *sma, struct sembuf *sops)
{
if (sops == NULL) {
sma->sems[0].sem_otime = ktime_get_real_seconds();
} else {
sma->sems[sops[0].sem_num].sem_otime =
ktime_get_real_seconds();
}
}
/**
* do_smart_update - optimized update_queue
* @sma: semaphore array
* @sops: operations that were performed
* @nsops: number of operations
* @otime: force setting otime
* @wake_q: lockless wake-queue head
*
* do_smart_update() does the required calls to update_queue and wakeup_zero,
* based on the actual changes that were performed on the semaphore array.
* Note that the function does not do the actual wake-up: the caller is
* responsible for calling wake_up_q().
* It is safe to perform this call after dropping all locks.
*/
static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
int otime, struct wake_q_head *wake_q)
{
int i;
otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
if (!list_empty(&sma->pending_alter)) {
/* semaphore array uses the global queue - just process it. */
otime |= update_queue(sma, -1, wake_q);
} else {
if (!sops) {
/*
* No sops, thus the modified semaphores are not
* known. Check all.
*/
for (i = 0; i < sma->sem_nsems; i++)
otime |= update_queue(sma, i, wake_q);
} else {
/*
* Check the semaphores that were increased:
* - No complex ops, thus all sleeping ops are
* decrease.
* - if we decreased the value, then any sleeping
* semaphore ops wont be able to run: If the
* previous value was too small, then the new
* value will be too small, too.
*/
for (i = 0; i < nsops; i++) {
if (sops[i].sem_op > 0) {
otime |= update_queue(sma,
sops[i].sem_num, wake_q);
}
}
}
}
if (otime)
set_semotime(sma, sops);
}
/*
* check_qop: Test if a queued operation sleeps on the semaphore semnum
*/
static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
bool count_zero)
{
struct sembuf *sop = q->blocking;
/*
* Linux always (since 0.99.10) reported a task as sleeping on all
* semaphores. This violates SUS, therefore it was changed to the
* standard compliant behavior.
* Give the administrators a chance to notice that an application
* might misbehave because it relies on the Linux behavior.
*/
pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
"The task %s (%d) triggered the difference, watch for misbehavior.\n",
current->comm, task_pid_nr(current));
if (sop->sem_num != semnum)
return 0;
if (count_zero && sop->sem_op == 0)
return 1;
if (!count_zero && sop->sem_op < 0)
return 1;
return 0;
}
/* The following counts are associated to each semaphore:
* semncnt number of tasks waiting on semval being nonzero
* semzcnt number of tasks waiting on semval being zero
*
* Per definition, a task waits only on the semaphore of the first semop
* that cannot proceed, even if additional operation would block, too.
*/
static int count_semcnt(struct sem_array *sma, ushort semnum,
bool count_zero)
{
struct list_head *l;
struct sem_queue *q;
int semcnt;
semcnt = 0;
/* First: check the simple operations. They are easy to evaluate */
if (count_zero)
l = &sma->sems[semnum].pending_const;
else
l = &sma->sems[semnum].pending_alter;
list_for_each_entry(q, l, list) {
/* all task on a per-semaphore list sleep on exactly
* that semaphore
*/
semcnt++;
}
/* Then: check the complex operations. */
list_for_each_entry(q, &sma->pending_alter, list) {
semcnt += check_qop(sma, semnum, q, count_zero);
}
if (count_zero) {
list_for_each_entry(q, &sma->pending_const, list) {
semcnt += check_qop(sma, semnum, q, count_zero);
}
}
return semcnt;
}
/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
* as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
* remains locked on exit.
*/
static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
{
struct sem_undo *un, *tu;
struct sem_queue *q, *tq;
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
int i;
DEFINE_WAKE_Q(wake_q);
/* Free the existing undo structures for this semaphore set. */
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
list_del(&un->list_id);
spin_lock(&un->ulp->lock);
un->semid = -1;
list_del_rcu(&un->list_proc);
spin_unlock(&un->ulp->lock);
kfree_rcu(un, rcu);
}
/* Wake up all pending processes and let them fail with EIDRM. */
list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
for (i = 0; i < sma->sem_nsems; i++) {
struct sem *sem = &sma->sems[i];
list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
unlink_queue(sma, q);
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
ipc_update_pid(&sem->sempid, NULL);
}
/* Remove the semaphore set from the IDR */
sem_rmid(ns, sma);
sem_unlock(sma, -1);
rcu_read_unlock();
wake_up_q(&wake_q);
ns->used_sems -= sma->sem_nsems;
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
}
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
{
switch (version) {
case IPC_64:
return copy_to_user(buf, in, sizeof(*in));
case IPC_OLD:
{
struct semid_ds out;
memset(&out, 0, sizeof(out));
ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
out.sem_otime = in->sem_otime;
out.sem_ctime = in->sem_ctime;
out.sem_nsems = in->sem_nsems;
return copy_to_user(buf, &out, sizeof(out));
}
default:
return -EINVAL;
}
}
static time64_t get_semotime(struct sem_array *sma)
{
int i;
time64_t res;
res = sma->sems[0].sem_otime;
for (i = 1; i < sma->sem_nsems; i++) {
time64_t to = sma->sems[i].sem_otime;
if (to > res)
res = to;
}
return res;
}
static int semctl_stat(struct ipc_namespace *ns, int semid,
int cmd, struct semid64_ds *semid64)
{
struct sem_array *sma;
time64_t semotime;
int err;
memset(semid64, 0, sizeof(*semid64));
rcu_read_lock();
if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
sma = sem_obtain_object(ns, semid);
if (IS_ERR(sma)) {
err = PTR_ERR(sma);
goto out_unlock;
}
} else { /* IPC_STAT */
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
err = PTR_ERR(sma);
goto out_unlock;
}
}
/* see comment for SHM_STAT_ANY */
if (cmd == SEM_STAT_ANY)
audit_ipc_obj(&sma->sem_perm);
else {
err = -EACCES;
if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
goto out_unlock;
}
err = security_sem_semctl(&sma->sem_perm, cmd);
if (err)
goto out_unlock;
ipc_lock_object(&sma->sem_perm);
if (!ipc_valid_object(&sma->sem_perm)) {
ipc_unlock_object(&sma->sem_perm);
err = -EIDRM;
goto out_unlock;
}
kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
semotime = get_semotime(sma);
semid64->sem_otime = semotime;
semid64->sem_ctime = sma->sem_ctime;
#ifndef CONFIG_64BIT
semid64->sem_otime_high = semotime >> 32;
semid64->sem_ctime_high = sma->sem_ctime >> 32;
#endif
semid64->sem_nsems = sma->sem_nsems;
if (cmd == IPC_STAT) {
/*
* As defined in SUS:
* Return 0 on success
*/
err = 0;
} else {
/*
* SEM_STAT and SEM_STAT_ANY (both Linux specific)
* Return the full id, including the sequence number
*/
err = sma->sem_perm.id;
}
ipc_unlock_object(&sma->sem_perm);
out_unlock:
rcu_read_unlock();
return err;
}
static int semctl_info(struct ipc_namespace *ns, int semid,
int cmd, void __user *p)
{
struct seminfo seminfo;
int max_idx;
int err;
err = security_sem_semctl(NULL, cmd);
if (err)
return err;
memset(&seminfo, 0, sizeof(seminfo));
seminfo.semmni = ns->sc_semmni;
seminfo.semmns = ns->sc_semmns;
seminfo.semmsl = ns->sc_semmsl;
seminfo.semopm = ns->sc_semopm;
seminfo.semvmx = SEMVMX;
seminfo.semmnu = SEMMNU;
seminfo.semmap = SEMMAP;
seminfo.semume = SEMUME;
down_read(&sem_ids(ns).rwsem);
if (cmd == SEM_INFO) {
seminfo.semusz = sem_ids(ns).in_use;
seminfo.semaem = ns->used_sems;
} else {
seminfo.semusz = SEMUSZ;
seminfo.semaem = SEMAEM;
}
max_idx = ipc_get_maxidx(&sem_ids(ns));
up_read(&sem_ids(ns).rwsem);
if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
return -EFAULT;
return (max_idx < 0) ? 0 : max_idx;
}
static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
int val)
{
struct sem_undo *un;
struct sem_array *sma;
struct sem *curr;
int err;
DEFINE_WAKE_Q(wake_q);
if (val > SEMVMX || val < 0)
return -ERANGE;
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return PTR_ERR(sma);
}
if (semnum < 0 || semnum >= sma->sem_nsems) {
rcu_read_unlock();
return -EINVAL;
}
if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
rcu_read_unlock();
return -EACCES;
}
err = security_sem_semctl(&sma->sem_perm, SETVAL);
if (err) {
rcu_read_unlock();
return -EACCES;
}
sem_lock(sma, NULL, -1);
if (!ipc_valid_object(&sma->sem_perm)) {
sem_unlock(sma, -1);
rcu_read_unlock();
return -EIDRM;
}
semnum = array_index_nospec(semnum, sma->sem_nsems);
curr = &sma->sems[semnum];
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry(un, &sma->list_id, list_id)
un->semadj[semnum] = 0;
curr->semval = val;
ipc_update_pid(&curr->sempid, task_tgid(current));
sma->sem_ctime = ktime_get_real_seconds();
/* maybe some queued-up processes were waiting for this */
do_smart_update(sma, NULL, 0, 0, &wake_q);
sem_unlock(sma, -1);
rcu_read_unlock();
wake_up_q(&wake_q);
return 0;
}
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int cmd, void __user *p)
{
struct sem_array *sma;
struct sem *curr;
int err, nsems;
ushort fast_sem_io[SEMMSL_FAST];
ushort *sem_io = fast_sem_io;
DEFINE_WAKE_Q(wake_q);
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return PTR_ERR(sma);
}
nsems = sma->sem_nsems;
err = -EACCES;
if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
goto out_rcu_wakeup;
err = security_sem_semctl(&sma->sem_perm, cmd);
if (err)
goto out_rcu_wakeup;
err = -EACCES;
switch (cmd) {
case GETALL:
{
ushort __user *array = p;
int i;
sem_lock(sma, NULL, -1);
if (!ipc_valid_object(&sma->sem_perm)) {
err = -EIDRM;
goto out_unlock;
}
if (nsems > SEMMSL_FAST) {
if (!ipc_rcu_getref(&sma->sem_perm)) {
err = -EIDRM;
goto out_unlock;
}
sem_unlock(sma, -1);
rcu_read_unlock();
sem_io = kvmalloc_array(nsems, sizeof(ushort),
GFP_KERNEL);
if (sem_io == NULL) {
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return -ENOMEM;
}
rcu_read_lock();
sem_lock_and_putref(sma);
if (!ipc_valid_object(&sma->sem_perm)) {
err = -EIDRM;
goto out_unlock;
}
}
for (i = 0; i < sma->sem_nsems; i++)
sem_io[i] = sma->sems[i].semval;
sem_unlock(sma, -1);
rcu_read_unlock();
err = 0;
if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
err = -EFAULT;
goto out_free;
}
case SETALL:
{
int i;
struct sem_undo *un;
if (!ipc_rcu_getref(&sma->sem_perm)) {
err = -EIDRM;
goto out_rcu_wakeup;
}
rcu_read_unlock();
if (nsems > SEMMSL_FAST) {
sem_io = kvmalloc_array(nsems, sizeof(ushort),
GFP_KERNEL);
if (sem_io == NULL) {
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return -ENOMEM;
}
}
if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
err = -EFAULT;
goto out_free;
}
for (i = 0; i < nsems; i++) {
if (sem_io[i] > SEMVMX) {
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
err = -ERANGE;
goto out_free;
}
}
rcu_read_lock();
sem_lock_and_putref(sma);
if (!ipc_valid_object(&sma->sem_perm)) {
err = -EIDRM;
goto out_unlock;
}
for (i = 0; i < nsems; i++) {
sma->sems[i].semval = sem_io[i];
ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
}
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry(un, &sma->list_id, list_id) {
for (i = 0; i < nsems; i++)
un->semadj[i] = 0;
}
sma->sem_ctime = ktime_get_real_seconds();
/* maybe some queued-up processes were waiting for this */
do_smart_update(sma, NULL, 0, 0, &wake_q);
err = 0;
goto out_unlock;
}
/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
}
err = -EINVAL;
if (semnum < 0 || semnum >= nsems)
goto out_rcu_wakeup;
sem_lock(sma, NULL, -1);
if (!ipc_valid_object(&sma->sem_perm)) {
err = -EIDRM;
goto out_unlock;
}
semnum = array_index_nospec(semnum, nsems);
curr = &sma->sems[semnum];
switch (cmd) {
case GETVAL:
err = curr->semval;
goto out_unlock;
case GETPID:
err = pid_vnr(curr->sempid);
goto out_unlock;
case GETNCNT:
err = count_semcnt(sma, semnum, 0);
goto out_unlock;
case GETZCNT:
err = count_semcnt(sma, semnum, 1);
goto out_unlock;
}
out_unlock:
sem_unlock(sma, -1);
out_rcu_wakeup:
rcu_read_unlock();
wake_up_q(&wake_q);
out_free:
if (sem_io != fast_sem_io)
kvfree(sem_io);
return err;
}
static inline unsigned long
copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
{
switch (version) {
case IPC_64:
if (copy_from_user(out, buf, sizeof(*out)))
return -EFAULT;
return 0;
case IPC_OLD:
{
struct semid_ds tbuf_old;
if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
return -EFAULT;
out->sem_perm.uid = tbuf_old.sem_perm.uid;
out->sem_perm.gid = tbuf_old.sem_perm.gid;
out->sem_perm.mode = tbuf_old.sem_perm.mode;
return 0;
}
default:
return -EINVAL;
}
}
/*
* This function handles some semctl commands which require the rwsem
* to be held in write mode.
* NOTE: no locks must be held, the rwsem is taken inside this function.
*/
static int semctl_down(struct ipc_namespace *ns, int semid,
int cmd, struct semid64_ds *semid64)
{
struct sem_array *sma;
int err;
struct kern_ipc_perm *ipcp;
down_write(&sem_ids(ns).rwsem);
rcu_read_lock();
ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
&semid64->sem_perm, 0);
if (IS_ERR(ipcp)) {
err = PTR_ERR(ipcp);
goto out_unlock1;
}
sma = container_of(ipcp, struct sem_array, sem_perm);
err = security_sem_semctl(&sma->sem_perm, cmd);
if (err)
goto out_unlock1;
switch (cmd) {
case IPC_RMID:
sem_lock(sma, NULL, -1);
/* freeary unlocks the ipc object and rcu */
freeary(ns, ipcp);
goto out_up;
case IPC_SET:
sem_lock(sma, NULL, -1);
err = ipc_update_perm(&semid64->sem_perm, ipcp);
if (err)
goto out_unlock0;
sma->sem_ctime = ktime_get_real_seconds();
break;
default:
err = -EINVAL;
goto out_unlock1;
}
out_unlock0:
sem_unlock(sma, -1);
out_unlock1:
rcu_read_unlock();
out_up:
up_write(&sem_ids(ns).rwsem);
return err;
}
static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
{
struct ipc_namespace *ns;
void __user *p = (void __user *)arg;
struct semid64_ds semid64;
int err;
if (semid < 0)
return -EINVAL;
ns = current->nsproxy->ipc_ns;
switch (cmd) {
case IPC_INFO:
case SEM_INFO:
return semctl_info(ns, semid, cmd, p);
case IPC_STAT:
case SEM_STAT:
case SEM_STAT_ANY:
err = semctl_stat(ns, semid, cmd, &semid64);
if (err < 0)
return err;
if (copy_semid_to_user(p, &semid64, version))
err = -EFAULT;
return err;
case GETALL:
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case SETALL:
return semctl_main(ns, semid, semnum, cmd, p);
case SETVAL: {
int val;
#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
/* big-endian 64bit */
val = arg >> 32;
#else
/* 32bit or little-endian 64bit */
val = arg;
#endif
return semctl_setval(ns, semid, semnum, val);
}
case IPC_SET:
if (copy_semid_from_user(&semid64, p, version))
return -EFAULT;
fallthrough;
case IPC_RMID:
return semctl_down(ns, semid, cmd, &semid64);
default:
return -EINVAL;
}
}
SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
{
return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
}
#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
{
int version = ipc_parse_version(&cmd);
return ksys_semctl(semid, semnum, cmd, arg, version);
}
SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
{
return ksys_old_semctl(semid, semnum, cmd, arg);
}
#endif
#ifdef CONFIG_COMPAT
struct compat_semid_ds {
struct compat_ipc_perm sem_perm;
old_time32_t sem_otime;
old_time32_t sem_ctime;
compat_uptr_t sem_base;
compat_uptr_t sem_pending;
compat_uptr_t sem_pending_last;
compat_uptr_t undo;
unsigned short sem_nsems;
};
static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
int version)
{
memset(out, 0, sizeof(*out));
if (version == IPC_64) {
struct compat_semid64_ds __user *p = buf;
return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
} else {
struct compat_semid_ds __user *p = buf;
return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
}
}
static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
int version)
{
if (version == IPC_64) {
struct compat_semid64_ds v;
memset(&v, 0, sizeof(v));
to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
v.sem_otime = lower_32_bits(in->sem_otime);
v.sem_otime_high = upper_32_bits(in->sem_otime);
v.sem_ctime = lower_32_bits(in->sem_ctime);
v.sem_ctime_high = upper_32_bits(in->sem_ctime);
v.sem_nsems = in->sem_nsems;
return copy_to_user(buf, &v, sizeof(v));
} else {
struct compat_semid_ds v;
memset(&v, 0, sizeof(v));
to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
v.sem_otime = in->sem_otime;
v.sem_ctime = in->sem_ctime;
v.sem_nsems = in->sem_nsems;
return copy_to_user(buf, &v, sizeof(v));
}
}
static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
{
void __user *p = compat_ptr(arg);
struct ipc_namespace *ns;
struct semid64_ds semid64;
int err;
ns = current->nsproxy->ipc_ns;
if (semid < 0)
return -EINVAL;
switch (cmd & (~IPC_64)) {
case IPC_INFO:
case SEM_INFO:
return semctl_info(ns, semid, cmd, p);
case IPC_STAT:
case SEM_STAT:
case SEM_STAT_ANY:
err = semctl_stat(ns, semid, cmd, &semid64);
if (err < 0)
return err;
if (copy_compat_semid_to_user(p, &semid64, version))
err = -EFAULT;
return err;
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case GETALL:
case SETALL:
return semctl_main(ns, semid, semnum, cmd, p);
case SETVAL:
return semctl_setval(ns, semid, semnum, arg);
case IPC_SET:
if (copy_compat_semid_from_user(&semid64, p, version))
return -EFAULT;
fallthrough;
case IPC_RMID:
return semctl_down(ns, semid, cmd, &semid64);
default:
return -EINVAL;
}
}
COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
{
return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
}
#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
{
int version = compat_ipc_parse_version(&cmd);
return compat_ksys_semctl(semid, semnum, cmd, arg, version);
}
COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
{
return compat_ksys_old_semctl(semid, semnum, cmd, arg);
}
#endif
#endif
/* If the task doesn't already have a undo_list, then allocate one
* here. We guarantee there is only one thread using this undo list,
* and current is THE ONE
*
* If this allocation and assignment succeeds, but later
* portions of this code fail, there is no need to free the sem_undo_list.
* Just let it stay associated with the task, and it'll be freed later
* at exit time.
*
* This can block, so callers must hold no locks.
*/
static inline int get_undo_list(struct sem_undo_list **undo_listp)
{
struct sem_undo_list *undo_list;
undo_list = current->sysvsem.undo_list;
if (!undo_list) {
undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
if (undo_list == NULL)
return -ENOMEM;
spin_lock_init(&undo_list->lock);
refcount_set(&undo_list->refcnt, 1);
INIT_LIST_HEAD(&undo_list->list_proc);
current->sysvsem.undo_list = undo_list;
}
*undo_listp = undo_list;
return 0;
}
static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo *un;
list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
spin_is_locked(&ulp->lock)) {
if (un->semid == semid)
return un;
}
return NULL;
}
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo *un;
assert_spin_locked(&ulp->lock);
un = __lookup_undo(ulp, semid);
if (un) {
list_del_rcu(&un->list_proc);
list_add_rcu(&un->list_proc, &ulp->list_proc);
}
return un;
}
/**
* find_alloc_undo - lookup (and if not present create) undo array
* @ns: namespace
* @semid: semaphore array id
*
* The function looks up (and if not present creates) the undo structure.
* The size of the undo structure depends on the size of the semaphore
* array, thus the alloc path is not that straightforward.
* Lifetime-rules: sem_undo is rcu-protected, on success, the function
* performs a rcu_read_lock().
*/
static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
{
struct sem_array *sma;
struct sem_undo_list *ulp;
struct sem_undo *un, *new;
int nsems, error;
error = get_undo_list(&ulp);
if (error)
return ERR_PTR(error);
rcu_read_lock();
spin_lock(&ulp->lock);
un = lookup_undo(ulp, semid);
spin_unlock(&ulp->lock);
if (likely(un != NULL))
goto out;
/* no undo structure around - allocate one. */
/* step 1: figure out the size of the semaphore array */
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return ERR_CAST(sma);
}
nsems = sma->sem_nsems;
if (!ipc_rcu_getref(&sma->sem_perm)) {
rcu_read_unlock();
un = ERR_PTR(-EIDRM);
goto out;
}
rcu_read_unlock();
/* step 2: allocate new undo structure */
new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
if (!new) {
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return ERR_PTR(-ENOMEM);
}
/* step 3: Acquire the lock on semaphore array */
rcu_read_lock();
sem_lock_and_putref(sma);
if (!ipc_valid_object(&sma->sem_perm)) {
sem_unlock(sma, -1);
rcu_read_unlock();
kfree(new);
un = ERR_PTR(-EIDRM);
goto out;
}
spin_lock(&ulp->lock);
/*
* step 4: check for races: did someone else allocate the undo struct?
*/
un = lookup_undo(ulp, semid);
if (un) {
kfree(new);
goto success;
}
/* step 5: initialize & link new undo structure */
new->semadj = (short *) &new[1];
new->ulp = ulp;
new->semid = semid;
assert_spin_locked(&ulp->lock);
list_add_rcu(&new->list_proc, &ulp->list_proc);
ipc_assert_locked_object(&sma->sem_perm);
list_add(&new->list_id, &sma->list_id);
un = new;
success:
spin_unlock(&ulp->lock);
sem_unlock(sma, -1);
out:
return un;
}
static long do_semtimedop(int semid, struct sembuf __user *tsops,
unsigned nsops, const struct timespec64 *timeout)
{
int error = -EINVAL;
struct sem_array *sma;
struct sembuf fast_sops[SEMOPM_FAST];
struct sembuf *sops = fast_sops, *sop;
struct sem_undo *un;
int max, locknum;
bool undos = false, alter = false, dupsop = false;
struct sem_queue queue;
unsigned long dup = 0, jiffies_left = 0;
struct ipc_namespace *ns;
ns = current->nsproxy->ipc_ns;
if (nsops < 1 || semid < 0)
return -EINVAL;
if (nsops > ns->sc_semopm)
return -E2BIG;
if (nsops > SEMOPM_FAST) {
sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
if (sops == NULL)
return -ENOMEM;
}
if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
error = -EFAULT;
goto out_free;
}
if (timeout) {
if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
timeout->tv_nsec >= 1000000000L) {
error = -EINVAL;
goto out_free;
}
jiffies_left = timespec64_to_jiffies(timeout);
}
max = 0;
for (sop = sops; sop < sops + nsops; sop++) {
unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
if (sop->sem_num >= max)
max = sop->sem_num;
if (sop->sem_flg & SEM_UNDO)
undos = true;
if (dup & mask) {
/*
* There was a previous alter access that appears
* to have accessed the same semaphore, thus use
* the dupsop logic. "appears", because the detection
* can only check % BITS_PER_LONG.
*/
dupsop = true;
}
if (sop->sem_op != 0) {
alter = true;
dup |= mask;
}
}
if (undos) {
/* On success, find_alloc_undo takes the rcu_read_lock */
un = find_alloc_undo(ns, semid);
if (IS_ERR(un)) {
error = PTR_ERR(un);
goto out_free;
}
} else {
un = NULL;
rcu_read_lock();
}
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
error = PTR_ERR(sma);
goto out_free;
}
error = -EFBIG;
if (max >= sma->sem_nsems) {
rcu_read_unlock();
goto out_free;
}
error = -EACCES;
if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
rcu_read_unlock();
goto out_free;
}
error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
if (error) {
rcu_read_unlock();
goto out_free;
}
error = -EIDRM;
locknum = sem_lock(sma, sops, nsops);
/*
* We eventually might perform the following check in a lockless
* fashion, considering ipc_valid_object() locking constraints.
* If nsops == 1 and there is no contention for sem_perm.lock, then
* only a per-semaphore lock is held and it's OK to proceed with the
* check below. More details on the fine grained locking scheme
* entangled here and why it's RMID race safe on comments at sem_lock()
*/
if (!ipc_valid_object(&sma->sem_perm))
goto out_unlock_free;
/*
* semid identifiers are not unique - find_alloc_undo may have
* allocated an undo structure, it was invalidated by an RMID
* and now a new array with received the same id. Check and fail.
* This case can be detected checking un->semid. The existence of
* "un" itself is guaranteed by rcu.
*/
if (un && un->semid == -1)
goto out_unlock_free;
queue.sops = sops;
queue.nsops = nsops;
queue.undo = un;
queue.pid = task_tgid(current);
queue.alter = alter;
queue.dupsop = dupsop;
error = perform_atomic_semop(sma, &queue);
if (error == 0) { /* non-blocking succesfull path */
DEFINE_WAKE_Q(wake_q);
/*
* If the operation was successful, then do
* the required updates.
*/
if (alter)
do_smart_update(sma, sops, nsops, 1, &wake_q);
else
set_semotime(sma, sops);
sem_unlock(sma, locknum);
rcu_read_unlock();
wake_up_q(&wake_q);
goto out_free;
}
if (error < 0) /* non-blocking error path */
goto out_unlock_free;
/*
* We need to sleep on this operation, so we put the current
* task into the pending queue and go to sleep.
*/
if (nsops == 1) {
struct sem *curr;
int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
curr = &sma->sems[idx];
if (alter) {
if (sma->complex_count) {
list_add_tail(&queue.list,
&sma->pending_alter);
} else {
list_add_tail(&queue.list,
&curr->pending_alter);
}
} else {
list_add_tail(&queue.list, &curr->pending_const);
}
} else {
if (!sma->complex_count)
merge_queues(sma);
if (alter)
list_add_tail(&queue.list, &sma->pending_alter);
else
list_add_tail(&queue.list, &sma->pending_const);
sma->complex_count++;
}
do {
/* memory ordering ensured by the lock in sem_lock() */
WRITE_ONCE(queue.status, -EINTR);
queue.sleeper = current;
/* memory ordering is ensured by the lock in sem_lock() */
__set_current_state(TASK_INTERRUPTIBLE);
sem_unlock(sma, locknum);
rcu_read_unlock();
if (timeout)
jiffies_left = schedule_timeout(jiffies_left);
else
schedule();
/*
* fastpath: the semop has completed, either successfully or
* not, from the syscall pov, is quite irrelevant to us at this
* point; we're done.
*
* We _do_ care, nonetheless, about being awoken by a signal or
* spuriously. The queue.status is checked again in the
* slowpath (aka after taking sem_lock), such that we can detect
* scenarios where we were awakened externally, during the
* window between wake_q_add() and wake_up_q().
*/
error = READ_ONCE(queue.status);
if (error != -EINTR) {
/* see SEM_BARRIER_2 for purpose/pairing */
smp_acquire__after_ctrl_dep();
goto out_free;
}
rcu_read_lock();
locknum = sem_lock(sma, sops, nsops);
if (!ipc_valid_object(&sma->sem_perm))
goto out_unlock_free;
/*
* No necessity for any barrier: We are protect by sem_lock()
*/
error = READ_ONCE(queue.status);
/*
* If queue.status != -EINTR we are woken up by another process.
* Leave without unlink_queue(), but with sem_unlock().
*/
if (error != -EINTR)
goto out_unlock_free;
/*
* If an interrupt occurred we have to clean up the queue.
*/
if (timeout && jiffies_left == 0)
error = -EAGAIN;
} while (error == -EINTR && !signal_pending(current)); /* spurious */
unlink_queue(sma, &queue);
out_unlock_free:
sem_unlock(sma, locknum);
rcu_read_unlock();
out_free:
if (sops != fast_sops)
kvfree(sops);
return error;
}
long ksys_semtimedop(int semid, struct sembuf __user *tsops,
unsigned int nsops, const struct __kernel_timespec __user *timeout)
{
if (timeout) {
struct timespec64 ts;
if (get_timespec64(&ts, timeout))
return -EFAULT;
return do_semtimedop(semid, tsops, nsops, &ts);
}
return do_semtimedop(semid, tsops, nsops, NULL);
}
SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
{
return ksys_semtimedop(semid, tsops, nsops, timeout);
}
#ifdef CONFIG_COMPAT_32BIT_TIME
long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
unsigned int nsops,
const struct old_timespec32 __user *timeout)
{
if (timeout) {
struct timespec64 ts;
if (get_old_timespec32(&ts, timeout))
return -EFAULT;
return do_semtimedop(semid, tsems, nsops, &ts);
}
return do_semtimedop(semid, tsems, nsops, NULL);
}
SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
unsigned int, nsops,
const struct old_timespec32 __user *, timeout)
{
return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
}
#endif
SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
unsigned, nsops)
{
return do_semtimedop(semid, tsops, nsops, NULL);
}
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
* parent and child tasks.
*/
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
int error;
if (clone_flags & CLONE_SYSVSEM) {
error = get_undo_list(&undo_list);
if (error)
return error;
refcount_inc(&undo_list->refcnt);
tsk->sysvsem.undo_list = undo_list;
} else
tsk->sysvsem.undo_list = NULL;
return 0;
}
/*
* add semadj values to semaphores, free undo structures.
* undo structures are not freed when semaphore arrays are destroyed
* so some of them may be out of date.
* IMPLEMENTATION NOTE: There is some confusion over whether the
* set of adjustments that needs to be done should be done in an atomic
* manner or not. That is, if we are attempting to decrement the semval
* should we queue up and wait until we can do so legally?
* The original implementation attempted to do this (queue and wait).
* The current implementation does not do so. The POSIX standard
* and SVID should be consulted to determine what behavior is mandated.
*/
void exit_sem(struct task_struct *tsk)
{
struct sem_undo_list *ulp;
ulp = tsk->sysvsem.undo_list;
if (!ulp)
return;
tsk->sysvsem.undo_list = NULL;
if (!refcount_dec_and_test(&ulp->refcnt))
return;
for (;;) {
struct sem_array *sma;
struct sem_undo *un;
int semid, i;
DEFINE_WAKE_Q(wake_q);
cond_resched();
rcu_read_lock();
un = list_entry_rcu(ulp->list_proc.next,
struct sem_undo, list_proc);
if (&un->list_proc == &ulp->list_proc) {
/*
* We must wait for freeary() before freeing this ulp,
* in case we raced with last sem_undo. There is a small
* possibility where we exit while freeary() didn't
* finish unlocking sem_undo_list.
*/
spin_lock(&ulp->lock);
spin_unlock(&ulp->lock);
rcu_read_unlock();
break;
}
spin_lock(&ulp->lock);
semid = un->semid;
spin_unlock(&ulp->lock);
/* exit_sem raced with IPC_RMID, nothing to do */
if (semid == -1) {
rcu_read_unlock();
continue;
}
sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
/* exit_sem raced with IPC_RMID, nothing to do */
if (IS_ERR(sma)) {
rcu_read_unlock();
continue;
}
sem_lock(sma, NULL, -1);
/* exit_sem raced with IPC_RMID, nothing to do */
if (!ipc_valid_object(&sma->sem_perm)) {
sem_unlock(sma, -1);
rcu_read_unlock();
continue;
}
un = __lookup_undo(ulp, semid);
if (un == NULL) {
/* exit_sem raced with IPC_RMID+semget() that created
* exactly the same semid. Nothing to do.
*/
sem_unlock(sma, -1);
rcu_read_unlock();
continue;
}
/* remove un from the linked lists */
ipc_assert_locked_object(&sma->sem_perm);
list_del(&un->list_id);
spin_lock(&ulp->lock);
list_del_rcu(&un->list_proc);
spin_unlock(&ulp->lock);
/* perform adjustments registered in un */
for (i = 0; i < sma->sem_nsems; i++) {
struct sem *semaphore = &sma->sems[i];
if (un->semadj[i]) {
semaphore->semval += un->semadj[i];
/*
* Range checks of the new semaphore value,
* not defined by sus:
* - Some unices ignore the undo entirely
* (e.g. HP UX 11i 11.22, Tru64 V5.1)
* - some cap the value (e.g. FreeBSD caps
* at 0, but doesn't enforce SEMVMX)
*
* Linux caps the semaphore value, both at 0
* and at SEMVMX.
*
* Manfred <manfred@colorfullife.com>
*/
if (semaphore->semval < 0)
semaphore->semval = 0;
if (semaphore->semval > SEMVMX)
semaphore->semval = SEMVMX;
ipc_update_pid(&semaphore->sempid, task_tgid(current));
}
}
/* maybe some queued-up processes were waiting for this */
do_smart_update(sma, NULL, 0, 1, &wake_q);
sem_unlock(sma, -1);
rcu_read_unlock();
wake_up_q(&wake_q);
kfree_rcu(un, rcu);
}
kfree(ulp);
}
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
{
struct user_namespace *user_ns = seq_user_ns(s);
struct kern_ipc_perm *ipcp = it;
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
time64_t sem_otime;
/*
* The proc interface isn't aware of sem_lock(), it calls
* ipc_lock_object() directly (in sysvipc_find_ipc).
* In order to stay compatible with sem_lock(), we must
* enter / leave complex_mode.
*/
complexmode_enter(sma);
sem_otime = get_semotime(sma);
seq_printf(s,
"%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
sma->sem_perm.key,
sma->sem_perm.id,
sma->sem_perm.mode,
sma->sem_nsems,
from_kuid_munged(user_ns, sma->sem_perm.uid),
from_kgid_munged(user_ns, sma->sem_perm.gid),
from_kuid_munged(user_ns, sma->sem_perm.cuid),
from_kgid_munged(user_ns, sma->sem_perm.cgid),
sem_otime,
sma->sem_ctime);
complexmode_tryleave(sma);
return 0;
}
#endif