kernel_optimize_test/kernel/signal.c
Oleg Nesterov 937c6b27c7 cgroup: freezer: call cgroup_enter_frozen() with preemption disabled in ptrace_stop()
ptrace_stop() does preempt_enable_no_resched() to avoid the preemption,
but after that cgroup_enter_frozen() does spin_lock/unlock and this adds
another preemption point.

Reported-and-tested-by: Bruce Ashfield <bruce.ashfield@gmail.com>
Fixes: 76f969e894 ("cgroup: cgroup v2 freezer")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2019-10-11 08:39:57 -07:00

4616 lines
118 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/signal.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
*
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
* Changes to use preallocated sigqueue structures
* to allow signals to be sent reliably.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/user.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/cputime.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/tty.h>
#include <linux/binfmts.h>
#include <linux/coredump.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/ptrace.h>
#include <linux/signal.h>
#include <linux/signalfd.h>
#include <linux/ratelimit.h>
#include <linux/tracehook.h>
#include <linux/capability.h>
#include <linux/freezer.h>
#include <linux/pid_namespace.h>
#include <linux/nsproxy.h>
#include <linux/user_namespace.h>
#include <linux/uprobes.h>
#include <linux/compat.h>
#include <linux/cn_proc.h>
#include <linux/compiler.h>
#include <linux/posix-timers.h>
#include <linux/livepatch.h>
#include <linux/cgroup.h>
#include <linux/audit.h>
#define CREATE_TRACE_POINTS
#include <trace/events/signal.h>
#include <asm/param.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <asm/siginfo.h>
#include <asm/cacheflush.h>
/*
* SLAB caches for signal bits.
*/
static struct kmem_cache *sigqueue_cachep;
int print_fatal_signals __read_mostly;
static void __user *sig_handler(struct task_struct *t, int sig)
{
return t->sighand->action[sig - 1].sa.sa_handler;
}
static inline bool sig_handler_ignored(void __user *handler, int sig)
{
/* Is it explicitly or implicitly ignored? */
return handler == SIG_IGN ||
(handler == SIG_DFL && sig_kernel_ignore(sig));
}
static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
{
void __user *handler;
handler = sig_handler(t, sig);
/* SIGKILL and SIGSTOP may not be sent to the global init */
if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
return true;
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
handler == SIG_DFL && !(force && sig_kernel_only(sig)))
return true;
/* Only allow kernel generated signals to this kthread */
if (unlikely((t->flags & PF_KTHREAD) &&
(handler == SIG_KTHREAD_KERNEL) && !force))
return true;
return sig_handler_ignored(handler, sig);
}
static bool sig_ignored(struct task_struct *t, int sig, bool force)
{
/*
* Blocked signals are never ignored, since the
* signal handler may change by the time it is
* unblocked.
*/
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
return false;
/*
* Tracers may want to know about even ignored signal unless it
* is SIGKILL which can't be reported anyway but can be ignored
* by SIGNAL_UNKILLABLE task.
*/
if (t->ptrace && sig != SIGKILL)
return false;
return sig_task_ignored(t, sig, force);
}
/*
* Re-calculate pending state from the set of locally pending
* signals, globally pending signals, and blocked signals.
*/
static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
{
unsigned long ready;
long i;
switch (_NSIG_WORDS) {
default:
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
ready |= signal->sig[i] &~ blocked->sig[i];
break;
case 4: ready = signal->sig[3] &~ blocked->sig[3];
ready |= signal->sig[2] &~ blocked->sig[2];
ready |= signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 2: ready = signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 1: ready = signal->sig[0] &~ blocked->sig[0];
}
return ready != 0;
}
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
static bool recalc_sigpending_tsk(struct task_struct *t)
{
if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
PENDING(&t->pending, &t->blocked) ||
PENDING(&t->signal->shared_pending, &t->blocked) ||
cgroup_task_frozen(t)) {
set_tsk_thread_flag(t, TIF_SIGPENDING);
return true;
}
/*
* We must never clear the flag in another thread, or in current
* when it's possible the current syscall is returning -ERESTART*.
* So we don't clear it here, and only callers who know they should do.
*/
return false;
}
/*
* After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
* This is superfluous when called on current, the wakeup is a harmless no-op.
*/
void recalc_sigpending_and_wake(struct task_struct *t)
{
if (recalc_sigpending_tsk(t))
signal_wake_up(t, 0);
}
void recalc_sigpending(void)
{
if (!recalc_sigpending_tsk(current) && !freezing(current) &&
!klp_patch_pending(current))
clear_thread_flag(TIF_SIGPENDING);
}
EXPORT_SYMBOL(recalc_sigpending);
void calculate_sigpending(void)
{
/* Have any signals or users of TIF_SIGPENDING been delayed
* until after fork?
*/
spin_lock_irq(&current->sighand->siglock);
set_tsk_thread_flag(current, TIF_SIGPENDING);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
}
/* Given the mask, find the first available signal that should be serviced. */
#define SYNCHRONOUS_MASK \
(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
int next_signal(struct sigpending *pending, sigset_t *mask)
{
unsigned long i, *s, *m, x;
int sig = 0;
s = pending->signal.sig;
m = mask->sig;
/*
* Handle the first word specially: it contains the
* synchronous signals that need to be dequeued first.
*/
x = *s &~ *m;
if (x) {
if (x & SYNCHRONOUS_MASK)
x &= SYNCHRONOUS_MASK;
sig = ffz(~x) + 1;
return sig;
}
switch (_NSIG_WORDS) {
default:
for (i = 1; i < _NSIG_WORDS; ++i) {
x = *++s &~ *++m;
if (!x)
continue;
sig = ffz(~x) + i*_NSIG_BPW + 1;
break;
}
break;
case 2:
x = s[1] &~ m[1];
if (!x)
break;
sig = ffz(~x) + _NSIG_BPW + 1;
break;
case 1:
/* Nothing to do */
break;
}
return sig;
}
static inline void print_dropped_signal(int sig)
{
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
if (!print_fatal_signals)
return;
if (!__ratelimit(&ratelimit_state))
return;
pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
current->comm, current->pid, sig);
}
/**
* task_set_jobctl_pending - set jobctl pending bits
* @task: target task
* @mask: pending bits to set
*
* Clear @mask from @task->jobctl. @mask must be subset of
* %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
* %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
* cleared. If @task is already being killed or exiting, this function
* becomes noop.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*
* RETURNS:
* %true if @mask is set, %false if made noop because @task was dying.
*/
bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
{
BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
return false;
if (mask & JOBCTL_STOP_SIGMASK)
task->jobctl &= ~JOBCTL_STOP_SIGMASK;
task->jobctl |= mask;
return true;
}
/**
* task_clear_jobctl_trapping - clear jobctl trapping bit
* @task: target task
*
* If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
* Clear it and wake up the ptracer. Note that we don't need any further
* locking. @task->siglock guarantees that @task->parent points to the
* ptracer.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
void task_clear_jobctl_trapping(struct task_struct *task)
{
if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
task->jobctl &= ~JOBCTL_TRAPPING;
smp_mb(); /* advised by wake_up_bit() */
wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
}
}
/**
* task_clear_jobctl_pending - clear jobctl pending bits
* @task: target task
* @mask: pending bits to clear
*
* Clear @mask from @task->jobctl. @mask must be subset of
* %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
* STOP bits are cleared together.
*
* If clearing of @mask leaves no stop or trap pending, this function calls
* task_clear_jobctl_trapping().
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
{
BUG_ON(mask & ~JOBCTL_PENDING_MASK);
if (mask & JOBCTL_STOP_PENDING)
mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
task->jobctl &= ~mask;
if (!(task->jobctl & JOBCTL_PENDING_MASK))
task_clear_jobctl_trapping(task);
}
/**
* task_participate_group_stop - participate in a group stop
* @task: task participating in a group stop
*
* @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
* Group stop states are cleared and the group stop count is consumed if
* %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
* stop, the appropriate `SIGNAL_*` flags are set.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*
* RETURNS:
* %true if group stop completion should be notified to the parent, %false
* otherwise.
*/
static bool task_participate_group_stop(struct task_struct *task)
{
struct signal_struct *sig = task->signal;
bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
if (!consume)
return false;
if (!WARN_ON_ONCE(sig->group_stop_count == 0))
sig->group_stop_count--;
/*
* Tell the caller to notify completion iff we are entering into a
* fresh group stop. Read comment in do_signal_stop() for details.
*/
if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
return true;
}
return false;
}
void task_join_group_stop(struct task_struct *task)
{
/* Have the new thread join an on-going signal group stop */
unsigned long jobctl = current->jobctl;
if (jobctl & JOBCTL_STOP_PENDING) {
struct signal_struct *sig = current->signal;
unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
if (task_set_jobctl_pending(task, signr | gstop)) {
sig->group_stop_count++;
}
}
}
/*
* allocate a new signal queue record
* - this may be called without locks if and only if t == current, otherwise an
* appropriate lock must be held to stop the target task from exiting
*/
static struct sigqueue *
__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
{
struct sigqueue *q = NULL;
struct user_struct *user;
/*
* Protect access to @t credentials. This can go away when all
* callers hold rcu read lock.
*/
rcu_read_lock();
user = get_uid(__task_cred(t)->user);
atomic_inc(&user->sigpending);
rcu_read_unlock();
if (override_rlimit ||
atomic_read(&user->sigpending) <=
task_rlimit(t, RLIMIT_SIGPENDING)) {
q = kmem_cache_alloc(sigqueue_cachep, flags);
} else {
print_dropped_signal(sig);
}
if (unlikely(q == NULL)) {
atomic_dec(&user->sigpending);
free_uid(user);
} else {
INIT_LIST_HEAD(&q->list);
q->flags = 0;
q->user = user;
}
return q;
}
static void __sigqueue_free(struct sigqueue *q)
{
if (q->flags & SIGQUEUE_PREALLOC)
return;
atomic_dec(&q->user->sigpending);
free_uid(q->user);
kmem_cache_free(sigqueue_cachep, q);
}
void flush_sigqueue(struct sigpending *queue)
{
struct sigqueue *q;
sigemptyset(&queue->signal);
while (!list_empty(&queue->list)) {
q = list_entry(queue->list.next, struct sigqueue , list);
list_del_init(&q->list);
__sigqueue_free(q);
}
}
/*
* Flush all pending signals for this kthread.
*/
void flush_signals(struct task_struct *t)
{
unsigned long flags;
spin_lock_irqsave(&t->sighand->siglock, flags);
clear_tsk_thread_flag(t, TIF_SIGPENDING);
flush_sigqueue(&t->pending);
flush_sigqueue(&t->signal->shared_pending);
spin_unlock_irqrestore(&t->sighand->siglock, flags);
}
EXPORT_SYMBOL(flush_signals);
#ifdef CONFIG_POSIX_TIMERS
static void __flush_itimer_signals(struct sigpending *pending)
{
sigset_t signal, retain;
struct sigqueue *q, *n;
signal = pending->signal;
sigemptyset(&retain);
list_for_each_entry_safe(q, n, &pending->list, list) {
int sig = q->info.si_signo;
if (likely(q->info.si_code != SI_TIMER)) {
sigaddset(&retain, sig);
} else {
sigdelset(&signal, sig);
list_del_init(&q->list);
__sigqueue_free(q);
}
}
sigorsets(&pending->signal, &signal, &retain);
}
void flush_itimer_signals(void)
{
struct task_struct *tsk = current;
unsigned long flags;
spin_lock_irqsave(&tsk->sighand->siglock, flags);
__flush_itimer_signals(&tsk->pending);
__flush_itimer_signals(&tsk->signal->shared_pending);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
}
#endif
void ignore_signals(struct task_struct *t)
{
int i;
for (i = 0; i < _NSIG; ++i)
t->sighand->action[i].sa.sa_handler = SIG_IGN;
flush_signals(t);
}
/*
* Flush all handlers for a task.
*/
void
flush_signal_handlers(struct task_struct *t, int force_default)
{
int i;
struct k_sigaction *ka = &t->sighand->action[0];
for (i = _NSIG ; i != 0 ; i--) {
if (force_default || ka->sa.sa_handler != SIG_IGN)
ka->sa.sa_handler = SIG_DFL;
ka->sa.sa_flags = 0;
#ifdef __ARCH_HAS_SA_RESTORER
ka->sa.sa_restorer = NULL;
#endif
sigemptyset(&ka->sa.sa_mask);
ka++;
}
}
bool unhandled_signal(struct task_struct *tsk, int sig)
{
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
if (is_global_init(tsk))
return true;
if (handler != SIG_IGN && handler != SIG_DFL)
return false;
/* if ptraced, let the tracer determine */
return !tsk->ptrace;
}
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
bool *resched_timer)
{
struct sigqueue *q, *first = NULL;
/*
* Collect the siginfo appropriate to this signal. Check if
* there is another siginfo for the same signal.
*/
list_for_each_entry(q, &list->list, list) {
if (q->info.si_signo == sig) {
if (first)
goto still_pending;
first = q;
}
}
sigdelset(&list->signal, sig);
if (first) {
still_pending:
list_del_init(&first->list);
copy_siginfo(info, &first->info);
*resched_timer =
(first->flags & SIGQUEUE_PREALLOC) &&
(info->si_code == SI_TIMER) &&
(info->si_sys_private);
__sigqueue_free(first);
} else {
/*
* Ok, it wasn't in the queue. This must be
* a fast-pathed signal or we must have been
* out of queue space. So zero out the info.
*/
clear_siginfo(info);
info->si_signo = sig;
info->si_errno = 0;
info->si_code = SI_USER;
info->si_pid = 0;
info->si_uid = 0;
}
}
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
kernel_siginfo_t *info, bool *resched_timer)
{
int sig = next_signal(pending, mask);
if (sig)
collect_signal(sig, pending, info, resched_timer);
return sig;
}
/*
* Dequeue a signal and return the element to the caller, which is
* expected to free it.
*
* All callers have to hold the siglock.
*/
int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
{
bool resched_timer = false;
int signr;
/* We only dequeue private signals from ourselves, we don't let
* signalfd steal them
*/
signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
if (!signr) {
signr = __dequeue_signal(&tsk->signal->shared_pending,
mask, info, &resched_timer);
#ifdef CONFIG_POSIX_TIMERS
/*
* itimer signal ?
*
* itimers are process shared and we restart periodic
* itimers in the signal delivery path to prevent DoS
* attacks in the high resolution timer case. This is
* compliant with the old way of self-restarting
* itimers, as the SIGALRM is a legacy signal and only
* queued once. Changing the restart behaviour to
* restart the timer in the signal dequeue path is
* reducing the timer noise on heavy loaded !highres
* systems too.
*/
if (unlikely(signr == SIGALRM)) {
struct hrtimer *tmr = &tsk->signal->real_timer;
if (!hrtimer_is_queued(tmr) &&
tsk->signal->it_real_incr != 0) {
hrtimer_forward(tmr, tmr->base->get_time(),
tsk->signal->it_real_incr);
hrtimer_restart(tmr);
}
}
#endif
}
recalc_sigpending();
if (!signr)
return 0;
if (unlikely(sig_kernel_stop(signr))) {
/*
* Set a marker that we have dequeued a stop signal. Our
* caller might release the siglock and then the pending
* stop signal it is about to process is no longer in the
* pending bitmasks, but must still be cleared by a SIGCONT
* (and overruled by a SIGKILL). So those cases clear this
* shared flag after we've set it. Note that this flag may
* remain set after the signal we return is ignored or
* handled. That doesn't matter because its only purpose
* is to alert stop-signal processing code when another
* processor has come along and cleared the flag.
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
}
#ifdef CONFIG_POSIX_TIMERS
if (resched_timer) {
/*
* Release the siglock to ensure proper locking order
* of timer locks outside of siglocks. Note, we leave
* irqs disabled here, since the posix-timers code is
* about to disable them again anyway.
*/
spin_unlock(&tsk->sighand->siglock);
posixtimer_rearm(info);
spin_lock(&tsk->sighand->siglock);
/* Don't expose the si_sys_private value to userspace */
info->si_sys_private = 0;
}
#endif
return signr;
}
EXPORT_SYMBOL_GPL(dequeue_signal);
static int dequeue_synchronous_signal(kernel_siginfo_t *info)
{
struct task_struct *tsk = current;
struct sigpending *pending = &tsk->pending;
struct sigqueue *q, *sync = NULL;
/*
* Might a synchronous signal be in the queue?
*/
if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
return 0;
/*
* Return the first synchronous signal in the queue.
*/
list_for_each_entry(q, &pending->list, list) {
/* Synchronous signals have a postive si_code */
if ((q->info.si_code > SI_USER) &&
(sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
sync = q;
goto next;
}
}
return 0;
next:
/*
* Check if there is another siginfo for the same signal.
*/
list_for_each_entry_continue(q, &pending->list, list) {
if (q->info.si_signo == sync->info.si_signo)
goto still_pending;
}
sigdelset(&pending->signal, sync->info.si_signo);
recalc_sigpending();
still_pending:
list_del_init(&sync->list);
copy_siginfo(info, &sync->info);
__sigqueue_free(sync);
return info->si_signo;
}
/*
* Tell a process that it has a new active signal..
*
* NOTE! we rely on the previous spin_lock to
* lock interrupts for us! We can only be called with
* "siglock" held, and the local interrupt must
* have been disabled when that got acquired!
*
* No need to set need_resched since signal event passing
* goes through ->blocked
*/
void signal_wake_up_state(struct task_struct *t, unsigned int state)
{
set_tsk_thread_flag(t, TIF_SIGPENDING);
/*
* TASK_WAKEKILL also means wake it up in the stopped/traced/killable
* case. We don't check t->state here because there is a race with it
* executing another processor and just now entering stopped state.
* By using wake_up_state, we ensure the process will wake up and
* handle its death signal.
*/
if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
kick_process(t);
}
/*
* Remove signals in mask from the pending set and queue.
* Returns 1 if any signals were found.
*
* All callers must be holding the siglock.
*/
static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
{
struct sigqueue *q, *n;
sigset_t m;
sigandsets(&m, mask, &s->signal);
if (sigisemptyset(&m))
return;
sigandnsets(&s->signal, &s->signal, mask);
list_for_each_entry_safe(q, n, &s->list, list) {
if (sigismember(mask, q->info.si_signo)) {
list_del_init(&q->list);
__sigqueue_free(q);
}
}
}
static inline int is_si_special(const struct kernel_siginfo *info)
{
return info <= SEND_SIG_PRIV;
}
static inline bool si_fromuser(const struct kernel_siginfo *info)
{
return info == SEND_SIG_NOINFO ||
(!is_si_special(info) && SI_FROMUSER(info));
}
/*
* called with RCU read lock from check_kill_permission()
*/
static bool kill_ok_by_cred(struct task_struct *t)
{
const struct cred *cred = current_cred();
const struct cred *tcred = __task_cred(t);
return uid_eq(cred->euid, tcred->suid) ||
uid_eq(cred->euid, tcred->uid) ||
uid_eq(cred->uid, tcred->suid) ||
uid_eq(cred->uid, tcred->uid) ||
ns_capable(tcred->user_ns, CAP_KILL);
}
/*
* Bad permissions for sending the signal
* - the caller must hold the RCU read lock
*/
static int check_kill_permission(int sig, struct kernel_siginfo *info,
struct task_struct *t)
{
struct pid *sid;
int error;
if (!valid_signal(sig))
return -EINVAL;
if (!si_fromuser(info))
return 0;
error = audit_signal_info(sig, t); /* Let audit system see the signal */
if (error)
return error;
if (!same_thread_group(current, t) &&
!kill_ok_by_cred(t)) {
switch (sig) {
case SIGCONT:
sid = task_session(t);
/*
* We don't return the error if sid == NULL. The
* task was unhashed, the caller must notice this.
*/
if (!sid || sid == task_session(current))
break;
/* fall through */
default:
return -EPERM;
}
}
return security_task_kill(t, info, sig, NULL);
}
/**
* ptrace_trap_notify - schedule trap to notify ptracer
* @t: tracee wanting to notify tracer
*
* This function schedules sticky ptrace trap which is cleared on the next
* TRAP_STOP to notify ptracer of an event. @t must have been seized by
* ptracer.
*
* If @t is running, STOP trap will be taken. If trapped for STOP and
* ptracer is listening for events, tracee is woken up so that it can
* re-trap for the new event. If trapped otherwise, STOP trap will be
* eventually taken without returning to userland after the existing traps
* are finished by PTRACE_CONT.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
static void ptrace_trap_notify(struct task_struct *t)
{
WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
assert_spin_locked(&t->sighand->siglock);
task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
}
/*
* Handle magic process-wide effects of stop/continue signals. Unlike
* the signal actions, these happen immediately at signal-generation
* time regardless of blocking, ignoring, or handling. This does the
* actual continuing for SIGCONT, but not the actual stopping for stop
* signals. The process stop is done as a signal action for SIG_DFL.
*
* Returns true if the signal should be actually delivered, otherwise
* it should be dropped.
*/
static bool prepare_signal(int sig, struct task_struct *p, bool force)
{
struct signal_struct *signal = p->signal;
struct task_struct *t;
sigset_t flush;
if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
if (!(signal->flags & SIGNAL_GROUP_EXIT))
return sig == SIGKILL;
/*
* The process is in the middle of dying, nothing to do.
*/
} else if (sig_kernel_stop(sig)) {
/*
* This is a stop signal. Remove SIGCONT from all queues.
*/
siginitset(&flush, sigmask(SIGCONT));
flush_sigqueue_mask(&flush, &signal->shared_pending);
for_each_thread(p, t)
flush_sigqueue_mask(&flush, &t->pending);
} else if (sig == SIGCONT) {
unsigned int why;
/*
* Remove all stop signals from all queues, wake all threads.
*/
siginitset(&flush, SIG_KERNEL_STOP_MASK);
flush_sigqueue_mask(&flush, &signal->shared_pending);
for_each_thread(p, t) {
flush_sigqueue_mask(&flush, &t->pending);
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
if (likely(!(t->ptrace & PT_SEIZED)))
wake_up_state(t, __TASK_STOPPED);
else
ptrace_trap_notify(t);
}
/*
* Notify the parent with CLD_CONTINUED if we were stopped.
*
* If we were in the middle of a group stop, we pretend it
* was already finished, and then continued. Since SIGCHLD
* doesn't queue we report only CLD_STOPPED, as if the next
* CLD_CONTINUED was dropped.
*/
why = 0;
if (signal->flags & SIGNAL_STOP_STOPPED)
why |= SIGNAL_CLD_CONTINUED;
else if (signal->group_stop_count)
why |= SIGNAL_CLD_STOPPED;
if (why) {
/*
* The first thread which returns from do_signal_stop()
* will take ->siglock, notice SIGNAL_CLD_MASK, and
* notify its parent. See get_signal().
*/
signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
signal->group_stop_count = 0;
signal->group_exit_code = 0;
}
}
return !sig_ignored(p, sig, force);
}
/*
* Test if P wants to take SIG. After we've checked all threads with this,
* it's equivalent to finding no threads not blocking SIG. Any threads not
* blocking SIG were ruled out because they are not running and already
* have pending signals. Such threads will dequeue from the shared queue
* as soon as they're available, so putting the signal on the shared queue
* will be equivalent to sending it to one such thread.
*/
static inline bool wants_signal(int sig, struct task_struct *p)
{
if (sigismember(&p->blocked, sig))
return false;
if (p->flags & PF_EXITING)
return false;
if (sig == SIGKILL)
return true;
if (task_is_stopped_or_traced(p))
return false;
return task_curr(p) || !signal_pending(p);
}
static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
{
struct signal_struct *signal = p->signal;
struct task_struct *t;
/*
* Now find a thread we can wake up to take the signal off the queue.
*
* If the main thread wants the signal, it gets first crack.
* Probably the least surprising to the average bear.
*/
if (wants_signal(sig, p))
t = p;
else if ((type == PIDTYPE_PID) || thread_group_empty(p))
/*
* There is just one thread and it does not need to be woken.
* It will dequeue unblocked signals before it runs again.
*/
return;
else {
/*
* Otherwise try to find a suitable thread.
*/
t = signal->curr_target;
while (!wants_signal(sig, t)) {
t = next_thread(t);
if (t == signal->curr_target)
/*
* No thread needs to be woken.
* Any eligible threads will see
* the signal in the queue soon.
*/
return;
}
signal->curr_target = t;
}
/*
* Found a killable thread. If the signal will be fatal,
* then start taking the whole group down immediately.
*/
if (sig_fatal(p, sig) &&
!(signal->flags & SIGNAL_GROUP_EXIT) &&
!sigismember(&t->real_blocked, sig) &&
(sig == SIGKILL || !p->ptrace)) {
/*
* This signal will be fatal to the whole group.
*/
if (!sig_kernel_coredump(sig)) {
/*
* Start a group exit and wake everybody up.
* This way we don't have other threads
* running and doing things after a slower
* thread has the fatal signal pending.
*/
signal->flags = SIGNAL_GROUP_EXIT;
signal->group_exit_code = sig;
signal->group_stop_count = 0;
t = p;
do {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
} while_each_thread(p, t);
return;
}
}
/*
* The signal is already in the shared-pending queue.
* Tell the chosen thread to wake up and dequeue it.
*/
signal_wake_up(t, sig == SIGKILL);
return;
}
static inline bool legacy_queue(struct sigpending *signals, int sig)
{
return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
}
static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
enum pid_type type, bool force)
{
struct sigpending *pending;
struct sigqueue *q;
int override_rlimit;
int ret = 0, result;
assert_spin_locked(&t->sighand->siglock);
result = TRACE_SIGNAL_IGNORED;
if (!prepare_signal(sig, t, force))
goto ret;
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
/*
* Short-circuit ignored signals and support queuing
* exactly one non-rt signal, so that we can get more
* detailed information about the cause of the signal.
*/
result = TRACE_SIGNAL_ALREADY_PENDING;
if (legacy_queue(pending, sig))
goto ret;
result = TRACE_SIGNAL_DELIVERED;
/*
* Skip useless siginfo allocation for SIGKILL and kernel threads.
*/
if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
goto out_set;
/*
* Real-time signals must be queued if sent by sigqueue, or
* some other real-time mechanism. It is implementation
* defined whether kill() does so. We attempt to do so, on
* the principle of least surprise, but since kill is not
* allowed to fail with EAGAIN when low on memory we just
* make sure at least one signal gets delivered and don't
* pass on the info struct.
*/
if (sig < SIGRTMIN)
override_rlimit = (is_si_special(info) || info->si_code >= 0);
else
override_rlimit = 0;
q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
if (q) {
list_add_tail(&q->list, &pending->list);
switch ((unsigned long) info) {
case (unsigned long) SEND_SIG_NOINFO:
clear_siginfo(&q->info);
q->info.si_signo = sig;
q->info.si_errno = 0;
q->info.si_code = SI_USER;
q->info.si_pid = task_tgid_nr_ns(current,
task_active_pid_ns(t));
rcu_read_lock();
q->info.si_uid =
from_kuid_munged(task_cred_xxx(t, user_ns),
current_uid());
rcu_read_unlock();
break;
case (unsigned long) SEND_SIG_PRIV:
clear_siginfo(&q->info);
q->info.si_signo = sig;
q->info.si_errno = 0;
q->info.si_code = SI_KERNEL;
q->info.si_pid = 0;
q->info.si_uid = 0;
break;
default:
copy_siginfo(&q->info, info);
break;
}
} else if (!is_si_special(info) &&
sig >= SIGRTMIN && info->si_code != SI_USER) {
/*
* Queue overflow, abort. We may abort if the
* signal was rt and sent by user using something
* other than kill().
*/
result = TRACE_SIGNAL_OVERFLOW_FAIL;
ret = -EAGAIN;
goto ret;
} else {
/*
* This is a silent loss of information. We still
* send the signal, but the *info bits are lost.
*/
result = TRACE_SIGNAL_LOSE_INFO;
}
out_set:
signalfd_notify(t, sig);
sigaddset(&pending->signal, sig);
/* Let multiprocess signals appear after on-going forks */
if (type > PIDTYPE_TGID) {
struct multiprocess_signals *delayed;
hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
sigset_t *signal = &delayed->signal;
/* Can't queue both a stop and a continue signal */
if (sig == SIGCONT)
sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
else if (sig_kernel_stop(sig))
sigdelset(signal, SIGCONT);
sigaddset(signal, sig);
}
}
complete_signal(sig, t, type);
ret:
trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
return ret;
}
static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
{
bool ret = false;
switch (siginfo_layout(info->si_signo, info->si_code)) {
case SIL_KILL:
case SIL_CHLD:
case SIL_RT:
ret = true;
break;
case SIL_TIMER:
case SIL_POLL:
case SIL_FAULT:
case SIL_FAULT_MCEERR:
case SIL_FAULT_BNDERR:
case SIL_FAULT_PKUERR:
case SIL_SYS:
ret = false;
break;
}
return ret;
}
static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
enum pid_type type)
{
/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
bool force = false;
if (info == SEND_SIG_NOINFO) {
/* Force if sent from an ancestor pid namespace */
force = !task_pid_nr_ns(current, task_active_pid_ns(t));
} else if (info == SEND_SIG_PRIV) {
/* Don't ignore kernel generated signals */
force = true;
} else if (has_si_pid_and_uid(info)) {
/* SIGKILL and SIGSTOP is special or has ids */
struct user_namespace *t_user_ns;
rcu_read_lock();
t_user_ns = task_cred_xxx(t, user_ns);
if (current_user_ns() != t_user_ns) {
kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
info->si_uid = from_kuid_munged(t_user_ns, uid);
}
rcu_read_unlock();
/* A kernel generated signal? */
force = (info->si_code == SI_KERNEL);
/* From an ancestor pid namespace? */
if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
info->si_pid = 0;
force = true;
}
}
return __send_signal(sig, info, t, type, force);
}
static void print_fatal_signal(int signr)
{
struct pt_regs *regs = signal_pt_regs();
pr_info("potentially unexpected fatal signal %d.\n", signr);
#if defined(__i386__) && !defined(__arch_um__)
pr_info("code at %08lx: ", regs->ip);
{
int i;
for (i = 0; i < 16; i++) {
unsigned char insn;
if (get_user(insn, (unsigned char *)(regs->ip + i)))
break;
pr_cont("%02x ", insn);
}
}
pr_cont("\n");
#endif
preempt_disable();
show_regs(regs);
preempt_enable();
}
static int __init setup_print_fatal_signals(char *str)
{
get_option (&str, &print_fatal_signals);
return 1;
}
__setup("print-fatal-signals=", setup_print_fatal_signals);
int
__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
{
return send_signal(sig, info, p, PIDTYPE_TGID);
}
int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
enum pid_type type)
{
unsigned long flags;
int ret = -ESRCH;
if (lock_task_sighand(p, &flags)) {
ret = send_signal(sig, info, p, type);
unlock_task_sighand(p, &flags);
}
return ret;
}
/*
* Force a signal that the process can't ignore: if necessary
* we unblock the signal and change any SIG_IGN to SIG_DFL.
*
* Note: If we unblock the signal, we always reset it to SIG_DFL,
* since we do not want to have a signal handler that was blocked
* be invoked when user space had explicitly blocked it.
*
* We don't want to have recursive SIGSEGV's etc, for example,
* that is why we also clear SIGNAL_UNKILLABLE.
*/
static int
force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
{
unsigned long int flags;
int ret, blocked, ignored;
struct k_sigaction *action;
int sig = info->si_signo;
spin_lock_irqsave(&t->sighand->siglock, flags);
action = &t->sighand->action[sig-1];
ignored = action->sa.sa_handler == SIG_IGN;
blocked = sigismember(&t->blocked, sig);
if (blocked || ignored) {
action->sa.sa_handler = SIG_DFL;
if (blocked) {
sigdelset(&t->blocked, sig);
recalc_sigpending_and_wake(t);
}
}
/*
* Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
* debugging to leave init killable.
*/
if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
t->signal->flags &= ~SIGNAL_UNKILLABLE;
ret = send_signal(sig, info, t, PIDTYPE_PID);
spin_unlock_irqrestore(&t->sighand->siglock, flags);
return ret;
}
int force_sig_info(struct kernel_siginfo *info)
{
return force_sig_info_to_task(info, current);
}
/*
* Nuke all other threads in the group.
*/
int zap_other_threads(struct task_struct *p)
{
struct task_struct *t = p;
int count = 0;
p->signal->group_stop_count = 0;
while_each_thread(p, t) {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
count++;
/* Don't bother with already dead threads */
if (t->exit_state)
continue;
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
}
return count;
}
struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
unsigned long *flags)
{
struct sighand_struct *sighand;
rcu_read_lock();
for (;;) {
sighand = rcu_dereference(tsk->sighand);
if (unlikely(sighand == NULL))
break;
/*
* This sighand can be already freed and even reused, but
* we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
* initializes ->siglock: this slab can't go away, it has
* the same object type, ->siglock can't be reinitialized.
*
* We need to ensure that tsk->sighand is still the same
* after we take the lock, we can race with de_thread() or
* __exit_signal(). In the latter case the next iteration
* must see ->sighand == NULL.
*/
spin_lock_irqsave(&sighand->siglock, *flags);
if (likely(sighand == tsk->sighand))
break;
spin_unlock_irqrestore(&sighand->siglock, *flags);
}
rcu_read_unlock();
return sighand;
}
/*
* send signal info to all the members of a group
*/
int group_send_sig_info(int sig, struct kernel_siginfo *info,
struct task_struct *p, enum pid_type type)
{
int ret;
rcu_read_lock();
ret = check_kill_permission(sig, info, p);
rcu_read_unlock();
if (!ret && sig)
ret = do_send_sig_info(sig, info, p, type);
return ret;
}
/*
* __kill_pgrp_info() sends a signal to a process group: this is what the tty
* control characters do (^C, ^Z etc)
* - the caller must hold at least a readlock on tasklist_lock
*/
int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
{
struct task_struct *p = NULL;
int retval, success;
success = 0;
retval = -ESRCH;
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
success |= !err;
retval = err;
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
return success ? 0 : retval;
}
int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
{
int error = -ESRCH;
struct task_struct *p;
for (;;) {
rcu_read_lock();
p = pid_task(pid, PIDTYPE_PID);
if (p)
error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
rcu_read_unlock();
if (likely(!p || error != -ESRCH))
return error;
/*
* The task was unhashed in between, try again. If it
* is dead, pid_task() will return NULL, if we race with
* de_thread() it will find the new leader.
*/
}
}
static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
{
int error;
rcu_read_lock();
error = kill_pid_info(sig, info, find_vpid(pid));
rcu_read_unlock();
return error;
}
static inline bool kill_as_cred_perm(const struct cred *cred,
struct task_struct *target)
{
const struct cred *pcred = __task_cred(target);
return uid_eq(cred->euid, pcred->suid) ||
uid_eq(cred->euid, pcred->uid) ||
uid_eq(cred->uid, pcred->suid) ||
uid_eq(cred->uid, pcred->uid);
}
/*
* The usb asyncio usage of siginfo is wrong. The glibc support
* for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
* AKA after the generic fields:
* kernel_pid_t si_pid;
* kernel_uid32_t si_uid;
* sigval_t si_value;
*
* Unfortunately when usb generates SI_ASYNCIO it assumes the layout
* after the generic fields is:
* void __user *si_addr;
*
* This is a practical problem when there is a 64bit big endian kernel
* and a 32bit userspace. As the 32bit address will encoded in the low
* 32bits of the pointer. Those low 32bits will be stored at higher
* address than appear in a 32 bit pointer. So userspace will not
* see the address it was expecting for it's completions.
*
* There is nothing in the encoding that can allow
* copy_siginfo_to_user32 to detect this confusion of formats, so
* handle this by requiring the caller of kill_pid_usb_asyncio to
* notice when this situration takes place and to store the 32bit
* pointer in sival_int, instead of sival_addr of the sigval_t addr
* parameter.
*/
int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
struct pid *pid, const struct cred *cred)
{
struct kernel_siginfo info;
struct task_struct *p;
unsigned long flags;
int ret = -EINVAL;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = errno;
info.si_code = SI_ASYNCIO;
*((sigval_t *)&info.si_pid) = addr;
if (!valid_signal(sig))
return ret;
rcu_read_lock();
p = pid_task(pid, PIDTYPE_PID);
if (!p) {
ret = -ESRCH;
goto out_unlock;
}
if (!kill_as_cred_perm(cred, p)) {
ret = -EPERM;
goto out_unlock;
}
ret = security_task_kill(p, &info, sig, cred);
if (ret)
goto out_unlock;
if (sig) {
if (lock_task_sighand(p, &flags)) {
ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
unlock_task_sighand(p, &flags);
} else
ret = -ESRCH;
}
out_unlock:
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
/*
* kill_something_info() interprets pid in interesting ways just like kill(2).
*
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
* is probably wrong. Should make it like BSD or SYSV.
*/
static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
{
int ret;
if (pid > 0) {
rcu_read_lock();
ret = kill_pid_info(sig, info, find_vpid(pid));
rcu_read_unlock();
return ret;
}
/* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
if (pid == INT_MIN)
return -ESRCH;
read_lock(&tasklist_lock);
if (pid != -1) {
ret = __kill_pgrp_info(sig, info,
pid ? find_vpid(-pid) : task_pgrp(current));
} else {
int retval = 0, count = 0;
struct task_struct * p;
for_each_process(p) {
if (task_pid_vnr(p) > 1 &&
!same_thread_group(p, current)) {
int err = group_send_sig_info(sig, info, p,
PIDTYPE_MAX);
++count;
if (err != -EPERM)
retval = err;
}
}
ret = count ? retval : -ESRCH;
}
read_unlock(&tasklist_lock);
return ret;
}
/*
* These are for backward compatibility with the rest of the kernel source.
*/
int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
{
/*
* Make sure legacy kernel users don't send in bad values
* (normal paths check this in check_kill_permission).
*/
if (!valid_signal(sig))
return -EINVAL;
return do_send_sig_info(sig, info, p, PIDTYPE_PID);
}
EXPORT_SYMBOL(send_sig_info);
#define __si_special(priv) \
((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
int
send_sig(int sig, struct task_struct *p, int priv)
{
return send_sig_info(sig, __si_special(priv), p);
}
EXPORT_SYMBOL(send_sig);
void force_sig(int sig)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_KERNEL;
info.si_pid = 0;
info.si_uid = 0;
force_sig_info(&info);
}
EXPORT_SYMBOL(force_sig);
/*
* When things go south during signal handling, we
* will force a SIGSEGV. And if the signal that caused
* the problem was already a SIGSEGV, we'll want to
* make sure we don't even try to deliver the signal..
*/
void force_sigsegv(int sig)
{
struct task_struct *p = current;
if (sig == SIGSEGV) {
unsigned long flags;
spin_lock_irqsave(&p->sighand->siglock, flags);
p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
spin_unlock_irqrestore(&p->sighand->siglock, flags);
}
force_sig(SIGSEGV);
}
int force_sig_fault_to_task(int sig, int code, void __user *addr
___ARCH_SI_TRAPNO(int trapno)
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
, struct task_struct *t)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
#ifdef __ARCH_SI_TRAPNO
info.si_trapno = trapno;
#endif
#ifdef __ia64__
info.si_imm = imm;
info.si_flags = flags;
info.si_isr = isr;
#endif
return force_sig_info_to_task(&info, t);
}
int force_sig_fault(int sig, int code, void __user *addr
___ARCH_SI_TRAPNO(int trapno)
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
{
return force_sig_fault_to_task(sig, code, addr
___ARCH_SI_TRAPNO(trapno)
___ARCH_SI_IA64(imm, flags, isr), current);
}
int send_sig_fault(int sig, int code, void __user *addr
___ARCH_SI_TRAPNO(int trapno)
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
, struct task_struct *t)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
#ifdef __ARCH_SI_TRAPNO
info.si_trapno = trapno;
#endif
#ifdef __ia64__
info.si_imm = imm;
info.si_flags = flags;
info.si_isr = isr;
#endif
return send_sig_info(info.si_signo, &info, t);
}
int force_sig_mceerr(int code, void __user *addr, short lsb)
{
struct kernel_siginfo info;
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
clear_siginfo(&info);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
info.si_addr_lsb = lsb;
return force_sig_info(&info);
}
int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
{
struct kernel_siginfo info;
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
clear_siginfo(&info);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
info.si_addr_lsb = lsb;
return send_sig_info(info.si_signo, &info, t);
}
EXPORT_SYMBOL(send_sig_mceerr);
int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_BNDERR;
info.si_addr = addr;
info.si_lower = lower;
info.si_upper = upper;
return force_sig_info(&info);
}
#ifdef SEGV_PKUERR
int force_sig_pkuerr(void __user *addr, u32 pkey)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_PKUERR;
info.si_addr = addr;
info.si_pkey = pkey;
return force_sig_info(&info);
}
#endif
/* For the crazy architectures that include trap information in
* the errno field, instead of an actual errno value.
*/
int force_sig_ptrace_errno_trap(int errno, void __user *addr)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGTRAP;
info.si_errno = errno;
info.si_code = TRAP_HWBKPT;
info.si_addr = addr;
return force_sig_info(&info);
}
int kill_pgrp(struct pid *pid, int sig, int priv)
{
int ret;
read_lock(&tasklist_lock);
ret = __kill_pgrp_info(sig, __si_special(priv), pid);
read_unlock(&tasklist_lock);
return ret;
}
EXPORT_SYMBOL(kill_pgrp);
int kill_pid(struct pid *pid, int sig, int priv)
{
return kill_pid_info(sig, __si_special(priv), pid);
}
EXPORT_SYMBOL(kill_pid);
/*
* These functions support sending signals using preallocated sigqueue
* structures. This is needed "because realtime applications cannot
* afford to lose notifications of asynchronous events, like timer
* expirations or I/O completions". In the case of POSIX Timers
* we allocate the sigqueue structure from the timer_create. If this
* allocation fails we are able to report the failure to the application
* with an EAGAIN error.
*/
struct sigqueue *sigqueue_alloc(void)
{
struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
if (q)
q->flags |= SIGQUEUE_PREALLOC;
return q;
}
void sigqueue_free(struct sigqueue *q)
{
unsigned long flags;
spinlock_t *lock = &current->sighand->siglock;
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
/*
* We must hold ->siglock while testing q->list
* to serialize with collect_signal() or with
* __exit_signal()->flush_sigqueue().
*/
spin_lock_irqsave(lock, flags);
q->flags &= ~SIGQUEUE_PREALLOC;
/*
* If it is queued it will be freed when dequeued,
* like the "regular" sigqueue.
*/
if (!list_empty(&q->list))
q = NULL;
spin_unlock_irqrestore(lock, flags);
if (q)
__sigqueue_free(q);
}
int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
{
int sig = q->info.si_signo;
struct sigpending *pending;
struct task_struct *t;
unsigned long flags;
int ret, result;
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
ret = -1;
rcu_read_lock();
t = pid_task(pid, type);
if (!t || !likely(lock_task_sighand(t, &flags)))
goto ret;
ret = 1; /* the signal is ignored */
result = TRACE_SIGNAL_IGNORED;
if (!prepare_signal(sig, t, false))
goto out;
ret = 0;
if (unlikely(!list_empty(&q->list))) {
/*
* If an SI_TIMER entry is already queue just increment
* the overrun count.
*/
BUG_ON(q->info.si_code != SI_TIMER);
q->info.si_overrun++;
result = TRACE_SIGNAL_ALREADY_PENDING;
goto out;
}
q->info.si_overrun = 0;
signalfd_notify(t, sig);
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
list_add_tail(&q->list, &pending->list);
sigaddset(&pending->signal, sig);
complete_signal(sig, t, type);
result = TRACE_SIGNAL_DELIVERED;
out:
trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
unlock_task_sighand(t, &flags);
ret:
rcu_read_unlock();
return ret;
}
static void do_notify_pidfd(struct task_struct *task)
{
struct pid *pid;
WARN_ON(task->exit_state == 0);
pid = task_pid(task);
wake_up_all(&pid->wait_pidfd);
}
/*
* Let a parent know about the death of a child.
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
*
* Returns true if our parent ignored us and so we've switched to
* self-reaping.
*/
bool do_notify_parent(struct task_struct *tsk, int sig)
{
struct kernel_siginfo info;
unsigned long flags;
struct sighand_struct *psig;
bool autoreap = false;
u64 utime, stime;
BUG_ON(sig == -1);
/* do_notify_parent_cldstop should have been called instead. */
BUG_ON(task_is_stopped_or_traced(tsk));
BUG_ON(!tsk->ptrace &&
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
/* Wake up all pidfd waiters */
do_notify_pidfd(tsk);
if (sig != SIGCHLD) {
/*
* This is only possible if parent == real_parent.
* Check if it has changed security domain.
*/
if (tsk->parent_exec_id != tsk->parent->self_exec_id)
sig = SIGCHLD;
}
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
/*
* We are under tasklist_lock here so our parent is tied to
* us and cannot change.
*
* task_active_pid_ns will always return the same pid namespace
* until a task passes through release_task.
*
* write_lock() currently calls preempt_disable() which is the
* same as rcu_read_lock(), but according to Oleg, this is not
* correct to rely on this
*/
rcu_read_lock();
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
task_uid(tsk));
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
info.si_status = tsk->exit_code & 0x7f;
if (tsk->exit_code & 0x80)
info.si_code = CLD_DUMPED;
else if (tsk->exit_code & 0x7f)
info.si_code = CLD_KILLED;
else {
info.si_code = CLD_EXITED;
info.si_status = tsk->exit_code >> 8;
}
psig = tsk->parent->sighand;
spin_lock_irqsave(&psig->siglock, flags);
if (!tsk->ptrace && sig == SIGCHLD &&
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
/*
* We are exiting and our parent doesn't care. POSIX.1
* defines special semantics for setting SIGCHLD to SIG_IGN
* or setting the SA_NOCLDWAIT flag: we should be reaped
* automatically and not left for our parent's wait4 call.
* Rather than having the parent do it as a magic kind of
* signal handler, we just set this to tell do_exit that we
* can be cleaned up without becoming a zombie. Note that
* we still call __wake_up_parent in this case, because a
* blocked sys_wait4 might now return -ECHILD.
*
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
* is implementation-defined: we do (if you don't want
* it, just use SIG_IGN instead).
*/
autoreap = true;
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
sig = 0;
}
if (valid_signal(sig) && sig)
__group_send_sig_info(sig, &info, tsk->parent);
__wake_up_parent(tsk, tsk->parent);
spin_unlock_irqrestore(&psig->siglock, flags);
return autoreap;
}
/**
* do_notify_parent_cldstop - notify parent of stopped/continued state change
* @tsk: task reporting the state change
* @for_ptracer: the notification is for ptracer
* @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
*
* Notify @tsk's parent that the stopped/continued state has changed. If
* @for_ptracer is %false, @tsk's group leader notifies to its real parent.
* If %true, @tsk reports to @tsk->parent which should be the ptracer.
*
* CONTEXT:
* Must be called with tasklist_lock at least read locked.
*/
static void do_notify_parent_cldstop(struct task_struct *tsk,
bool for_ptracer, int why)
{
struct kernel_siginfo info;
unsigned long flags;
struct task_struct *parent;
struct sighand_struct *sighand;
u64 utime, stime;
if (for_ptracer) {
parent = tsk->parent;
} else {
tsk = tsk->group_leader;
parent = tsk->real_parent;
}
clear_siginfo(&info);
info.si_signo = SIGCHLD;
info.si_errno = 0;
/*
* see comment in do_notify_parent() about the following 4 lines
*/
rcu_read_lock();
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
info.si_utime = nsec_to_clock_t(utime);
info.si_stime = nsec_to_clock_t(stime);
info.si_code = why;
switch (why) {
case CLD_CONTINUED:
info.si_status = SIGCONT;
break;
case CLD_STOPPED:
info.si_status = tsk->signal->group_exit_code & 0x7f;
break;
case CLD_TRAPPED:
info.si_status = tsk->exit_code & 0x7f;
break;
default:
BUG();
}
sighand = parent->sighand;
spin_lock_irqsave(&sighand->siglock, flags);
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
__group_send_sig_info(SIGCHLD, &info, parent);
/*
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
*/
__wake_up_parent(tsk, parent);
spin_unlock_irqrestore(&sighand->siglock, flags);
}
static inline bool may_ptrace_stop(void)
{
if (!likely(current->ptrace))
return false;
/*
* Are we in the middle of do_coredump?
* If so and our tracer is also part of the coredump stopping
* is a deadlock situation, and pointless because our tracer
* is dead so don't allow us to stop.
* If SIGKILL was already sent before the caller unlocked
* ->siglock we must see ->core_state != NULL. Otherwise it
* is safe to enter schedule().
*
* This is almost outdated, a task with the pending SIGKILL can't
* block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
* after SIGKILL was already dequeued.
*/
if (unlikely(current->mm->core_state) &&
unlikely(current->mm == current->parent->mm))
return false;
return true;
}
/*
* Return non-zero if there is a SIGKILL that should be waking us up.
* Called with the siglock held.
*/
static bool sigkill_pending(struct task_struct *tsk)
{
return sigismember(&tsk->pending.signal, SIGKILL) ||
sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
}
/*
* This must be called with current->sighand->siglock held.
*
* This should be the path for all ptrace stops.
* We always set current->last_siginfo while stopped here.
* That makes it a way to test a stopped process for
* being ptrace-stopped vs being job-control-stopped.
*
* If we actually decide not to stop at all because the tracer
* is gone, we keep current->exit_code unless clear_code.
*/
static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
__releases(&current->sighand->siglock)
__acquires(&current->sighand->siglock)
{
bool gstop_done = false;
if (arch_ptrace_stop_needed(exit_code, info)) {
/*
* The arch code has something special to do before a
* ptrace stop. This is allowed to block, e.g. for faults
* on user stack pages. We can't keep the siglock while
* calling arch_ptrace_stop, so we must release it now.
* To preserve proper semantics, we must do this before
* any signal bookkeeping like checking group_stop_count.
* Meanwhile, a SIGKILL could come in before we retake the
* siglock. That must prevent us from sleeping in TASK_TRACED.
* So after regaining the lock, we must check for SIGKILL.
*/
spin_unlock_irq(&current->sighand->siglock);
arch_ptrace_stop(exit_code, info);
spin_lock_irq(&current->sighand->siglock);
if (sigkill_pending(current))
return;
}
set_special_state(TASK_TRACED);
/*
* We're committing to trapping. TRACED should be visible before
* TRAPPING is cleared; otherwise, the tracer might fail do_wait().
* Also, transition to TRACED and updates to ->jobctl should be
* atomic with respect to siglock and should be done after the arch
* hook as siglock is released and regrabbed across it.
*
* TRACER TRACEE
*
* ptrace_attach()
* [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
* do_wait()
* set_current_state() smp_wmb();
* ptrace_do_wait()
* wait_task_stopped()
* task_stopped_code()
* [L] task_is_traced() [S] task_clear_jobctl_trapping();
*/
smp_wmb();
current->last_siginfo = info;
current->exit_code = exit_code;
/*
* If @why is CLD_STOPPED, we're trapping to participate in a group
* stop. Do the bookkeeping. Note that if SIGCONT was delievered
* across siglock relocks since INTERRUPT was scheduled, PENDING
* could be clear now. We act as if SIGCONT is received after
* TASK_TRACED is entered - ignore it.
*/
if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
gstop_done = task_participate_group_stop(current);
/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
/* entering a trap, clear TRAPPING */
task_clear_jobctl_trapping(current);
spin_unlock_irq(&current->sighand->siglock);
read_lock(&tasklist_lock);
if (may_ptrace_stop()) {
/*
* Notify parents of the stop.
*
* While ptraced, there are two parents - the ptracer and
* the real_parent of the group_leader. The ptracer should
* know about every stop while the real parent is only
* interested in the completion of group stop. The states
* for the two don't interact with each other. Notify
* separately unless they're gonna be duplicates.
*/
do_notify_parent_cldstop(current, true, why);
if (gstop_done && ptrace_reparented(current))
do_notify_parent_cldstop(current, false, why);
/*
* Don't want to allow preemption here, because
* sys_ptrace() needs this task to be inactive.
*
* XXX: implement read_unlock_no_resched().
*/
preempt_disable();
read_unlock(&tasklist_lock);
cgroup_enter_frozen();
preempt_enable_no_resched();
freezable_schedule();
cgroup_leave_frozen(true);
} else {
/*
* By the time we got the lock, our tracer went away.
* Don't drop the lock yet, another tracer may come.
*
* If @gstop_done, the ptracer went away between group stop
* completion and here. During detach, it would have set
* JOBCTL_STOP_PENDING on us and we'll re-enter
* TASK_STOPPED in do_signal_stop() on return, so notifying
* the real parent of the group stop completion is enough.
*/
if (gstop_done)
do_notify_parent_cldstop(current, false, why);
/* tasklist protects us from ptrace_freeze_traced() */
__set_current_state(TASK_RUNNING);
if (clear_code)
current->exit_code = 0;
read_unlock(&tasklist_lock);
}
/*
* We are back. Now reacquire the siglock before touching
* last_siginfo, so that we are sure to have synchronized with
* any signal-sending on another CPU that wants to examine it.
*/
spin_lock_irq(&current->sighand->siglock);
current->last_siginfo = NULL;
/* LISTENING can be set only during STOP traps, clear it */
current->jobctl &= ~JOBCTL_LISTENING;
/*
* Queued signals ignored us while we were stopped for tracing.
* So check for any that we should take before resuming user mode.
* This sets TIF_SIGPENDING, but never clears it.
*/
recalc_sigpending_tsk(current);
}
static void ptrace_do_notify(int signr, int exit_code, int why)
{
kernel_siginfo_t info;
clear_siginfo(&info);
info.si_signo = signr;
info.si_code = exit_code;
info.si_pid = task_pid_vnr(current);
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
/* Let the debugger run. */
ptrace_stop(exit_code, why, 1, &info);
}
void ptrace_notify(int exit_code)
{
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
if (unlikely(current->task_works))
task_work_run();
spin_lock_irq(&current->sighand->siglock);
ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
spin_unlock_irq(&current->sighand->siglock);
}
/**
* do_signal_stop - handle group stop for SIGSTOP and other stop signals
* @signr: signr causing group stop if initiating
*
* If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
* and participate in it. If already set, participate in the existing
* group stop. If participated in a group stop (and thus slept), %true is
* returned with siglock released.
*
* If ptraced, this function doesn't handle stop itself. Instead,
* %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
* untouched. The caller must ensure that INTERRUPT trap handling takes
* places afterwards.
*
* CONTEXT:
* Must be called with @current->sighand->siglock held, which is released
* on %true return.
*
* RETURNS:
* %false if group stop is already cancelled or ptrace trap is scheduled.
* %true if participated in group stop.
*/
static bool do_signal_stop(int signr)
__releases(&current->sighand->siglock)
{
struct signal_struct *sig = current->signal;
if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
struct task_struct *t;
/* signr will be recorded in task->jobctl for retries */
WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
unlikely(signal_group_exit(sig)))
return false;
/*
* There is no group stop already in progress. We must
* initiate one now.
*
* While ptraced, a task may be resumed while group stop is
* still in effect and then receive a stop signal and
* initiate another group stop. This deviates from the
* usual behavior as two consecutive stop signals can't
* cause two group stops when !ptraced. That is why we
* also check !task_is_stopped(t) below.
*
* The condition can be distinguished by testing whether
* SIGNAL_STOP_STOPPED is already set. Don't generate
* group_exit_code in such case.
*
* This is not necessary for SIGNAL_STOP_CONTINUED because
* an intervening stop signal is required to cause two
* continued events regardless of ptrace.
*/
if (!(sig->flags & SIGNAL_STOP_STOPPED))
sig->group_exit_code = signr;
sig->group_stop_count = 0;
if (task_set_jobctl_pending(current, signr | gstop))
sig->group_stop_count++;
t = current;
while_each_thread(current, t) {
/*
* Setting state to TASK_STOPPED for a group
* stop is always done with the siglock held,
* so this check has no races.
*/
if (!task_is_stopped(t) &&
task_set_jobctl_pending(t, signr | gstop)) {
sig->group_stop_count++;
if (likely(!(t->ptrace & PT_SEIZED)))
signal_wake_up(t, 0);
else
ptrace_trap_notify(t);
}
}
}
if (likely(!current->ptrace)) {
int notify = 0;
/*
* If there are no other threads in the group, or if there
* is a group stop in progress and we are the last to stop,
* report to the parent.
*/
if (task_participate_group_stop(current))
notify = CLD_STOPPED;
set_special_state(TASK_STOPPED);
spin_unlock_irq(&current->sighand->siglock);
/*
* Notify the parent of the group stop completion. Because
* we're not holding either the siglock or tasklist_lock
* here, ptracer may attach inbetween; however, this is for
* group stop and should always be delivered to the real
* parent of the group leader. The new ptracer will get
* its notification when this task transitions into
* TASK_TRACED.
*/
if (notify) {
read_lock(&tasklist_lock);
do_notify_parent_cldstop(current, false, notify);
read_unlock(&tasklist_lock);
}
/* Now we don't run again until woken by SIGCONT or SIGKILL */
cgroup_enter_frozen();
freezable_schedule();
return true;
} else {
/*
* While ptraced, group stop is handled by STOP trap.
* Schedule it and let the caller deal with it.
*/
task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
return false;
}
}
/**
* do_jobctl_trap - take care of ptrace jobctl traps
*
* When PT_SEIZED, it's used for both group stop and explicit
* SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
* accompanying siginfo. If stopped, lower eight bits of exit_code contain
* the stop signal; otherwise, %SIGTRAP.
*
* When !PT_SEIZED, it's used only for group stop trap with stop signal
* number as exit_code and no siginfo.
*
* CONTEXT:
* Must be called with @current->sighand->siglock held, which may be
* released and re-acquired before returning with intervening sleep.
*/
static void do_jobctl_trap(void)
{
struct signal_struct *signal = current->signal;
int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
if (current->ptrace & PT_SEIZED) {
if (!signal->group_stop_count &&
!(signal->flags & SIGNAL_STOP_STOPPED))
signr = SIGTRAP;
WARN_ON_ONCE(!signr);
ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
CLD_STOPPED);
} else {
WARN_ON_ONCE(!signr);
ptrace_stop(signr, CLD_STOPPED, 0, NULL);
current->exit_code = 0;
}
}
/**
* do_freezer_trap - handle the freezer jobctl trap
*
* Puts the task into frozen state, if only the task is not about to quit.
* In this case it drops JOBCTL_TRAP_FREEZE.
*
* CONTEXT:
* Must be called with @current->sighand->siglock held,
* which is always released before returning.
*/
static void do_freezer_trap(void)
__releases(&current->sighand->siglock)
{
/*
* If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
* let's make another loop to give it a chance to be handled.
* In any case, we'll return back.
*/
if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
JOBCTL_TRAP_FREEZE) {
spin_unlock_irq(&current->sighand->siglock);
return;
}
/*
* Now we're sure that there is no pending fatal signal and no
* pending traps. Clear TIF_SIGPENDING to not get out of schedule()
* immediately (if there is a non-fatal signal pending), and
* put the task into sleep.
*/
__set_current_state(TASK_INTERRUPTIBLE);
clear_thread_flag(TIF_SIGPENDING);
spin_unlock_irq(&current->sighand->siglock);
cgroup_enter_frozen();
freezable_schedule();
}
static int ptrace_signal(int signr, kernel_siginfo_t *info)
{
/*
* We do not check sig_kernel_stop(signr) but set this marker
* unconditionally because we do not know whether debugger will
* change signr. This flag has no meaning unless we are going
* to stop after return from ptrace_stop(). In this case it will
* be checked in do_signal_stop(), we should only stop if it was
* not cleared by SIGCONT while we were sleeping. See also the
* comment in dequeue_signal().
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
ptrace_stop(signr, CLD_TRAPPED, 0, info);
/* We're back. Did the debugger cancel the sig? */
signr = current->exit_code;
if (signr == 0)
return signr;
current->exit_code = 0;
/*
* Update the siginfo structure if the signal has
* changed. If the debugger wanted something
* specific in the siginfo structure then it should
* have updated *info via PTRACE_SETSIGINFO.
*/
if (signr != info->si_signo) {
clear_siginfo(info);
info->si_signo = signr;
info->si_errno = 0;
info->si_code = SI_USER;
rcu_read_lock();
info->si_pid = task_pid_vnr(current->parent);
info->si_uid = from_kuid_munged(current_user_ns(),
task_uid(current->parent));
rcu_read_unlock();
}
/* If the (new) signal is now blocked, requeue it. */
if (sigismember(&current->blocked, signr)) {
send_signal(signr, info, current, PIDTYPE_PID);
signr = 0;
}
return signr;
}
bool get_signal(struct ksignal *ksig)
{
struct sighand_struct *sighand = current->sighand;
struct signal_struct *signal = current->signal;
int signr;
if (unlikely(current->task_works))
task_work_run();
if (unlikely(uprobe_deny_signal()))
return false;
/*
* Do this once, we can't return to user-mode if freezing() == T.
* do_signal_stop() and ptrace_stop() do freezable_schedule() and
* thus do not need another check after return.
*/
try_to_freeze();
relock:
spin_lock_irq(&sighand->siglock);
/*
* Every stopped thread goes here after wakeup. Check to see if
* we should notify the parent, prepare_signal(SIGCONT) encodes
* the CLD_ si_code into SIGNAL_CLD_MASK bits.
*/
if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
int why;
if (signal->flags & SIGNAL_CLD_CONTINUED)
why = CLD_CONTINUED;
else
why = CLD_STOPPED;
signal->flags &= ~SIGNAL_CLD_MASK;
spin_unlock_irq(&sighand->siglock);
/*
* Notify the parent that we're continuing. This event is
* always per-process and doesn't make whole lot of sense
* for ptracers, who shouldn't consume the state via
* wait(2) either, but, for backward compatibility, notify
* the ptracer of the group leader too unless it's gonna be
* a duplicate.
*/
read_lock(&tasklist_lock);
do_notify_parent_cldstop(current, false, why);
if (ptrace_reparented(current->group_leader))
do_notify_parent_cldstop(current->group_leader,
true, why);
read_unlock(&tasklist_lock);
goto relock;
}
/* Has this task already been marked for death? */
if (signal_group_exit(signal)) {
ksig->info.si_signo = signr = SIGKILL;
sigdelset(&current->pending.signal, SIGKILL);
trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
&sighand->action[SIGKILL - 1]);
recalc_sigpending();
goto fatal;
}
for (;;) {
struct k_sigaction *ka;
if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
do_signal_stop(0))
goto relock;
if (unlikely(current->jobctl &
(JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
if (current->jobctl & JOBCTL_TRAP_MASK) {
do_jobctl_trap();
spin_unlock_irq(&sighand->siglock);
} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
do_freezer_trap();
goto relock;
}
/*
* If the task is leaving the frozen state, let's update
* cgroup counters and reset the frozen bit.
*/
if (unlikely(cgroup_task_frozen(current))) {
spin_unlock_irq(&sighand->siglock);
cgroup_leave_frozen(false);
goto relock;
}
/*
* Signals generated by the execution of an instruction
* need to be delivered before any other pending signals
* so that the instruction pointer in the signal stack
* frame points to the faulting instruction.
*/
signr = dequeue_synchronous_signal(&ksig->info);
if (!signr)
signr = dequeue_signal(current, &current->blocked, &ksig->info);
if (!signr)
break; /* will return 0 */
if (unlikely(current->ptrace) && signr != SIGKILL) {
signr = ptrace_signal(signr, &ksig->info);
if (!signr)
continue;
}
ka = &sighand->action[signr-1];
/* Trace actually delivered signals. */
trace_signal_deliver(signr, &ksig->info, ka);
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
continue;
if (ka->sa.sa_handler != SIG_DFL) {
/* Run the handler. */
ksig->ka = *ka;
if (ka->sa.sa_flags & SA_ONESHOT)
ka->sa.sa_handler = SIG_DFL;
break; /* will return non-zero "signr" value */
}
/*
* Now we are doing the default action for this signal.
*/
if (sig_kernel_ignore(signr)) /* Default is nothing. */
continue;
/*
* Global init gets no signals it doesn't want.
* Container-init gets no signals it doesn't want from same
* container.
*
* Note that if global/container-init sees a sig_kernel_only()
* signal here, the signal must have been generated internally
* or must have come from an ancestor namespace. In either
* case, the signal cannot be dropped.
*/
if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
!sig_kernel_only(signr))
continue;
if (sig_kernel_stop(signr)) {
/*
* The default action is to stop all threads in
* the thread group. The job control signals
* do nothing in an orphaned pgrp, but SIGSTOP
* always works. Note that siglock needs to be
* dropped during the call to is_orphaned_pgrp()
* because of lock ordering with tasklist_lock.
* This allows an intervening SIGCONT to be posted.
* We need to check for that and bail out if necessary.
*/
if (signr != SIGSTOP) {
spin_unlock_irq(&sighand->siglock);
/* signals can be posted during this window */
if (is_current_pgrp_orphaned())
goto relock;
spin_lock_irq(&sighand->siglock);
}
if (likely(do_signal_stop(ksig->info.si_signo))) {
/* It released the siglock. */
goto relock;
}
/*
* We didn't actually stop, due to a race
* with SIGCONT or something like that.
*/
continue;
}
fatal:
spin_unlock_irq(&sighand->siglock);
if (unlikely(cgroup_task_frozen(current)))
cgroup_leave_frozen(true);
/*
* Anything else is fatal, maybe with a core dump.
*/
current->flags |= PF_SIGNALED;
if (sig_kernel_coredump(signr)) {
if (print_fatal_signals)
print_fatal_signal(ksig->info.si_signo);
proc_coredump_connector(current);
/*
* If it was able to dump core, this kills all
* other threads in the group and synchronizes with
* their demise. If we lost the race with another
* thread getting here, it set group_exit_code
* first and our do_group_exit call below will use
* that value and ignore the one we pass it.
*/
do_coredump(&ksig->info);
}
/*
* Death signals, no core dump.
*/
do_group_exit(ksig->info.si_signo);
/* NOTREACHED */
}
spin_unlock_irq(&sighand->siglock);
ksig->sig = signr;
return ksig->sig > 0;
}
/**
* signal_delivered -
* @ksig: kernel signal struct
* @stepping: nonzero if debugger single-step or block-step in use
*
* This function should be called when a signal has successfully been
* delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
* is always blocked, and the signal itself is blocked unless %SA_NODEFER
* is set in @ksig->ka.sa.sa_flags. Tracing is notified.
*/
static void signal_delivered(struct ksignal *ksig, int stepping)
{
sigset_t blocked;
/* A signal was successfully delivered, and the
saved sigmask was stored on the signal frame,
and will be restored by sigreturn. So we can
simply clear the restore sigmask flag. */
clear_restore_sigmask();
sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
sigaddset(&blocked, ksig->sig);
set_current_blocked(&blocked);
tracehook_signal_handler(stepping);
}
void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
{
if (failed)
force_sigsegv(ksig->sig);
else
signal_delivered(ksig, stepping);
}
/*
* It could be that complete_signal() picked us to notify about the
* group-wide signal. Other threads should be notified now to take
* the shared signals in @which since we will not.
*/
static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
{
sigset_t retarget;
struct task_struct *t;
sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
if (sigisemptyset(&retarget))
return;
t = tsk;
while_each_thread(tsk, t) {
if (t->flags & PF_EXITING)
continue;
if (!has_pending_signals(&retarget, &t->blocked))
continue;
/* Remove the signals this thread can handle. */
sigandsets(&retarget, &retarget, &t->blocked);
if (!signal_pending(t))
signal_wake_up(t, 0);
if (sigisemptyset(&retarget))
break;
}
}
void exit_signals(struct task_struct *tsk)
{
int group_stop = 0;
sigset_t unblocked;
/*
* @tsk is about to have PF_EXITING set - lock out users which
* expect stable threadgroup.
*/
cgroup_threadgroup_change_begin(tsk);
if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
tsk->flags |= PF_EXITING;
cgroup_threadgroup_change_end(tsk);
return;
}
spin_lock_irq(&tsk->sighand->siglock);
/*
* From now this task is not visible for group-wide signals,
* see wants_signal(), do_signal_stop().
*/
tsk->flags |= PF_EXITING;
cgroup_threadgroup_change_end(tsk);
if (!signal_pending(tsk))
goto out;
unblocked = tsk->blocked;
signotset(&unblocked);
retarget_shared_pending(tsk, &unblocked);
if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
task_participate_group_stop(tsk))
group_stop = CLD_STOPPED;
out:
spin_unlock_irq(&tsk->sighand->siglock);
/*
* If group stop has completed, deliver the notification. This
* should always go to the real parent of the group leader.
*/
if (unlikely(group_stop)) {
read_lock(&tasklist_lock);
do_notify_parent_cldstop(tsk, false, group_stop);
read_unlock(&tasklist_lock);
}
}
/*
* System call entry points.
*/
/**
* sys_restart_syscall - restart a system call
*/
SYSCALL_DEFINE0(restart_syscall)
{
struct restart_block *restart = &current->restart_block;
return restart->fn(restart);
}
long do_no_restart_syscall(struct restart_block *param)
{
return -EINTR;
}
static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
{
if (signal_pending(tsk) && !thread_group_empty(tsk)) {
sigset_t newblocked;
/* A set of now blocked but previously unblocked signals. */
sigandnsets(&newblocked, newset, &current->blocked);
retarget_shared_pending(tsk, &newblocked);
}
tsk->blocked = *newset;
recalc_sigpending();
}
/**
* set_current_blocked - change current->blocked mask
* @newset: new mask
*
* It is wrong to change ->blocked directly, this helper should be used
* to ensure the process can't miss a shared signal we are going to block.
*/
void set_current_blocked(sigset_t *newset)
{
sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
__set_current_blocked(newset);
}
void __set_current_blocked(const sigset_t *newset)
{
struct task_struct *tsk = current;
/*
* In case the signal mask hasn't changed, there is nothing we need
* to do. The current->blocked shouldn't be modified by other task.
*/
if (sigequalsets(&tsk->blocked, newset))
return;
spin_lock_irq(&tsk->sighand->siglock);
__set_task_blocked(tsk, newset);
spin_unlock_irq(&tsk->sighand->siglock);
}
/*
* This is also useful for kernel threads that want to temporarily
* (or permanently) block certain signals.
*
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
* interface happily blocks "unblockable" signals like SIGKILL
* and friends.
*/
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
{
struct task_struct *tsk = current;
sigset_t newset;
/* Lockless, only current can change ->blocked, never from irq */
if (oldset)
*oldset = tsk->blocked;
switch (how) {
case SIG_BLOCK:
sigorsets(&newset, &tsk->blocked, set);
break;
case SIG_UNBLOCK:
sigandnsets(&newset, &tsk->blocked, set);
break;
case SIG_SETMASK:
newset = *set;
break;
default:
return -EINVAL;
}
__set_current_blocked(&newset);
return 0;
}
EXPORT_SYMBOL(sigprocmask);
/*
* The api helps set app-provided sigmasks.
*
* This is useful for syscalls such as ppoll, pselect, io_pgetevents and
* epoll_pwait where a new sigmask is passed from userland for the syscalls.
*
* Note that it does set_restore_sigmask() in advance, so it must be always
* paired with restore_saved_sigmask_unless() before return from syscall.
*/
int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
{
sigset_t kmask;
if (!umask)
return 0;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
return -EFAULT;
set_restore_sigmask();
current->saved_sigmask = current->blocked;
set_current_blocked(&kmask);
return 0;
}
#ifdef CONFIG_COMPAT
int set_compat_user_sigmask(const compat_sigset_t __user *umask,
size_t sigsetsize)
{
sigset_t kmask;
if (!umask)
return 0;
if (sigsetsize != sizeof(compat_sigset_t))
return -EINVAL;
if (get_compat_sigset(&kmask, umask))
return -EFAULT;
set_restore_sigmask();
current->saved_sigmask = current->blocked;
set_current_blocked(&kmask);
return 0;
}
#endif
/**
* sys_rt_sigprocmask - change the list of currently blocked signals
* @how: whether to add, remove, or set signals
* @nset: stores pending signals
* @oset: previous value of signal mask if non-null
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
sigset_t __user *, oset, size_t, sigsetsize)
{
sigset_t old_set, new_set;
int error;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
old_set = current->blocked;
if (nset) {
if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
return -EFAULT;
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
error = sigprocmask(how, &new_set, NULL);
if (error)
return error;
}
if (oset) {
if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
return -EFAULT;
}
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
{
sigset_t old_set = current->blocked;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (nset) {
sigset_t new_set;
int error;
if (get_compat_sigset(&new_set, nset))
return -EFAULT;
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
error = sigprocmask(how, &new_set, NULL);
if (error)
return error;
}
return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
}
#endif
static void do_sigpending(sigset_t *set)
{
spin_lock_irq(&current->sighand->siglock);
sigorsets(set, &current->pending.signal,
&current->signal->shared_pending.signal);
spin_unlock_irq(&current->sighand->siglock);
/* Outside the lock because only this thread touches it. */
sigandsets(set, &current->blocked, set);
}
/**
* sys_rt_sigpending - examine a pending signal that has been raised
* while blocked
* @uset: stores pending signals
* @sigsetsize: size of sigset_t type or larger
*/
SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
{
sigset_t set;
if (sigsetsize > sizeof(*uset))
return -EINVAL;
do_sigpending(&set);
if (copy_to_user(uset, &set, sigsetsize))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
compat_size_t, sigsetsize)
{
sigset_t set;
if (sigsetsize > sizeof(*uset))
return -EINVAL;
do_sigpending(&set);
return put_compat_sigset(uset, &set, sigsetsize);
}
#endif
static const struct {
unsigned char limit, layout;
} sig_sicodes[] = {
[SIGILL] = { NSIGILL, SIL_FAULT },
[SIGFPE] = { NSIGFPE, SIL_FAULT },
[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
[SIGBUS] = { NSIGBUS, SIL_FAULT },
[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
#if defined(SIGEMT)
[SIGEMT] = { NSIGEMT, SIL_FAULT },
#endif
[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
[SIGPOLL] = { NSIGPOLL, SIL_POLL },
[SIGSYS] = { NSIGSYS, SIL_SYS },
};
static bool known_siginfo_layout(unsigned sig, int si_code)
{
if (si_code == SI_KERNEL)
return true;
else if ((si_code > SI_USER)) {
if (sig_specific_sicodes(sig)) {
if (si_code <= sig_sicodes[sig].limit)
return true;
}
else if (si_code <= NSIGPOLL)
return true;
}
else if (si_code >= SI_DETHREAD)
return true;
else if (si_code == SI_ASYNCNL)
return true;
return false;
}
enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
{
enum siginfo_layout layout = SIL_KILL;
if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
if ((sig < ARRAY_SIZE(sig_sicodes)) &&
(si_code <= sig_sicodes[sig].limit)) {
layout = sig_sicodes[sig].layout;
/* Handle the exceptions */
if ((sig == SIGBUS) &&
(si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
layout = SIL_FAULT_MCEERR;
else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
layout = SIL_FAULT_BNDERR;
#ifdef SEGV_PKUERR
else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
layout = SIL_FAULT_PKUERR;
#endif
}
else if (si_code <= NSIGPOLL)
layout = SIL_POLL;
} else {
if (si_code == SI_TIMER)
layout = SIL_TIMER;
else if (si_code == SI_SIGIO)
layout = SIL_POLL;
else if (si_code < 0)
layout = SIL_RT;
}
return layout;
}
static inline char __user *si_expansion(const siginfo_t __user *info)
{
return ((char __user *)info) + sizeof(struct kernel_siginfo);
}
int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
{
char __user *expansion = si_expansion(to);
if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
return -EFAULT;
if (clear_user(expansion, SI_EXPANSION_SIZE))
return -EFAULT;
return 0;
}
static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
const siginfo_t __user *from)
{
if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
char __user *expansion = si_expansion(from);
char buf[SI_EXPANSION_SIZE];
int i;
/*
* An unknown si_code might need more than
* sizeof(struct kernel_siginfo) bytes. Verify all of the
* extra bytes are 0. This guarantees copy_siginfo_to_user
* will return this data to userspace exactly.
*/
if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
return -EFAULT;
for (i = 0; i < SI_EXPANSION_SIZE; i++) {
if (buf[i] != 0)
return -E2BIG;
}
}
return 0;
}
static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
const siginfo_t __user *from)
{
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
return -EFAULT;
to->si_signo = signo;
return post_copy_siginfo_from_user(to, from);
}
int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
{
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
return -EFAULT;
return post_copy_siginfo_from_user(to, from);
}
#ifdef CONFIG_COMPAT
int copy_siginfo_to_user32(struct compat_siginfo __user *to,
const struct kernel_siginfo *from)
#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
{
return __copy_siginfo_to_user32(to, from, in_x32_syscall());
}
int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
const struct kernel_siginfo *from, bool x32_ABI)
#endif
{
struct compat_siginfo new;
memset(&new, 0, sizeof(new));
new.si_signo = from->si_signo;
new.si_errno = from->si_errno;
new.si_code = from->si_code;
switch(siginfo_layout(from->si_signo, from->si_code)) {
case SIL_KILL:
new.si_pid = from->si_pid;
new.si_uid = from->si_uid;
break;
case SIL_TIMER:
new.si_tid = from->si_tid;
new.si_overrun = from->si_overrun;
new.si_int = from->si_int;
break;
case SIL_POLL:
new.si_band = from->si_band;
new.si_fd = from->si_fd;
break;
case SIL_FAULT:
new.si_addr = ptr_to_compat(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
new.si_trapno = from->si_trapno;
#endif
break;
case SIL_FAULT_MCEERR:
new.si_addr = ptr_to_compat(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
new.si_trapno = from->si_trapno;
#endif
new.si_addr_lsb = from->si_addr_lsb;
break;
case SIL_FAULT_BNDERR:
new.si_addr = ptr_to_compat(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
new.si_trapno = from->si_trapno;
#endif
new.si_lower = ptr_to_compat(from->si_lower);
new.si_upper = ptr_to_compat(from->si_upper);
break;
case SIL_FAULT_PKUERR:
new.si_addr = ptr_to_compat(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
new.si_trapno = from->si_trapno;
#endif
new.si_pkey = from->si_pkey;
break;
case SIL_CHLD:
new.si_pid = from->si_pid;
new.si_uid = from->si_uid;
new.si_status = from->si_status;
#ifdef CONFIG_X86_X32_ABI
if (x32_ABI) {
new._sifields._sigchld_x32._utime = from->si_utime;
new._sifields._sigchld_x32._stime = from->si_stime;
} else
#endif
{
new.si_utime = from->si_utime;
new.si_stime = from->si_stime;
}
break;
case SIL_RT:
new.si_pid = from->si_pid;
new.si_uid = from->si_uid;
new.si_int = from->si_int;
break;
case SIL_SYS:
new.si_call_addr = ptr_to_compat(from->si_call_addr);
new.si_syscall = from->si_syscall;
new.si_arch = from->si_arch;
break;
}
if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
return -EFAULT;
return 0;
}
static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
const struct compat_siginfo *from)
{
clear_siginfo(to);
to->si_signo = from->si_signo;
to->si_errno = from->si_errno;
to->si_code = from->si_code;
switch(siginfo_layout(from->si_signo, from->si_code)) {
case SIL_KILL:
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
break;
case SIL_TIMER:
to->si_tid = from->si_tid;
to->si_overrun = from->si_overrun;
to->si_int = from->si_int;
break;
case SIL_POLL:
to->si_band = from->si_band;
to->si_fd = from->si_fd;
break;
case SIL_FAULT:
to->si_addr = compat_ptr(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
to->si_trapno = from->si_trapno;
#endif
break;
case SIL_FAULT_MCEERR:
to->si_addr = compat_ptr(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
to->si_trapno = from->si_trapno;
#endif
to->si_addr_lsb = from->si_addr_lsb;
break;
case SIL_FAULT_BNDERR:
to->si_addr = compat_ptr(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
to->si_trapno = from->si_trapno;
#endif
to->si_lower = compat_ptr(from->si_lower);
to->si_upper = compat_ptr(from->si_upper);
break;
case SIL_FAULT_PKUERR:
to->si_addr = compat_ptr(from->si_addr);
#ifdef __ARCH_SI_TRAPNO
to->si_trapno = from->si_trapno;
#endif
to->si_pkey = from->si_pkey;
break;
case SIL_CHLD:
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
to->si_status = from->si_status;
#ifdef CONFIG_X86_X32_ABI
if (in_x32_syscall()) {
to->si_utime = from->_sifields._sigchld_x32._utime;
to->si_stime = from->_sifields._sigchld_x32._stime;
} else
#endif
{
to->si_utime = from->si_utime;
to->si_stime = from->si_stime;
}
break;
case SIL_RT:
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
to->si_int = from->si_int;
break;
case SIL_SYS:
to->si_call_addr = compat_ptr(from->si_call_addr);
to->si_syscall = from->si_syscall;
to->si_arch = from->si_arch;
break;
}
return 0;
}
static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
const struct compat_siginfo __user *ufrom)
{
struct compat_siginfo from;
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
return -EFAULT;
from.si_signo = signo;
return post_copy_siginfo_from_user32(to, &from);
}
int copy_siginfo_from_user32(struct kernel_siginfo *to,
const struct compat_siginfo __user *ufrom)
{
struct compat_siginfo from;
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
return -EFAULT;
return post_copy_siginfo_from_user32(to, &from);
}
#endif /* CONFIG_COMPAT */
/**
* do_sigtimedwait - wait for queued signals specified in @which
* @which: queued signals to wait for
* @info: if non-null, the signal's siginfo is returned here
* @ts: upper bound on process time suspension
*/
static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
const struct timespec64 *ts)
{
ktime_t *to = NULL, timeout = KTIME_MAX;
struct task_struct *tsk = current;
sigset_t mask = *which;
int sig, ret = 0;
if (ts) {
if (!timespec64_valid(ts))
return -EINVAL;
timeout = timespec64_to_ktime(*ts);
to = &timeout;
}
/*
* Invert the set of allowed signals to get those we want to block.
*/
sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
signotset(&mask);
spin_lock_irq(&tsk->sighand->siglock);
sig = dequeue_signal(tsk, &mask, info);
if (!sig && timeout) {
/*
* None ready, temporarily unblock those we're interested
* while we are sleeping in so that we'll be awakened when
* they arrive. Unblocking is always fine, we can avoid
* set_current_blocked().
*/
tsk->real_blocked = tsk->blocked;
sigandsets(&tsk->blocked, &tsk->blocked, &mask);
recalc_sigpending();
spin_unlock_irq(&tsk->sighand->siglock);
__set_current_state(TASK_INTERRUPTIBLE);
ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
HRTIMER_MODE_REL);
spin_lock_irq(&tsk->sighand->siglock);
__set_task_blocked(tsk, &tsk->real_blocked);
sigemptyset(&tsk->real_blocked);
sig = dequeue_signal(tsk, &mask, info);
}
spin_unlock_irq(&tsk->sighand->siglock);
if (sig)
return sig;
return ret ? -EINTR : -EAGAIN;
}
/**
* sys_rt_sigtimedwait - synchronously wait for queued signals specified
* in @uthese
* @uthese: queued signals to wait for
* @uinfo: if non-null, the signal's siginfo is returned here
* @uts: upper bound on process time suspension
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
siginfo_t __user *, uinfo,
const struct __kernel_timespec __user *, uts,
size_t, sigsetsize)
{
sigset_t these;
struct timespec64 ts;
kernel_siginfo_t info;
int ret;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&these, uthese, sizeof(these)))
return -EFAULT;
if (uts) {
if (get_timespec64(&ts, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
siginfo_t __user *, uinfo,
const struct old_timespec32 __user *, uts,
size_t, sigsetsize)
{
sigset_t these;
struct timespec64 ts;
kernel_siginfo_t info;
int ret;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&these, uthese, sizeof(these)))
return -EFAULT;
if (uts) {
if (get_old_timespec32(&ts, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#endif
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
struct compat_siginfo __user *, uinfo,
struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
{
sigset_t s;
struct timespec64 t;
kernel_siginfo_t info;
long ret;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (get_compat_sigset(&s, uthese))
return -EFAULT;
if (uts) {
if (get_timespec64(&t, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user32(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
struct compat_siginfo __user *, uinfo,
struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
{
sigset_t s;
struct timespec64 t;
kernel_siginfo_t info;
long ret;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (get_compat_sigset(&s, uthese))
return -EFAULT;
if (uts) {
if (get_old_timespec32(&t, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user32(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#endif
#endif
static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
{
clear_siginfo(info);
info->si_signo = sig;
info->si_errno = 0;
info->si_code = SI_USER;
info->si_pid = task_tgid_vnr(current);
info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
}
/**
* sys_kill - send a signal to a process
* @pid: the PID of the process
* @sig: signal to be sent
*/
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
{
struct kernel_siginfo info;
prepare_kill_siginfo(sig, &info);
return kill_something_info(sig, &info, pid);
}
/*
* Verify that the signaler and signalee either are in the same pid namespace
* or that the signaler's pid namespace is an ancestor of the signalee's pid
* namespace.
*/
static bool access_pidfd_pidns(struct pid *pid)
{
struct pid_namespace *active = task_active_pid_ns(current);
struct pid_namespace *p = ns_of_pid(pid);
for (;;) {
if (!p)
return false;
if (p == active)
break;
p = p->parent;
}
return true;
}
static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
{
#ifdef CONFIG_COMPAT
/*
* Avoid hooking up compat syscalls and instead handle necessary
* conversions here. Note, this is a stop-gap measure and should not be
* considered a generic solution.
*/
if (in_compat_syscall())
return copy_siginfo_from_user32(
kinfo, (struct compat_siginfo __user *)info);
#endif
return copy_siginfo_from_user(kinfo, info);
}
static struct pid *pidfd_to_pid(const struct file *file)
{
struct pid *pid;
pid = pidfd_pid(file);
if (!IS_ERR(pid))
return pid;
return tgid_pidfd_to_pid(file);
}
/**
* sys_pidfd_send_signal - Signal a process through a pidfd
* @pidfd: file descriptor of the process
* @sig: signal to send
* @info: signal info
* @flags: future flags
*
* The syscall currently only signals via PIDTYPE_PID which covers
* kill(<positive-pid>, <signal>. It does not signal threads or process
* groups.
* In order to extend the syscall to threads and process groups the @flags
* argument should be used. In essence, the @flags argument will determine
* what is signaled and not the file descriptor itself. Put in other words,
* grouping is a property of the flags argument not a property of the file
* descriptor.
*
* Return: 0 on success, negative errno on failure
*/
SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
siginfo_t __user *, info, unsigned int, flags)
{
int ret;
struct fd f;
struct pid *pid;
kernel_siginfo_t kinfo;
/* Enforce flags be set to 0 until we add an extension. */
if (flags)
return -EINVAL;
f = fdget(pidfd);
if (!f.file)
return -EBADF;
/* Is this a pidfd? */
pid = pidfd_to_pid(f.file);
if (IS_ERR(pid)) {
ret = PTR_ERR(pid);
goto err;
}
ret = -EINVAL;
if (!access_pidfd_pidns(pid))
goto err;
if (info) {
ret = copy_siginfo_from_user_any(&kinfo, info);
if (unlikely(ret))
goto err;
ret = -EINVAL;
if (unlikely(sig != kinfo.si_signo))
goto err;
/* Only allow sending arbitrary signals to yourself. */
ret = -EPERM;
if ((task_pid(current) != pid) &&
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
goto err;
} else {
prepare_kill_siginfo(sig, &kinfo);
}
ret = kill_pid_info(sig, &kinfo, pid);
err:
fdput(f);
return ret;
}
static int
do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
{
struct task_struct *p;
int error = -ESRCH;
rcu_read_lock();
p = find_task_by_vpid(pid);
if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
error = check_kill_permission(sig, info, p);
/*
* The null signal is a permissions and process existence
* probe. No signal is actually delivered.
*/
if (!error && sig) {
error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
/*
* If lock_task_sighand() failed we pretend the task
* dies after receiving the signal. The window is tiny,
* and the signal is private anyway.
*/
if (unlikely(error == -ESRCH))
error = 0;
}
}
rcu_read_unlock();
return error;
}
static int do_tkill(pid_t tgid, pid_t pid, int sig)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_TKILL;
info.si_pid = task_tgid_vnr(current);
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
return do_send_specific(tgid, pid, sig, &info);
}
/**
* sys_tgkill - send signal to one specific thread
* @tgid: the thread group ID of the thread
* @pid: the PID of the thread
* @sig: signal to be sent
*
* This syscall also checks the @tgid and returns -ESRCH even if the PID
* exists but it's not belonging to the target process anymore. This
* method solves the problem of threads exiting and PIDs getting reused.
*/
SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
{
/* This is only valid for single tasks */
if (pid <= 0 || tgid <= 0)
return -EINVAL;
return do_tkill(tgid, pid, sig);
}
/**
* sys_tkill - send signal to one specific task
* @pid: the PID of the task
* @sig: signal to be sent
*
* Send a signal to only one task, even if it's a CLONE_THREAD task.
*/
SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
{
/* This is only valid for single tasks */
if (pid <= 0)
return -EINVAL;
return do_tkill(0, pid, sig);
}
static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
{
/* Not even root can pretend to send signals from the kernel.
* Nor can they impersonate a kill()/tgkill(), which adds source info.
*/
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
(task_pid_vnr(current) != pid))
return -EPERM;
/* POSIX.1b doesn't mention process groups. */
return kill_proc_info(sig, info, pid);
}
/**
* sys_rt_sigqueueinfo - send signal information to a signal
* @pid: the PID of the thread
* @sig: signal to be sent
* @uinfo: signal info to be sent
*/
SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
siginfo_t __user *, uinfo)
{
kernel_siginfo_t info;
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_sigqueueinfo(pid, sig, &info);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
compat_pid_t, pid,
int, sig,
struct compat_siginfo __user *, uinfo)
{
kernel_siginfo_t info;
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_sigqueueinfo(pid, sig, &info);
}
#endif
static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
{
/* This is only valid for single tasks */
if (pid <= 0 || tgid <= 0)
return -EINVAL;
/* Not even root can pretend to send signals from the kernel.
* Nor can they impersonate a kill()/tgkill(), which adds source info.
*/
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
(task_pid_vnr(current) != pid))
return -EPERM;
return do_send_specific(tgid, pid, sig, info);
}
SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
siginfo_t __user *, uinfo)
{
kernel_siginfo_t info;
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
compat_pid_t, tgid,
compat_pid_t, pid,
int, sig,
struct compat_siginfo __user *, uinfo)
{
kernel_siginfo_t info;
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
}
#endif
/*
* For kthreads only, must not be used if cloned with CLONE_SIGHAND
*/
void kernel_sigaction(int sig, __sighandler_t action)
{
spin_lock_irq(&current->sighand->siglock);
current->sighand->action[sig - 1].sa.sa_handler = action;
if (action == SIG_IGN) {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, sig);
flush_sigqueue_mask(&mask, &current->signal->shared_pending);
flush_sigqueue_mask(&mask, &current->pending);
recalc_sigpending();
}
spin_unlock_irq(&current->sighand->siglock);
}
EXPORT_SYMBOL(kernel_sigaction);
void __weak sigaction_compat_abi(struct k_sigaction *act,
struct k_sigaction *oact)
{
}
int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
{
struct task_struct *p = current, *t;
struct k_sigaction *k;
sigset_t mask;
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
return -EINVAL;
k = &p->sighand->action[sig-1];
spin_lock_irq(&p->sighand->siglock);
if (oact)
*oact = *k;
sigaction_compat_abi(act, oact);
if (act) {
sigdelsetmask(&act->sa.sa_mask,
sigmask(SIGKILL) | sigmask(SIGSTOP));
*k = *act;
/*
* POSIX 3.3.1.3:
* "Setting a signal action to SIG_IGN for a signal that is
* pending shall cause the pending signal to be discarded,
* whether or not it is blocked."
*
* "Setting a signal action to SIG_DFL for a signal that is
* pending and whose default action is to ignore the signal
* (for example, SIGCHLD), shall cause the pending signal to
* be discarded, whether or not it is blocked"
*/
if (sig_handler_ignored(sig_handler(p, sig), sig)) {
sigemptyset(&mask);
sigaddset(&mask, sig);
flush_sigqueue_mask(&mask, &p->signal->shared_pending);
for_each_thread(p, t)
flush_sigqueue_mask(&mask, &t->pending);
}
}
spin_unlock_irq(&p->sighand->siglock);
return 0;
}
static int
do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
size_t min_ss_size)
{
struct task_struct *t = current;
if (oss) {
memset(oss, 0, sizeof(stack_t));
oss->ss_sp = (void __user *) t->sas_ss_sp;
oss->ss_size = t->sas_ss_size;
oss->ss_flags = sas_ss_flags(sp) |
(current->sas_ss_flags & SS_FLAG_BITS);
}
if (ss) {
void __user *ss_sp = ss->ss_sp;
size_t ss_size = ss->ss_size;
unsigned ss_flags = ss->ss_flags;
int ss_mode;
if (unlikely(on_sig_stack(sp)))
return -EPERM;
ss_mode = ss_flags & ~SS_FLAG_BITS;
if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
ss_mode != 0))
return -EINVAL;
if (ss_mode == SS_DISABLE) {
ss_size = 0;
ss_sp = NULL;
} else {
if (unlikely(ss_size < min_ss_size))
return -ENOMEM;
}
t->sas_ss_sp = (unsigned long) ss_sp;
t->sas_ss_size = ss_size;
t->sas_ss_flags = ss_flags;
}
return 0;
}
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
{
stack_t new, old;
int err;
if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
return -EFAULT;
err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
current_user_stack_pointer(),
MINSIGSTKSZ);
if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
err = -EFAULT;
return err;
}
int restore_altstack(const stack_t __user *uss)
{
stack_t new;
if (copy_from_user(&new, uss, sizeof(stack_t)))
return -EFAULT;
(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
MINSIGSTKSZ);
/* squash all but EFAULT for now */
return 0;
}
int __save_altstack(stack_t __user *uss, unsigned long sp)
{
struct task_struct *t = current;
int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
__put_user(t->sas_ss_flags, &uss->ss_flags) |
__put_user(t->sas_ss_size, &uss->ss_size);
if (err)
return err;
if (t->sas_ss_flags & SS_AUTODISARM)
sas_ss_reset(t);
return 0;
}
#ifdef CONFIG_COMPAT
static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
compat_stack_t __user *uoss_ptr)
{
stack_t uss, uoss;
int ret;
if (uss_ptr) {
compat_stack_t uss32;
if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
return -EFAULT;
uss.ss_sp = compat_ptr(uss32.ss_sp);
uss.ss_flags = uss32.ss_flags;
uss.ss_size = uss32.ss_size;
}
ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
compat_user_stack_pointer(),
COMPAT_MINSIGSTKSZ);
if (ret >= 0 && uoss_ptr) {
compat_stack_t old;
memset(&old, 0, sizeof(old));
old.ss_sp = ptr_to_compat(uoss.ss_sp);
old.ss_flags = uoss.ss_flags;
old.ss_size = uoss.ss_size;
if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
ret = -EFAULT;
}
return ret;
}
COMPAT_SYSCALL_DEFINE2(sigaltstack,
const compat_stack_t __user *, uss_ptr,
compat_stack_t __user *, uoss_ptr)
{
return do_compat_sigaltstack(uss_ptr, uoss_ptr);
}
int compat_restore_altstack(const compat_stack_t __user *uss)
{
int err = do_compat_sigaltstack(uss, NULL);
/* squash all but -EFAULT for now */
return err == -EFAULT ? err : 0;
}
int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
{
int err;
struct task_struct *t = current;
err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
&uss->ss_sp) |
__put_user(t->sas_ss_flags, &uss->ss_flags) |
__put_user(t->sas_ss_size, &uss->ss_size);
if (err)
return err;
if (t->sas_ss_flags & SS_AUTODISARM)
sas_ss_reset(t);
return 0;
}
#endif
#ifdef __ARCH_WANT_SYS_SIGPENDING
/**
* sys_sigpending - examine pending signals
* @uset: where mask of pending signal is returned
*/
SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
{
sigset_t set;
if (sizeof(old_sigset_t) > sizeof(*uset))
return -EINVAL;
do_sigpending(&set);
if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
{
sigset_t set;
do_sigpending(&set);
return put_user(set.sig[0], set32);
}
#endif
#endif
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
/**
* sys_sigprocmask - examine and change blocked signals
* @how: whether to add, remove, or set signals
* @nset: signals to add or remove (if non-null)
* @oset: previous value of signal mask if non-null
*
* Some platforms have their own version with special arguments;
* others support only sys_rt_sigprocmask.
*/
SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
old_sigset_t __user *, oset)
{
old_sigset_t old_set, new_set;
sigset_t new_blocked;
old_set = current->blocked.sig[0];
if (nset) {
if (copy_from_user(&new_set, nset, sizeof(*nset)))
return -EFAULT;
new_blocked = current->blocked;
switch (how) {
case SIG_BLOCK:
sigaddsetmask(&new_blocked, new_set);
break;
case SIG_UNBLOCK:
sigdelsetmask(&new_blocked, new_set);
break;
case SIG_SETMASK:
new_blocked.sig[0] = new_set;
break;
default:
return -EINVAL;
}
set_current_blocked(&new_blocked);
}
if (oset) {
if (copy_to_user(oset, &old_set, sizeof(*oset)))
return -EFAULT;
}
return 0;
}
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
#ifndef CONFIG_ODD_RT_SIGACTION
/**
* sys_rt_sigaction - alter an action taken by a process
* @sig: signal to be sent
* @act: new sigaction
* @oact: used to save the previous sigaction
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE4(rt_sigaction, int, sig,
const struct sigaction __user *, act,
struct sigaction __user *, oact,
size_t, sigsetsize)
{
struct k_sigaction new_sa, old_sa;
int ret;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
return -EFAULT;
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
if (ret)
return ret;
if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
const struct compat_sigaction __user *, act,
struct compat_sigaction __user *, oact,
compat_size_t, sigsetsize)
{
struct k_sigaction new_ka, old_ka;
#ifdef __ARCH_HAS_SA_RESTORER
compat_uptr_t restorer;
#endif
int ret;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(compat_sigset_t))
return -EINVAL;
if (act) {
compat_uptr_t handler;
ret = get_user(handler, &act->sa_handler);
new_ka.sa.sa_handler = compat_ptr(handler);
#ifdef __ARCH_HAS_SA_RESTORER
ret |= get_user(restorer, &act->sa_restorer);
new_ka.sa.sa_restorer = compat_ptr(restorer);
#endif
ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
if (ret)
return -EFAULT;
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
&oact->sa_handler);
ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
sizeof(oact->sa_mask));
ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
#ifdef __ARCH_HAS_SA_RESTORER
ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
&oact->sa_restorer);
#endif
}
return ret;
}
#endif
#endif /* !CONFIG_ODD_RT_SIGACTION */
#ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction, int, sig,
const struct old_sigaction __user *, act,
struct old_sigaction __user *, oact)
{
struct k_sigaction new_ka, old_ka;
int ret;
if (act) {
old_sigset_t mask;
if (!access_ok(act, sizeof(*act)) ||
__get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
__get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
__get_user(mask, &act->sa_mask))
return -EFAULT;
#ifdef __ARCH_HAS_KA_RESTORER
new_ka.ka_restorer = NULL;
#endif
siginitset(&new_ka.sa.sa_mask, mask);
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
if (!access_ok(oact, sizeof(*oact)) ||
__put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
__put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
return -EFAULT;
}
return ret;
}
#endif
#ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
const struct compat_old_sigaction __user *, act,
struct compat_old_sigaction __user *, oact)
{
struct k_sigaction new_ka, old_ka;
int ret;
compat_old_sigset_t mask;
compat_uptr_t handler, restorer;
if (act) {
if (!access_ok(act, sizeof(*act)) ||
__get_user(handler, &act->sa_handler) ||
__get_user(restorer, &act->sa_restorer) ||
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
__get_user(mask, &act->sa_mask))
return -EFAULT;
#ifdef __ARCH_HAS_KA_RESTORER
new_ka.ka_restorer = NULL;
#endif
new_ka.sa.sa_handler = compat_ptr(handler);
new_ka.sa.sa_restorer = compat_ptr(restorer);
siginitset(&new_ka.sa.sa_mask, mask);
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
if (!access_ok(oact, sizeof(*oact)) ||
__put_user(ptr_to_compat(old_ka.sa.sa_handler),
&oact->sa_handler) ||
__put_user(ptr_to_compat(old_ka.sa.sa_restorer),
&oact->sa_restorer) ||
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
return -EFAULT;
}
return ret;
}
#endif
#ifdef CONFIG_SGETMASK_SYSCALL
/*
* For backwards compatibility. Functionality superseded by sigprocmask.
*/
SYSCALL_DEFINE0(sgetmask)
{
/* SMP safe */
return current->blocked.sig[0];
}
SYSCALL_DEFINE1(ssetmask, int, newmask)
{
int old = current->blocked.sig[0];
sigset_t newset;
siginitset(&newset, newmask);
set_current_blocked(&newset);
return old;
}
#endif /* CONFIG_SGETMASK_SYSCALL */
#ifdef __ARCH_WANT_SYS_SIGNAL
/*
* For backwards compatibility. Functionality superseded by sigaction.
*/
SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
{
struct k_sigaction new_sa, old_sa;
int ret;
new_sa.sa.sa_handler = handler;
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
sigemptyset(&new_sa.sa.sa_mask);
ret = do_sigaction(sig, &new_sa, &old_sa);
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
}
#endif /* __ARCH_WANT_SYS_SIGNAL */
#ifdef __ARCH_WANT_SYS_PAUSE
SYSCALL_DEFINE0(pause)
{
while (!signal_pending(current)) {
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
return -ERESTARTNOHAND;
}
#endif
static int sigsuspend(sigset_t *set)
{
current->saved_sigmask = current->blocked;
set_current_blocked(set);
while (!signal_pending(current)) {
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
set_restore_sigmask();
return -ERESTARTNOHAND;
}
/**
* sys_rt_sigsuspend - replace the signal mask for a value with the
* @unewset value until a signal is received
* @unewset: new signal mask value
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
{
sigset_t newset;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&newset, unewset, sizeof(newset)))
return -EFAULT;
return sigsuspend(&newset);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
{
sigset_t newset;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (get_compat_sigset(&newset, unewset))
return -EFAULT;
return sigsuspend(&newset);
}
#endif
#ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
{
sigset_t blocked;
siginitset(&blocked, mask);
return sigsuspend(&blocked);
}
#endif
#ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
{
sigset_t blocked;
siginitset(&blocked, mask);
return sigsuspend(&blocked);
}
#endif
__weak const char *arch_vma_name(struct vm_area_struct *vma)
{
return NULL;
}
static inline void siginfo_buildtime_checks(void)
{
BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
/* Verify the offsets in the two siginfos match */
#define CHECK_OFFSET(field) \
BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
/* kill */
CHECK_OFFSET(si_pid);
CHECK_OFFSET(si_uid);
/* timer */
CHECK_OFFSET(si_tid);
CHECK_OFFSET(si_overrun);
CHECK_OFFSET(si_value);
/* rt */
CHECK_OFFSET(si_pid);
CHECK_OFFSET(si_uid);
CHECK_OFFSET(si_value);
/* sigchld */
CHECK_OFFSET(si_pid);
CHECK_OFFSET(si_uid);
CHECK_OFFSET(si_status);
CHECK_OFFSET(si_utime);
CHECK_OFFSET(si_stime);
/* sigfault */
CHECK_OFFSET(si_addr);
CHECK_OFFSET(si_addr_lsb);
CHECK_OFFSET(si_lower);
CHECK_OFFSET(si_upper);
CHECK_OFFSET(si_pkey);
/* sigpoll */
CHECK_OFFSET(si_band);
CHECK_OFFSET(si_fd);
/* sigsys */
CHECK_OFFSET(si_call_addr);
CHECK_OFFSET(si_syscall);
CHECK_OFFSET(si_arch);
#undef CHECK_OFFSET
/* usb asyncio */
BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
offsetof(struct siginfo, si_addr));
if (sizeof(int) == sizeof(void __user *)) {
BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
sizeof(void __user *));
} else {
BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
sizeof_field(struct siginfo, si_uid)) !=
sizeof(void __user *));
BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
offsetof(struct siginfo, si_uid));
}
#ifdef CONFIG_COMPAT
BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
offsetof(struct compat_siginfo, si_addr));
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
sizeof(compat_uptr_t));
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
sizeof_field(struct siginfo, si_pid));
#endif
}
void __init signals_init(void)
{
siginfo_buildtime_checks();
sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
}
#ifdef CONFIG_KGDB_KDB
#include <linux/kdb.h>
/*
* kdb_send_sig - Allows kdb to send signals without exposing
* signal internals. This function checks if the required locks are
* available before calling the main signal code, to avoid kdb
* deadlocks.
*/
void kdb_send_sig(struct task_struct *t, int sig)
{
static struct task_struct *kdb_prev_t;
int new_t, ret;
if (!spin_trylock(&t->sighand->siglock)) {
kdb_printf("Can't do kill command now.\n"
"The sigmask lock is held somewhere else in "
"kernel, try again later\n");
return;
}
new_t = kdb_prev_t != t;
kdb_prev_t = t;
if (t->state != TASK_RUNNING && new_t) {
spin_unlock(&t->sighand->siglock);
kdb_printf("Process is not RUNNING, sending a signal from "
"kdb risks deadlock\n"
"on the run queue locks. "
"The signal has _not_ been sent.\n"
"Reissue the kill command if you want to risk "
"the deadlock.\n");
return;
}
ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
spin_unlock(&t->sighand->siglock);
if (ret)
kdb_printf("Fail to deliver Signal %d to process %d.\n",
sig, t->pid);
else
kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
}
#endif /* CONFIG_KGDB_KDB */