kernel_optimize_test/kernel/printk/printk.c
Randy Dunlap a754ea0de3 printk: fix return value of printk.devkmsg __setup handler
[ Upstream commit b665eae7a788c5e2bc10f9ac3c0137aa0ad1fc97 ]

If an invalid option value is used with "printk.devkmsg=<value>",
it is silently ignored.
If a valid option value is used, it is honored but the wrong return
value (0) is used, indicating that the command line option had an
error and was not handled. This string is not added to init's
environment strings due to init/main.c::unknown_bootoption()
checking for a '.' in the boot option string and then considering
that string to be an "Unused module parameter".

Print a warning message if a bad option string is used.
Always return 1 from the __setup handler to indicate that the command
line option has been handled.

Fixes: 750afe7bab ("printk: add kernel parameter to control writes to /dev/kmsg")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Cc: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: John Ogness <john.ogness@linutronix.de>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220228220556.23484-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-08 14:40:08 +02:00

3490 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/printk.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Modified to make sys_syslog() more flexible: added commands to
* return the last 4k of kernel messages, regardless of whether
* they've been read or not. Added option to suppress kernel printk's
* to the console. Added hook for sending the console messages
* elsewhere, in preparation for a serial line console (someday).
* Ted Ts'o, 2/11/93.
* Modified for sysctl support, 1/8/97, Chris Horn.
* Fixed SMP synchronization, 08/08/99, Manfred Spraul
* manfred@colorfullife.com
* Rewrote bits to get rid of console_lock
* 01Mar01 Andrew Morton
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/nmi.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/security.h>
#include <linux/memblock.h>
#include <linux/syscalls.h>
#include <linux/crash_core.h>
#include <linux/ratelimit.h>
#include <linux/kmsg_dump.h>
#include <linux/syslog.h>
#include <linux/cpu.h>
#include <linux/rculist.h>
#include <linux/poll.h>
#include <linux/irq_work.h>
#include <linux/ctype.h>
#include <linux/uio.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
#include <linux/sched/task_stack.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include <trace/events/initcall.h>
#define CREATE_TRACE_POINTS
#include <trace/events/printk.h>
#include "printk_ringbuffer.h"
#include "console_cmdline.h"
#include "braille.h"
#include "internal.h"
int console_printk[4] = {
CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
};
EXPORT_SYMBOL_GPL(console_printk);
atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
EXPORT_SYMBOL(ignore_console_lock_warning);
/*
* Low level drivers may need that to know if they can schedule in
* their unblank() callback or not. So let's export it.
*/
int oops_in_progress;
EXPORT_SYMBOL(oops_in_progress);
/*
* console_sem protects the console_drivers list, and also
* provides serialisation for access to the entire console
* driver system.
*/
static DEFINE_SEMAPHORE(console_sem);
struct console *console_drivers;
EXPORT_SYMBOL_GPL(console_drivers);
/*
* System may need to suppress printk message under certain
* circumstances, like after kernel panic happens.
*/
int __read_mostly suppress_printk;
#ifdef CONFIG_LOCKDEP
static struct lockdep_map console_lock_dep_map = {
.name = "console_lock"
};
#endif
enum devkmsg_log_bits {
__DEVKMSG_LOG_BIT_ON = 0,
__DEVKMSG_LOG_BIT_OFF,
__DEVKMSG_LOG_BIT_LOCK,
};
enum devkmsg_log_masks {
DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
};
/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
#define DEVKMSG_LOG_MASK_DEFAULT 0
static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
static int __control_devkmsg(char *str)
{
size_t len;
if (!str)
return -EINVAL;
len = str_has_prefix(str, "on");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_ON;
return len;
}
len = str_has_prefix(str, "off");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_OFF;
return len;
}
len = str_has_prefix(str, "ratelimit");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
return len;
}
return -EINVAL;
}
static int __init control_devkmsg(char *str)
{
if (__control_devkmsg(str) < 0) {
pr_warn("printk.devkmsg: bad option string '%s'\n", str);
return 1;
}
/*
* Set sysctl string accordingly:
*/
if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
strcpy(devkmsg_log_str, "on");
else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
strcpy(devkmsg_log_str, "off");
/* else "ratelimit" which is set by default. */
/*
* Sysctl cannot change it anymore. The kernel command line setting of
* this parameter is to force the setting to be permanent throughout the
* runtime of the system. This is a precation measure against userspace
* trying to be a smarta** and attempting to change it up on us.
*/
devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
return 1;
}
__setup("printk.devkmsg=", control_devkmsg);
char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
char old_str[DEVKMSG_STR_MAX_SIZE];
unsigned int old;
int err;
if (write) {
if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
return -EINVAL;
old = devkmsg_log;
strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
}
err = proc_dostring(table, write, buffer, lenp, ppos);
if (err)
return err;
if (write) {
err = __control_devkmsg(devkmsg_log_str);
/*
* Do not accept an unknown string OR a known string with
* trailing crap...
*/
if (err < 0 || (err + 1 != *lenp)) {
/* ... and restore old setting. */
devkmsg_log = old;
strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
return -EINVAL;
}
}
return 0;
}
/* Number of registered extended console drivers. */
static int nr_ext_console_drivers;
/*
* Helper macros to handle lockdep when locking/unlocking console_sem. We use
* macros instead of functions so that _RET_IP_ contains useful information.
*/
#define down_console_sem() do { \
down(&console_sem);\
mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
} while (0)
static int __down_trylock_console_sem(unsigned long ip)
{
int lock_failed;
unsigned long flags;
/*
* Here and in __up_console_sem() we need to be in safe mode,
* because spindump/WARN/etc from under console ->lock will
* deadlock in printk()->down_trylock_console_sem() otherwise.
*/
printk_safe_enter_irqsave(flags);
lock_failed = down_trylock(&console_sem);
printk_safe_exit_irqrestore(flags);
if (lock_failed)
return 1;
mutex_acquire(&console_lock_dep_map, 0, 1, ip);
return 0;
}
#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
static void __up_console_sem(unsigned long ip)
{
unsigned long flags;
mutex_release(&console_lock_dep_map, ip);
printk_safe_enter_irqsave(flags);
up(&console_sem);
printk_safe_exit_irqrestore(flags);
}
#define up_console_sem() __up_console_sem(_RET_IP_)
/*
* This is used for debugging the mess that is the VT code by
* keeping track if we have the console semaphore held. It's
* definitely not the perfect debug tool (we don't know if _WE_
* hold it and are racing, but it helps tracking those weird code
* paths in the console code where we end up in places I want
* locked without the console sempahore held).
*/
static int console_locked, console_suspended;
/*
* If exclusive_console is non-NULL then only this console is to be printed to.
*/
static struct console *exclusive_console;
/*
* Array of consoles built from command line options (console=)
*/
#define MAX_CMDLINECONSOLES 8
static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
static int preferred_console = -1;
static bool has_preferred_console;
int console_set_on_cmdline;
EXPORT_SYMBOL(console_set_on_cmdline);
/* Flag: console code may call schedule() */
static int console_may_schedule;
enum con_msg_format_flags {
MSG_FORMAT_DEFAULT = 0,
MSG_FORMAT_SYSLOG = (1 << 0),
};
static int console_msg_format = MSG_FORMAT_DEFAULT;
/*
* The printk log buffer consists of a sequenced collection of records, each
* containing variable length message text. Every record also contains its
* own meta-data (@info).
*
* Every record meta-data carries the timestamp in microseconds, as well as
* the standard userspace syslog level and syslog facility. The usual kernel
* messages use LOG_KERN; userspace-injected messages always carry a matching
* syslog facility, by default LOG_USER. The origin of every message can be
* reliably determined that way.
*
* The human readable log message of a record is available in @text, the
* length of the message text in @text_len. The stored message is not
* terminated.
*
* Optionally, a record can carry a dictionary of properties (key/value
* pairs), to provide userspace with a machine-readable message context.
*
* Examples for well-defined, commonly used property names are:
* DEVICE=b12:8 device identifier
* b12:8 block dev_t
* c127:3 char dev_t
* n8 netdev ifindex
* +sound:card0 subsystem:devname
* SUBSYSTEM=pci driver-core subsystem name
*
* Valid characters in property names are [a-zA-Z0-9.-_]. Property names
* and values are terminated by a '\0' character.
*
* Example of record values:
* record.text_buf = "it's a line" (unterminated)
* record.info.seq = 56
* record.info.ts_nsec = 36863
* record.info.text_len = 11
* record.info.facility = 0 (LOG_KERN)
* record.info.flags = 0
* record.info.level = 3 (LOG_ERR)
* record.info.caller_id = 299 (task 299)
* record.info.dev_info.subsystem = "pci" (terminated)
* record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
*
* The 'struct printk_info' buffer must never be directly exported to
* userspace, it is a kernel-private implementation detail that might
* need to be changed in the future, when the requirements change.
*
* /dev/kmsg exports the structured data in the following line format:
* "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
*
* Users of the export format should ignore possible additional values
* separated by ',', and find the message after the ';' character.
*
* The optional key/value pairs are attached as continuation lines starting
* with a space character and terminated by a newline. All possible
* non-prinatable characters are escaped in the "\xff" notation.
*/
enum log_flags {
LOG_NEWLINE = 2, /* text ended with a newline */
LOG_CONT = 8, /* text is a fragment of a continuation line */
};
/*
* The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
* within the scheduler's rq lock. It must be released before calling
* console_unlock() or anything else that might wake up a process.
*/
DEFINE_RAW_SPINLOCK(logbuf_lock);
/*
* Helper macros to lock/unlock logbuf_lock and switch between
* printk-safe/unsafe modes.
*/
#define logbuf_lock_irq() \
do { \
printk_safe_enter_irq(); \
raw_spin_lock(&logbuf_lock); \
} while (0)
#define logbuf_unlock_irq() \
do { \
raw_spin_unlock(&logbuf_lock); \
printk_safe_exit_irq(); \
} while (0)
#define logbuf_lock_irqsave(flags) \
do { \
printk_safe_enter_irqsave(flags); \
raw_spin_lock(&logbuf_lock); \
} while (0)
#define logbuf_unlock_irqrestore(flags) \
do { \
raw_spin_unlock(&logbuf_lock); \
printk_safe_exit_irqrestore(flags); \
} while (0)
#ifdef CONFIG_PRINTK
DECLARE_WAIT_QUEUE_HEAD(log_wait);
/* the next printk record to read by syslog(READ) or /proc/kmsg */
static u64 syslog_seq;
static size_t syslog_partial;
static bool syslog_time;
/* the next printk record to write to the console */
static u64 console_seq;
static u64 exclusive_console_stop_seq;
static unsigned long console_dropped;
/* the next printk record to read after the last 'clear' command */
static u64 clear_seq;
#ifdef CONFIG_PRINTK_CALLER
#define PREFIX_MAX 48
#else
#define PREFIX_MAX 32
#endif
#define LOG_LINE_MAX (1024 - PREFIX_MAX)
#define LOG_LEVEL(v) ((v) & 0x07)
#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
/* record buffer */
#define LOG_ALIGN __alignof__(unsigned long)
#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
#define LOG_BUF_LEN_MAX (u32)(1 << 31)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
static char *log_buf = __log_buf;
static u32 log_buf_len = __LOG_BUF_LEN;
/*
* Define the average message size. This only affects the number of
* descriptors that will be available. Underestimating is better than
* overestimating (too many available descriptors is better than not enough).
*/
#define PRB_AVGBITS 5 /* 32 character average length */
#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
#error CONFIG_LOG_BUF_SHIFT value too small.
#endif
_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
PRB_AVGBITS, &__log_buf[0]);
static struct printk_ringbuffer printk_rb_dynamic;
static struct printk_ringbuffer *prb = &printk_rb_static;
/*
* We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
* per_cpu_areas are initialised. This variable is set to true when
* it's safe to access per-CPU data.
*/
static bool __printk_percpu_data_ready __read_mostly;
bool printk_percpu_data_ready(void)
{
return __printk_percpu_data_ready;
}
/* Return log buffer address */
char *log_buf_addr_get(void)
{
return log_buf;
}
/* Return log buffer size */
u32 log_buf_len_get(void)
{
return log_buf_len;
}
/*
* Define how much of the log buffer we could take at maximum. The value
* must be greater than two. Note that only half of the buffer is available
* when the index points to the middle.
*/
#define MAX_LOG_TAKE_PART 4
static const char trunc_msg[] = "<truncated>";
static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
{
/*
* The message should not take the whole buffer. Otherwise, it might
* get removed too soon.
*/
u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
if (*text_len > max_text_len)
*text_len = max_text_len;
/* enable the warning message (if there is room) */
*trunc_msg_len = strlen(trunc_msg);
if (*text_len >= *trunc_msg_len)
*text_len -= *trunc_msg_len;
else
*trunc_msg_len = 0;
}
/* insert record into the buffer, discard old ones, update heads */
static int log_store(u32 caller_id, int facility, int level,
enum log_flags flags, u64 ts_nsec,
const struct dev_printk_info *dev_info,
const char *text, u16 text_len)
{
struct prb_reserved_entry e;
struct printk_record r;
u16 trunc_msg_len = 0;
prb_rec_init_wr(&r, text_len);
if (!prb_reserve(&e, prb, &r)) {
/* truncate the message if it is too long for empty buffer */
truncate_msg(&text_len, &trunc_msg_len);
prb_rec_init_wr(&r, text_len + trunc_msg_len);
/* survive when the log buffer is too small for trunc_msg */
if (!prb_reserve(&e, prb, &r))
return 0;
}
/* fill message */
memcpy(&r.text_buf[0], text, text_len);
if (trunc_msg_len)
memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
r.info->text_len = text_len + trunc_msg_len;
r.info->facility = facility;
r.info->level = level & 7;
r.info->flags = flags & 0x1f;
if (ts_nsec > 0)
r.info->ts_nsec = ts_nsec;
else
r.info->ts_nsec = local_clock();
r.info->caller_id = caller_id;
if (dev_info)
memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
/* A message without a trailing newline can be continued. */
if (!(flags & LOG_NEWLINE))
prb_commit(&e);
else
prb_final_commit(&e);
return (text_len + trunc_msg_len);
}
int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
static int syslog_action_restricted(int type)
{
if (dmesg_restrict)
return 1;
/*
* Unless restricted, we allow "read all" and "get buffer size"
* for everybody.
*/
return type != SYSLOG_ACTION_READ_ALL &&
type != SYSLOG_ACTION_SIZE_BUFFER;
}
static int check_syslog_permissions(int type, int source)
{
/*
* If this is from /proc/kmsg and we've already opened it, then we've
* already done the capabilities checks at open time.
*/
if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
goto ok;
if (syslog_action_restricted(type)) {
if (capable(CAP_SYSLOG))
goto ok;
/*
* For historical reasons, accept CAP_SYS_ADMIN too, with
* a warning.
*/
if (capable(CAP_SYS_ADMIN)) {
pr_warn_once("%s (%d): Attempt to access syslog with "
"CAP_SYS_ADMIN but no CAP_SYSLOG "
"(deprecated).\n",
current->comm, task_pid_nr(current));
goto ok;
}
return -EPERM;
}
ok:
return security_syslog(type);
}
static void append_char(char **pp, char *e, char c)
{
if (*pp < e)
*(*pp)++ = c;
}
static ssize_t info_print_ext_header(char *buf, size_t size,
struct printk_info *info)
{
u64 ts_usec = info->ts_nsec;
char caller[20];
#ifdef CONFIG_PRINTK_CALLER
u32 id = info->caller_id;
snprintf(caller, sizeof(caller), ",caller=%c%u",
id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
#else
caller[0] = '\0';
#endif
do_div(ts_usec, 1000);
return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
(info->facility << 3) | info->level, info->seq,
ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
}
static ssize_t msg_add_ext_text(char *buf, size_t size,
const char *text, size_t text_len,
unsigned char endc)
{
char *p = buf, *e = buf + size;
size_t i;
/* escape non-printable characters */
for (i = 0; i < text_len; i++) {
unsigned char c = text[i];
if (c < ' ' || c >= 127 || c == '\\')
p += scnprintf(p, e - p, "\\x%02x", c);
else
append_char(&p, e, c);
}
append_char(&p, e, endc);
return p - buf;
}
static ssize_t msg_add_dict_text(char *buf, size_t size,
const char *key, const char *val)
{
size_t val_len = strlen(val);
ssize_t len;
if (!val_len)
return 0;
len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
return len;
}
static ssize_t msg_print_ext_body(char *buf, size_t size,
char *text, size_t text_len,
struct dev_printk_info *dev_info)
{
ssize_t len;
len = msg_add_ext_text(buf, size, text, text_len, '\n');
if (!dev_info)
goto out;
len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
dev_info->subsystem);
len += msg_add_dict_text(buf + len, size - len, "DEVICE",
dev_info->device);
out:
return len;
}
/* /dev/kmsg - userspace message inject/listen interface */
struct devkmsg_user {
u64 seq;
struct ratelimit_state rs;
struct mutex lock;
char buf[CONSOLE_EXT_LOG_MAX];
struct printk_info info;
char text_buf[CONSOLE_EXT_LOG_MAX];
struct printk_record record;
};
static __printf(3, 4) __cold
int devkmsg_emit(int facility, int level, const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_emit(facility, level, NULL, fmt, args);
va_end(args);
return r;
}
static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
{
char *buf, *line;
int level = default_message_loglevel;
int facility = 1; /* LOG_USER */
struct file *file = iocb->ki_filp;
struct devkmsg_user *user = file->private_data;
size_t len = iov_iter_count(from);
ssize_t ret = len;
if (!user || len > LOG_LINE_MAX)
return -EINVAL;
/* Ignore when user logging is disabled. */
if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
return len;
/* Ratelimit when not explicitly enabled. */
if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
if (!___ratelimit(&user->rs, current->comm))
return ret;
}
buf = kmalloc(len+1, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[len] = '\0';
if (!copy_from_iter_full(buf, len, from)) {
kfree(buf);
return -EFAULT;
}
/*
* Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
* the decimal value represents 32bit, the lower 3 bit are the log
* level, the rest are the log facility.
*
* If no prefix or no userspace facility is specified, we
* enforce LOG_USER, to be able to reliably distinguish
* kernel-generated messages from userspace-injected ones.
*/
line = buf;
if (line[0] == '<') {
char *endp = NULL;
unsigned int u;
u = simple_strtoul(line + 1, &endp, 10);
if (endp && endp[0] == '>') {
level = LOG_LEVEL(u);
if (LOG_FACILITY(u) != 0)
facility = LOG_FACILITY(u);
endp++;
len -= endp - line;
line = endp;
}
}
devkmsg_emit(facility, level, "%s", line);
kfree(buf);
return ret;
}
static ssize_t devkmsg_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct devkmsg_user *user = file->private_data;
struct printk_record *r = &user->record;
size_t len;
ssize_t ret;
if (!user)
return -EBADF;
ret = mutex_lock_interruptible(&user->lock);
if (ret)
return ret;
logbuf_lock_irq();
if (!prb_read_valid(prb, user->seq, r)) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
logbuf_unlock_irq();
goto out;
}
logbuf_unlock_irq();
ret = wait_event_interruptible(log_wait,
prb_read_valid(prb, user->seq, r));
if (ret)
goto out;
logbuf_lock_irq();
}
if (r->info->seq != user->seq) {
/* our last seen message is gone, return error and reset */
user->seq = r->info->seq;
ret = -EPIPE;
logbuf_unlock_irq();
goto out;
}
len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
&r->text_buf[0], r->info->text_len,
&r->info->dev_info);
user->seq = r->info->seq + 1;
logbuf_unlock_irq();
if (len > count) {
ret = -EINVAL;
goto out;
}
if (copy_to_user(buf, user->buf, len)) {
ret = -EFAULT;
goto out;
}
ret = len;
out:
mutex_unlock(&user->lock);
return ret;
}
/*
* Be careful when modifying this function!!!
*
* Only few operations are supported because the device works only with the
* entire variable length messages (records). Non-standard values are
* returned in the other cases and has been this way for quite some time.
* User space applications might depend on this behavior.
*/
static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
{
struct devkmsg_user *user = file->private_data;
loff_t ret = 0;
if (!user)
return -EBADF;
if (offset)
return -ESPIPE;
logbuf_lock_irq();
switch (whence) {
case SEEK_SET:
/* the first record */
user->seq = prb_first_valid_seq(prb);
break;
case SEEK_DATA:
/*
* The first record after the last SYSLOG_ACTION_CLEAR,
* like issued by 'dmesg -c'. Reading /dev/kmsg itself
* changes no global state, and does not clear anything.
*/
user->seq = clear_seq;
break;
case SEEK_END:
/* after the last record */
user->seq = prb_next_seq(prb);
break;
default:
ret = -EINVAL;
}
logbuf_unlock_irq();
return ret;
}
static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
{
struct devkmsg_user *user = file->private_data;
struct printk_info info;
__poll_t ret = 0;
if (!user)
return EPOLLERR|EPOLLNVAL;
poll_wait(file, &log_wait, wait);
logbuf_lock_irq();
if (prb_read_valid_info(prb, user->seq, &info, NULL)) {
/* return error when data has vanished underneath us */
if (info.seq != user->seq)
ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
else
ret = EPOLLIN|EPOLLRDNORM;
}
logbuf_unlock_irq();
return ret;
}
static int devkmsg_open(struct inode *inode, struct file *file)
{
struct devkmsg_user *user;
int err;
if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
return -EPERM;
/* write-only does not need any file context */
if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
SYSLOG_FROM_READER);
if (err)
return err;
}
user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
if (!user)
return -ENOMEM;
ratelimit_default_init(&user->rs);
ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
mutex_init(&user->lock);
prb_rec_init_rd(&user->record, &user->info,
&user->text_buf[0], sizeof(user->text_buf));
logbuf_lock_irq();
user->seq = prb_first_valid_seq(prb);
logbuf_unlock_irq();
file->private_data = user;
return 0;
}
static int devkmsg_release(struct inode *inode, struct file *file)
{
struct devkmsg_user *user = file->private_data;
if (!user)
return 0;
ratelimit_state_exit(&user->rs);
mutex_destroy(&user->lock);
kfree(user);
return 0;
}
const struct file_operations kmsg_fops = {
.open = devkmsg_open,
.read = devkmsg_read,
.write_iter = devkmsg_write,
.llseek = devkmsg_llseek,
.poll = devkmsg_poll,
.release = devkmsg_release,
};
#ifdef CONFIG_CRASH_CORE
/*
* This appends the listed symbols to /proc/vmcore
*
* /proc/vmcore is used by various utilities, like crash and makedumpfile to
* obtain access to symbols that are otherwise very difficult to locate. These
* symbols are specifically used so that utilities can access and extract the
* dmesg log from a vmcore file after a crash.
*/
void log_buf_vmcoreinfo_setup(void)
{
struct dev_printk_info *dev_info = NULL;
VMCOREINFO_SYMBOL(prb);
VMCOREINFO_SYMBOL(printk_rb_static);
VMCOREINFO_SYMBOL(clear_seq);
/*
* Export struct size and field offsets. User space tools can
* parse it and detect any changes to structure down the line.
*/
VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
VMCOREINFO_OFFSET(printk_ringbuffer, fail);
VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
VMCOREINFO_OFFSET(prb_desc_ring, descs);
VMCOREINFO_OFFSET(prb_desc_ring, infos);
VMCOREINFO_OFFSET(prb_desc_ring, head_id);
VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
VMCOREINFO_STRUCT_SIZE(prb_desc);
VMCOREINFO_OFFSET(prb_desc, state_var);
VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
VMCOREINFO_STRUCT_SIZE(printk_info);
VMCOREINFO_OFFSET(printk_info, seq);
VMCOREINFO_OFFSET(printk_info, ts_nsec);
VMCOREINFO_OFFSET(printk_info, text_len);
VMCOREINFO_OFFSET(printk_info, caller_id);
VMCOREINFO_OFFSET(printk_info, dev_info);
VMCOREINFO_STRUCT_SIZE(dev_printk_info);
VMCOREINFO_OFFSET(dev_printk_info, subsystem);
VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
VMCOREINFO_OFFSET(dev_printk_info, device);
VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
VMCOREINFO_STRUCT_SIZE(prb_data_ring);
VMCOREINFO_OFFSET(prb_data_ring, size_bits);
VMCOREINFO_OFFSET(prb_data_ring, data);
VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
VMCOREINFO_SIZE(atomic_long_t);
VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
}
#endif
/* requested log_buf_len from kernel cmdline */
static unsigned long __initdata new_log_buf_len;
/* we practice scaling the ring buffer by powers of 2 */
static void __init log_buf_len_update(u64 size)
{
if (size > (u64)LOG_BUF_LEN_MAX) {
size = (u64)LOG_BUF_LEN_MAX;
pr_err("log_buf over 2G is not supported.\n");
}
if (size)
size = roundup_pow_of_two(size);
if (size > log_buf_len)
new_log_buf_len = (unsigned long)size;
}
/* save requested log_buf_len since it's too early to process it */
static int __init log_buf_len_setup(char *str)
{
u64 size;
if (!str)
return -EINVAL;
size = memparse(str, &str);
log_buf_len_update(size);
return 0;
}
early_param("log_buf_len", log_buf_len_setup);
#ifdef CONFIG_SMP
#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
static void __init log_buf_add_cpu(void)
{
unsigned int cpu_extra;
/*
* archs should set up cpu_possible_bits properly with
* set_cpu_possible() after setup_arch() but just in
* case lets ensure this is valid.
*/
if (num_possible_cpus() == 1)
return;
cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
/* by default this will only continue through for large > 64 CPUs */
if (cpu_extra <= __LOG_BUF_LEN / 2)
return;
pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
__LOG_CPU_MAX_BUF_LEN);
pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
cpu_extra);
pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
}
#else /* !CONFIG_SMP */
static inline void log_buf_add_cpu(void) {}
#endif /* CONFIG_SMP */
static void __init set_percpu_data_ready(void)
{
printk_safe_init();
/* Make sure we set this flag only after printk_safe() init is done */
barrier();
__printk_percpu_data_ready = true;
}
static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
struct printk_record *r)
{
struct prb_reserved_entry e;
struct printk_record dest_r;
prb_rec_init_wr(&dest_r, r->info->text_len);
if (!prb_reserve(&e, rb, &dest_r))
return 0;
memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
dest_r.info->text_len = r->info->text_len;
dest_r.info->facility = r->info->facility;
dest_r.info->level = r->info->level;
dest_r.info->flags = r->info->flags;
dest_r.info->ts_nsec = r->info->ts_nsec;
dest_r.info->caller_id = r->info->caller_id;
memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
prb_final_commit(&e);
return prb_record_text_space(&e);
}
static char setup_text_buf[LOG_LINE_MAX] __initdata;
void __init setup_log_buf(int early)
{
struct printk_info *new_infos;
unsigned int new_descs_count;
struct prb_desc *new_descs;
struct printk_info info;
struct printk_record r;
size_t new_descs_size;
size_t new_infos_size;
unsigned long flags;
char *new_log_buf;
unsigned int free;
u64 seq;
/*
* Some archs call setup_log_buf() multiple times - first is very
* early, e.g. from setup_arch(), and second - when percpu_areas
* are initialised.
*/
if (!early)
set_percpu_data_ready();
if (log_buf != __log_buf)
return;
if (!early && !new_log_buf_len)
log_buf_add_cpu();
if (!new_log_buf_len)
return;
new_descs_count = new_log_buf_len >> PRB_AVGBITS;
if (new_descs_count == 0) {
pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
return;
}
new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
if (unlikely(!new_log_buf)) {
pr_err("log_buf_len: %lu text bytes not available\n",
new_log_buf_len);
return;
}
new_descs_size = new_descs_count * sizeof(struct prb_desc);
new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
if (unlikely(!new_descs)) {
pr_err("log_buf_len: %zu desc bytes not available\n",
new_descs_size);
goto err_free_log_buf;
}
new_infos_size = new_descs_count * sizeof(struct printk_info);
new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
if (unlikely(!new_infos)) {
pr_err("log_buf_len: %zu info bytes not available\n",
new_infos_size);
goto err_free_descs;
}
prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
prb_init(&printk_rb_dynamic,
new_log_buf, ilog2(new_log_buf_len),
new_descs, ilog2(new_descs_count),
new_infos);
logbuf_lock_irqsave(flags);
log_buf_len = new_log_buf_len;
log_buf = new_log_buf;
new_log_buf_len = 0;
free = __LOG_BUF_LEN;
prb_for_each_record(0, &printk_rb_static, seq, &r)
free -= add_to_rb(&printk_rb_dynamic, &r);
/*
* This is early enough that everything is still running on the
* boot CPU and interrupts are disabled. So no new messages will
* appear during the transition to the dynamic buffer.
*/
prb = &printk_rb_dynamic;
logbuf_unlock_irqrestore(flags);
if (seq != prb_next_seq(&printk_rb_static)) {
pr_err("dropped %llu messages\n",
prb_next_seq(&printk_rb_static) - seq);
}
pr_info("log_buf_len: %u bytes\n", log_buf_len);
pr_info("early log buf free: %u(%u%%)\n",
free, (free * 100) / __LOG_BUF_LEN);
return;
err_free_descs:
memblock_free(__pa(new_descs), new_descs_size);
err_free_log_buf:
memblock_free(__pa(new_log_buf), new_log_buf_len);
}
static bool __read_mostly ignore_loglevel;
static int __init ignore_loglevel_setup(char *str)
{
ignore_loglevel = true;
pr_info("debug: ignoring loglevel setting.\n");
return 0;
}
early_param("ignore_loglevel", ignore_loglevel_setup);
module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ignore_loglevel,
"ignore loglevel setting (prints all kernel messages to the console)");
static bool suppress_message_printing(int level)
{
return (level >= console_loglevel && !ignore_loglevel);
}
#ifdef CONFIG_BOOT_PRINTK_DELAY
static int boot_delay; /* msecs delay after each printk during bootup */
static unsigned long long loops_per_msec; /* based on boot_delay */
static int __init boot_delay_setup(char *str)
{
unsigned long lpj;
lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
get_option(&str, &boot_delay);
if (boot_delay > 10 * 1000)
boot_delay = 0;
pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
"HZ: %d, loops_per_msec: %llu\n",
boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
return 0;
}
early_param("boot_delay", boot_delay_setup);
static void boot_delay_msec(int level)
{
unsigned long long k;
unsigned long timeout;
if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
|| suppress_message_printing(level)) {
return;
}
k = (unsigned long long)loops_per_msec * boot_delay;
timeout = jiffies + msecs_to_jiffies(boot_delay);
while (k) {
k--;
cpu_relax();
/*
* use (volatile) jiffies to prevent
* compiler reduction; loop termination via jiffies
* is secondary and may or may not happen.
*/
if (time_after(jiffies, timeout))
break;
touch_nmi_watchdog();
}
}
#else
static inline void boot_delay_msec(int level)
{
}
#endif
static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
static size_t print_syslog(unsigned int level, char *buf)
{
return sprintf(buf, "<%u>", level);
}
static size_t print_time(u64 ts, char *buf)
{
unsigned long rem_nsec = do_div(ts, 1000000000);
return sprintf(buf, "[%5lu.%06lu]",
(unsigned long)ts, rem_nsec / 1000);
}
#ifdef CONFIG_PRINTK_CALLER
static size_t print_caller(u32 id, char *buf)
{
char caller[12];
snprintf(caller, sizeof(caller), "%c%u",
id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
return sprintf(buf, "[%6s]", caller);
}
#else
#define print_caller(id, buf) 0
#endif
static size_t info_print_prefix(const struct printk_info *info, bool syslog,
bool time, char *buf)
{
size_t len = 0;
if (syslog)
len = print_syslog((info->facility << 3) | info->level, buf);
if (time)
len += print_time(info->ts_nsec, buf + len);
len += print_caller(info->caller_id, buf + len);
if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
buf[len++] = ' ';
buf[len] = '\0';
}
return len;
}
/*
* Prepare the record for printing. The text is shifted within the given
* buffer to avoid a need for another one. The following operations are
* done:
*
* - Add prefix for each line.
* - Drop truncated lines that no longer fit into the buffer.
* - Add the trailing newline that has been removed in vprintk_store().
* - Add a string terminator.
*
* Since the produced string is always terminated, the maximum possible
* return value is @r->text_buf_size - 1;
*
* Return: The length of the updated/prepared text, including the added
* prefixes and the newline. The terminator is not counted. The dropped
* line(s) are not counted.
*/
static size_t record_print_text(struct printk_record *r, bool syslog,
bool time)
{
size_t text_len = r->info->text_len;
size_t buf_size = r->text_buf_size;
char *text = r->text_buf;
char prefix[PREFIX_MAX];
bool truncated = false;
size_t prefix_len;
size_t line_len;
size_t len = 0;
char *next;
/*
* If the message was truncated because the buffer was not large
* enough, treat the available text as if it were the full text.
*/
if (text_len > buf_size)
text_len = buf_size;
prefix_len = info_print_prefix(r->info, syslog, time, prefix);
/*
* @text_len: bytes of unprocessed text
* @line_len: bytes of current line _without_ newline
* @text: pointer to beginning of current line
* @len: number of bytes prepared in r->text_buf
*/
for (;;) {
next = memchr(text, '\n', text_len);
if (next) {
line_len = next - text;
} else {
/* Drop truncated line(s). */
if (truncated)
break;
line_len = text_len;
}
/*
* Truncate the text if there is not enough space to add the
* prefix and a trailing newline and a terminator.
*/
if (len + prefix_len + text_len + 1 + 1 > buf_size) {
/* Drop even the current line if no space. */
if (len + prefix_len + line_len + 1 + 1 > buf_size)
break;
text_len = buf_size - len - prefix_len - 1 - 1;
truncated = true;
}
memmove(text + prefix_len, text, text_len);
memcpy(text, prefix, prefix_len);
/*
* Increment the prepared length to include the text and
* prefix that were just moved+copied. Also increment for the
* newline at the end of this line. If this is the last line,
* there is no newline, but it will be added immediately below.
*/
len += prefix_len + line_len + 1;
if (text_len == line_len) {
/*
* This is the last line. Add the trailing newline
* removed in vprintk_store().
*/
text[prefix_len + line_len] = '\n';
break;
}
/*
* Advance beyond the added prefix and the related line with
* its newline.
*/
text += prefix_len + line_len + 1;
/*
* The remaining text has only decreased by the line with its
* newline.
*
* Note that @text_len can become zero. It happens when @text
* ended with a newline (either due to truncation or the
* original string ending with "\n\n"). The loop is correctly
* repeated and (if not truncated) an empty line with a prefix
* will be prepared.
*/
text_len -= line_len + 1;
}
/*
* If a buffer was provided, it will be terminated. Space for the
* string terminator is guaranteed to be available. The terminator is
* not counted in the return value.
*/
if (buf_size > 0)
r->text_buf[len] = 0;
return len;
}
static size_t get_record_print_text_size(struct printk_info *info,
unsigned int line_count,
bool syslog, bool time)
{
char prefix[PREFIX_MAX];
size_t prefix_len;
prefix_len = info_print_prefix(info, syslog, time, prefix);
/*
* Each line will be preceded with a prefix. The intermediate
* newlines are already within the text, but a final trailing
* newline will be added.
*/
return ((prefix_len * line_count) + info->text_len + 1);
}
static int syslog_print(char __user *buf, int size)
{
struct printk_info info;
struct printk_record r;
char *text;
int len = 0;
text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
if (!text)
return -ENOMEM;
prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
while (size > 0) {
size_t n;
size_t skip;
logbuf_lock_irq();
if (!prb_read_valid(prb, syslog_seq, &r)) {
logbuf_unlock_irq();
break;
}
if (r.info->seq != syslog_seq) {
/* message is gone, move to next valid one */
syslog_seq = r.info->seq;
syslog_partial = 0;
}
/*
* To keep reading/counting partial line consistent,
* use printk_time value as of the beginning of a line.
*/
if (!syslog_partial)
syslog_time = printk_time;
skip = syslog_partial;
n = record_print_text(&r, true, syslog_time);
if (n - syslog_partial <= size) {
/* message fits into buffer, move forward */
syslog_seq = r.info->seq + 1;
n -= syslog_partial;
syslog_partial = 0;
} else if (!len){
/* partial read(), remember position */
n = size;
syslog_partial += n;
} else
n = 0;
logbuf_unlock_irq();
if (!n)
break;
if (copy_to_user(buf, text + skip, n)) {
if (!len)
len = -EFAULT;
break;
}
len += n;
size -= n;
buf += n;
}
kfree(text);
return len;
}
static int syslog_print_all(char __user *buf, int size, bool clear)
{
struct printk_info info;
unsigned int line_count;
struct printk_record r;
char *text;
int len = 0;
u64 seq;
bool time;
text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
if (!text)
return -ENOMEM;
time = printk_time;
logbuf_lock_irq();
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump.
*/
prb_for_each_info(clear_seq, prb, seq, &info, &line_count)
len += get_record_print_text_size(&info, line_count, true, time);
/* move first record forward until length fits into the buffer */
prb_for_each_info(clear_seq, prb, seq, &info, &line_count) {
if (len <= size)
break;
len -= get_record_print_text_size(&info, line_count, true, time);
}
prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
len = 0;
prb_for_each_record(seq, prb, seq, &r) {
int textlen;
textlen = record_print_text(&r, true, time);
if (len + textlen > size) {
seq--;
break;
}
logbuf_unlock_irq();
if (copy_to_user(buf + len, text, textlen))
len = -EFAULT;
else
len += textlen;
logbuf_lock_irq();
if (len < 0)
break;
}
if (clear)
clear_seq = seq;
logbuf_unlock_irq();
kfree(text);
return len;
}
static void syslog_clear(void)
{
logbuf_lock_irq();
clear_seq = prb_next_seq(prb);
logbuf_unlock_irq();
}
int do_syslog(int type, char __user *buf, int len, int source)
{
struct printk_info info;
bool clear = false;
static int saved_console_loglevel = LOGLEVEL_DEFAULT;
int error;
error = check_syslog_permissions(type, source);
if (error)
return error;
switch (type) {
case SYSLOG_ACTION_CLOSE: /* Close log */
break;
case SYSLOG_ACTION_OPEN: /* Open log */
break;
case SYSLOG_ACTION_READ: /* Read from log */
if (!buf || len < 0)
return -EINVAL;
if (!len)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = wait_event_interruptible(log_wait,
prb_read_valid(prb, syslog_seq, NULL));
if (error)
return error;
error = syslog_print(buf, len);
break;
/* Read/clear last kernel messages */
case SYSLOG_ACTION_READ_CLEAR:
clear = true;
fallthrough;
/* Read last kernel messages */
case SYSLOG_ACTION_READ_ALL:
if (!buf || len < 0)
return -EINVAL;
if (!len)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = syslog_print_all(buf, len, clear);
break;
/* Clear ring buffer */
case SYSLOG_ACTION_CLEAR:
syslog_clear();
break;
/* Disable logging to console */
case SYSLOG_ACTION_CONSOLE_OFF:
if (saved_console_loglevel == LOGLEVEL_DEFAULT)
saved_console_loglevel = console_loglevel;
console_loglevel = minimum_console_loglevel;
break;
/* Enable logging to console */
case SYSLOG_ACTION_CONSOLE_ON:
if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
console_loglevel = saved_console_loglevel;
saved_console_loglevel = LOGLEVEL_DEFAULT;
}
break;
/* Set level of messages printed to console */
case SYSLOG_ACTION_CONSOLE_LEVEL:
if (len < 1 || len > 8)
return -EINVAL;
if (len < minimum_console_loglevel)
len = minimum_console_loglevel;
console_loglevel = len;
/* Implicitly re-enable logging to console */
saved_console_loglevel = LOGLEVEL_DEFAULT;
break;
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
logbuf_lock_irq();
if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
/* No unread messages. */
logbuf_unlock_irq();
return 0;
}
if (info.seq != syslog_seq) {
/* messages are gone, move to first one */
syslog_seq = info.seq;
syslog_partial = 0;
}
if (source == SYSLOG_FROM_PROC) {
/*
* Short-cut for poll(/"proc/kmsg") which simply checks
* for pending data, not the size; return the count of
* records, not the length.
*/
error = prb_next_seq(prb) - syslog_seq;
} else {
bool time = syslog_partial ? syslog_time : printk_time;
unsigned int line_count;
u64 seq;
prb_for_each_info(syslog_seq, prb, seq, &info,
&line_count) {
error += get_record_print_text_size(&info, line_count,
true, time);
time = printk_time;
}
error -= syslog_partial;
}
logbuf_unlock_irq();
break;
/* Size of the log buffer */
case SYSLOG_ACTION_SIZE_BUFFER:
error = log_buf_len;
break;
default:
error = -EINVAL;
break;
}
return error;
}
SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
{
return do_syslog(type, buf, len, SYSLOG_FROM_READER);
}
/*
* Special console_lock variants that help to reduce the risk of soft-lockups.
* They allow to pass console_lock to another printk() call using a busy wait.
*/
#ifdef CONFIG_LOCKDEP
static struct lockdep_map console_owner_dep_map = {
.name = "console_owner"
};
#endif
static DEFINE_RAW_SPINLOCK(console_owner_lock);
static struct task_struct *console_owner;
static bool console_waiter;
/**
* console_lock_spinning_enable - mark beginning of code where another
* thread might safely busy wait
*
* This basically converts console_lock into a spinlock. This marks
* the section where the console_lock owner can not sleep, because
* there may be a waiter spinning (like a spinlock). Also it must be
* ready to hand over the lock at the end of the section.
*/
static void console_lock_spinning_enable(void)
{
raw_spin_lock(&console_owner_lock);
console_owner = current;
raw_spin_unlock(&console_owner_lock);
/* The waiter may spin on us after setting console_owner */
spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
}
/**
* console_lock_spinning_disable_and_check - mark end of code where another
* thread was able to busy wait and check if there is a waiter
*
* This is called at the end of the section where spinning is allowed.
* It has two functions. First, it is a signal that it is no longer
* safe to start busy waiting for the lock. Second, it checks if
* there is a busy waiter and passes the lock rights to her.
*
* Important: Callers lose the lock if there was a busy waiter.
* They must not touch items synchronized by console_lock
* in this case.
*
* Return: 1 if the lock rights were passed, 0 otherwise.
*/
static int console_lock_spinning_disable_and_check(void)
{
int waiter;
raw_spin_lock(&console_owner_lock);
waiter = READ_ONCE(console_waiter);
console_owner = NULL;
raw_spin_unlock(&console_owner_lock);
if (!waiter) {
spin_release(&console_owner_dep_map, _THIS_IP_);
return 0;
}
/* The waiter is now free to continue */
WRITE_ONCE(console_waiter, false);
spin_release(&console_owner_dep_map, _THIS_IP_);
/*
* Hand off console_lock to waiter. The waiter will perform
* the up(). After this, the waiter is the console_lock owner.
*/
mutex_release(&console_lock_dep_map, _THIS_IP_);
return 1;
}
/**
* console_trylock_spinning - try to get console_lock by busy waiting
*
* This allows to busy wait for the console_lock when the current
* owner is running in specially marked sections. It means that
* the current owner is running and cannot reschedule until it
* is ready to lose the lock.
*
* Return: 1 if we got the lock, 0 othrewise
*/
static int console_trylock_spinning(void)
{
struct task_struct *owner = NULL;
bool waiter;
bool spin = false;
unsigned long flags;
if (console_trylock())
return 1;
printk_safe_enter_irqsave(flags);
raw_spin_lock(&console_owner_lock);
owner = READ_ONCE(console_owner);
waiter = READ_ONCE(console_waiter);
if (!waiter && owner && owner != current) {
WRITE_ONCE(console_waiter, true);
spin = true;
}
raw_spin_unlock(&console_owner_lock);
/*
* If there is an active printk() writing to the
* consoles, instead of having it write our data too,
* see if we can offload that load from the active
* printer, and do some printing ourselves.
* Go into a spin only if there isn't already a waiter
* spinning, and there is an active printer, and
* that active printer isn't us (recursive printk?).
*/
if (!spin) {
printk_safe_exit_irqrestore(flags);
return 0;
}
/* We spin waiting for the owner to release us */
spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
/* Owner will clear console_waiter on hand off */
while (READ_ONCE(console_waiter))
cpu_relax();
spin_release(&console_owner_dep_map, _THIS_IP_);
printk_safe_exit_irqrestore(flags);
/*
* The owner passed the console lock to us.
* Since we did not spin on console lock, annotate
* this as a trylock. Otherwise lockdep will
* complain.
*/
mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
return 1;
}
/*
* Call the console drivers, asking them to write out
* log_buf[start] to log_buf[end - 1].
* The console_lock must be held.
*/
static void call_console_drivers(const char *ext_text, size_t ext_len,
const char *text, size_t len)
{
static char dropped_text[64];
size_t dropped_len = 0;
struct console *con;
trace_console_rcuidle(text, len);
if (!console_drivers)
return;
if (console_dropped) {
dropped_len = snprintf(dropped_text, sizeof(dropped_text),
"** %lu printk messages dropped **\n",
console_dropped);
console_dropped = 0;
}
for_each_console(con) {
if (exclusive_console && con != exclusive_console)
continue;
if (!(con->flags & CON_ENABLED))
continue;
if (!con->write)
continue;
if (!cpu_online(smp_processor_id()) &&
!(con->flags & CON_ANYTIME))
continue;
if (con->flags & CON_EXTENDED)
con->write(con, ext_text, ext_len);
else {
if (dropped_len)
con->write(con, dropped_text, dropped_len);
con->write(con, text, len);
}
}
}
int printk_delay_msec __read_mostly;
static inline void printk_delay(void)
{
if (unlikely(printk_delay_msec)) {
int m = printk_delay_msec;
while (m--) {
mdelay(1);
touch_nmi_watchdog();
}
}
}
static inline u32 printk_caller_id(void)
{
return in_task() ? task_pid_nr(current) :
0x80000000 + raw_smp_processor_id();
}
static size_t log_output(int facility, int level, enum log_flags lflags,
const struct dev_printk_info *dev_info,
char *text, size_t text_len)
{
const u32 caller_id = printk_caller_id();
if (lflags & LOG_CONT) {
struct prb_reserved_entry e;
struct printk_record r;
prb_rec_init_wr(&r, text_len);
if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
memcpy(&r.text_buf[r.info->text_len], text, text_len);
r.info->text_len += text_len;
if (lflags & LOG_NEWLINE) {
r.info->flags |= LOG_NEWLINE;
prb_final_commit(&e);
} else {
prb_commit(&e);
}
return text_len;
}
}
/* Store it in the record log */
return log_store(caller_id, facility, level, lflags, 0,
dev_info, text, text_len);
}
/* Must be called under logbuf_lock. */
int vprintk_store(int facility, int level,
const struct dev_printk_info *dev_info,
const char *fmt, va_list args)
{
static char textbuf[LOG_LINE_MAX];
char *text = textbuf;
size_t text_len;
enum log_flags lflags = 0;
/*
* The printf needs to come first; we need the syslog
* prefix which might be passed-in as a parameter.
*/
text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
/* mark and strip a trailing newline */
if (text_len && text[text_len-1] == '\n') {
text_len--;
lflags |= LOG_NEWLINE;
}
/* strip kernel syslog prefix and extract log level or control flags */
if (facility == 0) {
int kern_level;
while ((kern_level = printk_get_level(text)) != 0) {
switch (kern_level) {
case '0' ... '7':
if (level == LOGLEVEL_DEFAULT)
level = kern_level - '0';
break;
case 'c': /* KERN_CONT */
lflags |= LOG_CONT;
}
text_len -= 2;
text += 2;
}
}
if (level == LOGLEVEL_DEFAULT)
level = default_message_loglevel;
if (dev_info)
lflags |= LOG_NEWLINE;
return log_output(facility, level, lflags, dev_info, text, text_len);
}
asmlinkage int vprintk_emit(int facility, int level,
const struct dev_printk_info *dev_info,
const char *fmt, va_list args)
{
int printed_len;
bool in_sched = false;
unsigned long flags;
/* Suppress unimportant messages after panic happens */
if (unlikely(suppress_printk))
return 0;
if (level == LOGLEVEL_SCHED) {
level = LOGLEVEL_DEFAULT;
in_sched = true;
}
boot_delay_msec(level);
printk_delay();
/* This stops the holder of console_sem just where we want him */
logbuf_lock_irqsave(flags);
printed_len = vprintk_store(facility, level, dev_info, fmt, args);
logbuf_unlock_irqrestore(flags);
/* If called from the scheduler, we can not call up(). */
if (!in_sched) {
/*
* Disable preemption to avoid being preempted while holding
* console_sem which would prevent anyone from printing to
* console
*/
preempt_disable();
/*
* Try to acquire and then immediately release the console
* semaphore. The release will print out buffers and wake up
* /dev/kmsg and syslog() users.
*/
if (console_trylock_spinning())
console_unlock();
preempt_enable();
}
wake_up_klogd();
return printed_len;
}
EXPORT_SYMBOL(vprintk_emit);
asmlinkage int vprintk(const char *fmt, va_list args)
{
return vprintk_func(fmt, args);
}
EXPORT_SYMBOL(vprintk);
int vprintk_default(const char *fmt, va_list args)
{
return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
}
EXPORT_SYMBOL_GPL(vprintk_default);
/**
* printk - print a kernel message
* @fmt: format string
*
* This is printk(). It can be called from any context. We want it to work.
*
* We try to grab the console_lock. If we succeed, it's easy - we log the
* output and call the console drivers. If we fail to get the semaphore, we
* place the output into the log buffer and return. The current holder of
* the console_sem will notice the new output in console_unlock(); and will
* send it to the consoles before releasing the lock.
*
* One effect of this deferred printing is that code which calls printk() and
* then changes console_loglevel may break. This is because console_loglevel
* is inspected when the actual printing occurs.
*
* See also:
* printf(3)
*
* See the vsnprintf() documentation for format string extensions over C99.
*/
asmlinkage __visible int printk(const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_func(fmt, args);
va_end(args);
return r;
}
EXPORT_SYMBOL(printk);
#else /* CONFIG_PRINTK */
#define LOG_LINE_MAX 0
#define PREFIX_MAX 0
#define printk_time false
#define prb_read_valid(rb, seq, r) false
#define prb_first_valid_seq(rb) 0
static u64 syslog_seq;
static u64 console_seq;
static u64 exclusive_console_stop_seq;
static unsigned long console_dropped;
static size_t record_print_text(const struct printk_record *r,
bool syslog, bool time)
{
return 0;
}
static ssize_t info_print_ext_header(char *buf, size_t size,
struct printk_info *info)
{
return 0;
}
static ssize_t msg_print_ext_body(char *buf, size_t size,
char *text, size_t text_len,
struct dev_printk_info *dev_info) { return 0; }
static void console_lock_spinning_enable(void) { }
static int console_lock_spinning_disable_and_check(void) { return 0; }
static void call_console_drivers(const char *ext_text, size_t ext_len,
const char *text, size_t len) {}
static bool suppress_message_printing(int level) { return false; }
#endif /* CONFIG_PRINTK */
#ifdef CONFIG_EARLY_PRINTK
struct console *early_console;
asmlinkage __visible void early_printk(const char *fmt, ...)
{
va_list ap;
char buf[512];
int n;
if (!early_console)
return;
va_start(ap, fmt);
n = vscnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
early_console->write(early_console, buf, n);
}
#endif
static int __add_preferred_console(char *name, int idx, char *options,
char *brl_options, bool user_specified)
{
struct console_cmdline *c;
int i;
/*
* See if this tty is not yet registered, and
* if we have a slot free.
*/
for (i = 0, c = console_cmdline;
i < MAX_CMDLINECONSOLES && c->name[0];
i++, c++) {
if (strcmp(c->name, name) == 0 && c->index == idx) {
if (!brl_options)
preferred_console = i;
if (user_specified)
c->user_specified = true;
return 0;
}
}
if (i == MAX_CMDLINECONSOLES)
return -E2BIG;
if (!brl_options)
preferred_console = i;
strlcpy(c->name, name, sizeof(c->name));
c->options = options;
c->user_specified = user_specified;
braille_set_options(c, brl_options);
c->index = idx;
return 0;
}
static int __init console_msg_format_setup(char *str)
{
if (!strcmp(str, "syslog"))
console_msg_format = MSG_FORMAT_SYSLOG;
if (!strcmp(str, "default"))
console_msg_format = MSG_FORMAT_DEFAULT;
return 1;
}
__setup("console_msg_format=", console_msg_format_setup);
/*
* Set up a console. Called via do_early_param() in init/main.c
* for each "console=" parameter in the boot command line.
*/
static int __init console_setup(char *str)
{
char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
char *s, *options, *brl_options = NULL;
int idx;
/*
* console="" or console=null have been suggested as a way to
* disable console output. Use ttynull that has been created
* for exacly this purpose.
*/
if (str[0] == 0 || strcmp(str, "null") == 0) {
__add_preferred_console("ttynull", 0, NULL, NULL, true);
return 1;
}
if (_braille_console_setup(&str, &brl_options))
return 1;
/*
* Decode str into name, index, options.
*/
if (str[0] >= '0' && str[0] <= '9') {
strcpy(buf, "ttyS");
strncpy(buf + 4, str, sizeof(buf) - 5);
} else {
strncpy(buf, str, sizeof(buf) - 1);
}
buf[sizeof(buf) - 1] = 0;
options = strchr(str, ',');
if (options)
*(options++) = 0;
#ifdef __sparc__
if (!strcmp(str, "ttya"))
strcpy(buf, "ttyS0");
if (!strcmp(str, "ttyb"))
strcpy(buf, "ttyS1");
#endif
for (s = buf; *s; s++)
if (isdigit(*s) || *s == ',')
break;
idx = simple_strtoul(s, NULL, 10);
*s = 0;
__add_preferred_console(buf, idx, options, brl_options, true);
console_set_on_cmdline = 1;
return 1;
}
__setup("console=", console_setup);
/**
* add_preferred_console - add a device to the list of preferred consoles.
* @name: device name
* @idx: device index
* @options: options for this console
*
* The last preferred console added will be used for kernel messages
* and stdin/out/err for init. Normally this is used by console_setup
* above to handle user-supplied console arguments; however it can also
* be used by arch-specific code either to override the user or more
* commonly to provide a default console (ie from PROM variables) when
* the user has not supplied one.
*/
int add_preferred_console(char *name, int idx, char *options)
{
return __add_preferred_console(name, idx, options, NULL, false);
}
bool console_suspend_enabled = true;
EXPORT_SYMBOL(console_suspend_enabled);
static int __init console_suspend_disable(char *str)
{
console_suspend_enabled = false;
return 1;
}
__setup("no_console_suspend", console_suspend_disable);
module_param_named(console_suspend, console_suspend_enabled,
bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
" and hibernate operations");
/**
* suspend_console - suspend the console subsystem
*
* This disables printk() while we go into suspend states
*/
void suspend_console(void)
{
if (!console_suspend_enabled)
return;
pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
console_lock();
console_suspended = 1;
up_console_sem();
}
void resume_console(void)
{
if (!console_suspend_enabled)
return;
down_console_sem();
console_suspended = 0;
console_unlock();
}
/**
* console_cpu_notify - print deferred console messages after CPU hotplug
* @cpu: unused
*
* If printk() is called from a CPU that is not online yet, the messages
* will be printed on the console only if there are CON_ANYTIME consoles.
* This function is called when a new CPU comes online (or fails to come
* up) or goes offline.
*/
static int console_cpu_notify(unsigned int cpu)
{
if (!cpuhp_tasks_frozen) {
/* If trylock fails, someone else is doing the printing */
if (console_trylock())
console_unlock();
}
return 0;
}
/**
* console_lock - lock the console system for exclusive use.
*
* Acquires a lock which guarantees that the caller has
* exclusive access to the console system and the console_drivers list.
*
* Can sleep, returns nothing.
*/
void console_lock(void)
{
might_sleep();
down_console_sem();
if (console_suspended)
return;
console_locked = 1;
console_may_schedule = 1;
}
EXPORT_SYMBOL(console_lock);
/**
* console_trylock - try to lock the console system for exclusive use.
*
* Try to acquire a lock which guarantees that the caller has exclusive
* access to the console system and the console_drivers list.
*
* returns 1 on success, and 0 on failure to acquire the lock.
*/
int console_trylock(void)
{
if (down_trylock_console_sem())
return 0;
if (console_suspended) {
up_console_sem();
return 0;
}
console_locked = 1;
console_may_schedule = 0;
return 1;
}
EXPORT_SYMBOL(console_trylock);
int is_console_locked(void)
{
return console_locked;
}
EXPORT_SYMBOL(is_console_locked);
/*
* Check if we have any console that is capable of printing while cpu is
* booting or shutting down. Requires console_sem.
*/
static int have_callable_console(void)
{
struct console *con;
for_each_console(con)
if ((con->flags & CON_ENABLED) &&
(con->flags & CON_ANYTIME))
return 1;
return 0;
}
/*
* Can we actually use the console at this time on this cpu?
*
* Console drivers may assume that per-cpu resources have been allocated. So
* unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
* call them until this CPU is officially up.
*/
static inline int can_use_console(void)
{
return cpu_online(raw_smp_processor_id()) || have_callable_console();
}
/**
* console_unlock - unlock the console system
*
* Releases the console_lock which the caller holds on the console system
* and the console driver list.
*
* While the console_lock was held, console output may have been buffered
* by printk(). If this is the case, console_unlock(); emits
* the output prior to releasing the lock.
*
* If there is output waiting, we wake /dev/kmsg and syslog() users.
*
* console_unlock(); may be called from any context.
*/
void console_unlock(void)
{
static char ext_text[CONSOLE_EXT_LOG_MAX];
static char text[LOG_LINE_MAX + PREFIX_MAX];
unsigned long flags;
bool do_cond_resched, retry;
struct printk_info info;
struct printk_record r;
if (console_suspended) {
up_console_sem();
return;
}
prb_rec_init_rd(&r, &info, text, sizeof(text));
/*
* Console drivers are called with interrupts disabled, so
* @console_may_schedule should be cleared before; however, we may
* end up dumping a lot of lines, for example, if called from
* console registration path, and should invoke cond_resched()
* between lines if allowable. Not doing so can cause a very long
* scheduling stall on a slow console leading to RCU stall and
* softlockup warnings which exacerbate the issue with more
* messages practically incapacitating the system.
*
* console_trylock() is not able to detect the preemptive
* context reliably. Therefore the value must be stored before
* and cleared after the "again" goto label.
*/
do_cond_resched = console_may_schedule;
again:
console_may_schedule = 0;
/*
* We released the console_sem lock, so we need to recheck if
* cpu is online and (if not) is there at least one CON_ANYTIME
* console.
*/
if (!can_use_console()) {
console_locked = 0;
up_console_sem();
return;
}
for (;;) {
size_t ext_len = 0;
size_t len;
printk_safe_enter_irqsave(flags);
raw_spin_lock(&logbuf_lock);
skip:
if (!prb_read_valid(prb, console_seq, &r))
break;
if (console_seq != r.info->seq) {
console_dropped += r.info->seq - console_seq;
console_seq = r.info->seq;
}
if (suppress_message_printing(r.info->level)) {
/*
* Skip record we have buffered and already printed
* directly to the console when we received it, and
* record that has level above the console loglevel.
*/
console_seq++;
goto skip;
}
/* Output to all consoles once old messages replayed. */
if (unlikely(exclusive_console &&
console_seq >= exclusive_console_stop_seq)) {
exclusive_console = NULL;
}
/*
* Handle extended console text first because later
* record_print_text() will modify the record buffer in-place.
*/
if (nr_ext_console_drivers) {
ext_len = info_print_ext_header(ext_text,
sizeof(ext_text),
r.info);
ext_len += msg_print_ext_body(ext_text + ext_len,
sizeof(ext_text) - ext_len,
&r.text_buf[0],
r.info->text_len,
&r.info->dev_info);
}
len = record_print_text(&r,
console_msg_format & MSG_FORMAT_SYSLOG,
printk_time);
console_seq++;
raw_spin_unlock(&logbuf_lock);
/*
* While actively printing out messages, if another printk()
* were to occur on another CPU, it may wait for this one to
* finish. This task can not be preempted if there is a
* waiter waiting to take over.
*/
console_lock_spinning_enable();
stop_critical_timings(); /* don't trace print latency */
call_console_drivers(ext_text, ext_len, text, len);
start_critical_timings();
if (console_lock_spinning_disable_and_check()) {
printk_safe_exit_irqrestore(flags);
return;
}
printk_safe_exit_irqrestore(flags);
if (do_cond_resched)
cond_resched();
}
console_locked = 0;
raw_spin_unlock(&logbuf_lock);
up_console_sem();
/*
* Someone could have filled up the buffer again, so re-check if there's
* something to flush. In case we cannot trylock the console_sem again,
* there's a new owner and the console_unlock() from them will do the
* flush, no worries.
*/
raw_spin_lock(&logbuf_lock);
retry = prb_read_valid(prb, console_seq, NULL);
raw_spin_unlock(&logbuf_lock);
printk_safe_exit_irqrestore(flags);
if (retry && console_trylock())
goto again;
}
EXPORT_SYMBOL(console_unlock);
/**
* console_conditional_schedule - yield the CPU if required
*
* If the console code is currently allowed to sleep, and
* if this CPU should yield the CPU to another task, do
* so here.
*
* Must be called within console_lock();.
*/
void __sched console_conditional_schedule(void)
{
if (console_may_schedule)
cond_resched();
}
EXPORT_SYMBOL(console_conditional_schedule);
void console_unblank(void)
{
struct console *c;
/*
* console_unblank can no longer be called in interrupt context unless
* oops_in_progress is set to 1..
*/
if (oops_in_progress) {
if (down_trylock_console_sem() != 0)
return;
} else
console_lock();
console_locked = 1;
console_may_schedule = 0;
for_each_console(c)
if ((c->flags & CON_ENABLED) && c->unblank)
c->unblank();
console_unlock();
}
/**
* console_flush_on_panic - flush console content on panic
* @mode: flush all messages in buffer or just the pending ones
*
* Immediately output all pending messages no matter what.
*/
void console_flush_on_panic(enum con_flush_mode mode)
{
/*
* If someone else is holding the console lock, trylock will fail
* and may_schedule may be set. Ignore and proceed to unlock so
* that messages are flushed out. As this can be called from any
* context and we don't want to get preempted while flushing,
* ensure may_schedule is cleared.
*/
console_trylock();
console_may_schedule = 0;
if (mode == CONSOLE_REPLAY_ALL) {
unsigned long flags;
logbuf_lock_irqsave(flags);
console_seq = prb_first_valid_seq(prb);
logbuf_unlock_irqrestore(flags);
}
console_unlock();
}
/*
* Return the console tty driver structure and its associated index
*/
struct tty_driver *console_device(int *index)
{
struct console *c;
struct tty_driver *driver = NULL;
console_lock();
for_each_console(c) {
if (!c->device)
continue;
driver = c->device(c, index);
if (driver)
break;
}
console_unlock();
return driver;
}
/*
* Prevent further output on the passed console device so that (for example)
* serial drivers can disable console output before suspending a port, and can
* re-enable output afterwards.
*/
void console_stop(struct console *console)
{
console_lock();
console->flags &= ~CON_ENABLED;
console_unlock();
}
EXPORT_SYMBOL(console_stop);
void console_start(struct console *console)
{
console_lock();
console->flags |= CON_ENABLED;
console_unlock();
}
EXPORT_SYMBOL(console_start);
static int __read_mostly keep_bootcon;
static int __init keep_bootcon_setup(char *str)
{
keep_bootcon = 1;
pr_info("debug: skip boot console de-registration.\n");
return 0;
}
early_param("keep_bootcon", keep_bootcon_setup);
/*
* This is called by register_console() to try to match
* the newly registered console with any of the ones selected
* by either the command line or add_preferred_console() and
* setup/enable it.
*
* Care need to be taken with consoles that are statically
* enabled such as netconsole
*/
static int try_enable_new_console(struct console *newcon, bool user_specified)
{
struct console_cmdline *c;
int i, err;
for (i = 0, c = console_cmdline;
i < MAX_CMDLINECONSOLES && c->name[0];
i++, c++) {
if (c->user_specified != user_specified)
continue;
if (!newcon->match ||
newcon->match(newcon, c->name, c->index, c->options) != 0) {
/* default matching */
BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
if (strcmp(c->name, newcon->name) != 0)
continue;
if (newcon->index >= 0 &&
newcon->index != c->index)
continue;
if (newcon->index < 0)
newcon->index = c->index;
if (_braille_register_console(newcon, c))
return 0;
if (newcon->setup &&
(err = newcon->setup(newcon, c->options)) != 0)
return err;
}
newcon->flags |= CON_ENABLED;
if (i == preferred_console) {
newcon->flags |= CON_CONSDEV;
has_preferred_console = true;
}
return 0;
}
/*
* Some consoles, such as pstore and netconsole, can be enabled even
* without matching. Accept the pre-enabled consoles only when match()
* and setup() had a chance to be called.
*/
if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
return 0;
return -ENOENT;
}
/*
* The console driver calls this routine during kernel initialization
* to register the console printing procedure with printk() and to
* print any messages that were printed by the kernel before the
* console driver was initialized.
*
* This can happen pretty early during the boot process (because of
* early_printk) - sometimes before setup_arch() completes - be careful
* of what kernel features are used - they may not be initialised yet.
*
* There are two types of consoles - bootconsoles (early_printk) and
* "real" consoles (everything which is not a bootconsole) which are
* handled differently.
* - Any number of bootconsoles can be registered at any time.
* - As soon as a "real" console is registered, all bootconsoles
* will be unregistered automatically.
* - Once a "real" console is registered, any attempt to register a
* bootconsoles will be rejected
*/
void register_console(struct console *newcon)
{
unsigned long flags;
struct console *bcon = NULL;
int err;
for_each_console(bcon) {
if (WARN(bcon == newcon, "console '%s%d' already registered\n",
bcon->name, bcon->index))
return;
}
/*
* before we register a new CON_BOOT console, make sure we don't
* already have a valid console
*/
if (newcon->flags & CON_BOOT) {
for_each_console(bcon) {
if (!(bcon->flags & CON_BOOT)) {
pr_info("Too late to register bootconsole %s%d\n",
newcon->name, newcon->index);
return;
}
}
}
if (console_drivers && console_drivers->flags & CON_BOOT)
bcon = console_drivers;
if (!has_preferred_console || bcon || !console_drivers)
has_preferred_console = preferred_console >= 0;
/*
* See if we want to use this console driver. If we
* didn't select a console we take the first one
* that registers here.
*/
if (!has_preferred_console) {
if (newcon->index < 0)
newcon->index = 0;
if (newcon->setup == NULL ||
newcon->setup(newcon, NULL) == 0) {
newcon->flags |= CON_ENABLED;
if (newcon->device) {
newcon->flags |= CON_CONSDEV;
has_preferred_console = true;
}
}
}
/* See if this console matches one we selected on the command line */
err = try_enable_new_console(newcon, true);
/* If not, try to match against the platform default(s) */
if (err == -ENOENT)
err = try_enable_new_console(newcon, false);
/* printk() messages are not printed to the Braille console. */
if (err || newcon->flags & CON_BRL)
return;
/*
* If we have a bootconsole, and are switching to a real console,
* don't print everything out again, since when the boot console, and
* the real console are the same physical device, it's annoying to
* see the beginning boot messages twice
*/
if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
newcon->flags &= ~CON_PRINTBUFFER;
/*
* Put this console in the list - keep the
* preferred driver at the head of the list.
*/
console_lock();
if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
newcon->next = console_drivers;
console_drivers = newcon;
if (newcon->next)
newcon->next->flags &= ~CON_CONSDEV;
/* Ensure this flag is always set for the head of the list */
newcon->flags |= CON_CONSDEV;
} else {
newcon->next = console_drivers->next;
console_drivers->next = newcon;
}
if (newcon->flags & CON_EXTENDED)
nr_ext_console_drivers++;
if (newcon->flags & CON_PRINTBUFFER) {
/*
* console_unlock(); will print out the buffered messages
* for us.
*/
logbuf_lock_irqsave(flags);
/*
* We're about to replay the log buffer. Only do this to the
* just-registered console to avoid excessive message spam to
* the already-registered consoles.
*
* Set exclusive_console with disabled interrupts to reduce
* race window with eventual console_flush_on_panic() that
* ignores console_lock.
*/
exclusive_console = newcon;
exclusive_console_stop_seq = console_seq;
console_seq = syslog_seq;
logbuf_unlock_irqrestore(flags);
}
console_unlock();
console_sysfs_notify();
/*
* By unregistering the bootconsoles after we enable the real console
* we get the "console xxx enabled" message on all the consoles -
* boot consoles, real consoles, etc - this is to ensure that end
* users know there might be something in the kernel's log buffer that
* went to the bootconsole (that they do not see on the real console)
*/
pr_info("%sconsole [%s%d] enabled\n",
(newcon->flags & CON_BOOT) ? "boot" : "" ,
newcon->name, newcon->index);
if (bcon &&
((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
!keep_bootcon) {
/* We need to iterate through all boot consoles, to make
* sure we print everything out, before we unregister them.
*/
for_each_console(bcon)
if (bcon->flags & CON_BOOT)
unregister_console(bcon);
}
}
EXPORT_SYMBOL(register_console);
int unregister_console(struct console *console)
{
struct console *con;
int res;
pr_info("%sconsole [%s%d] disabled\n",
(console->flags & CON_BOOT) ? "boot" : "" ,
console->name, console->index);
res = _braille_unregister_console(console);
if (res < 0)
return res;
if (res > 0)
return 0;
res = -ENODEV;
console_lock();
if (console_drivers == console) {
console_drivers=console->next;
res = 0;
} else {
for_each_console(con) {
if (con->next == console) {
con->next = console->next;
res = 0;
break;
}
}
}
if (res)
goto out_disable_unlock;
if (console->flags & CON_EXTENDED)
nr_ext_console_drivers--;
/*
* If this isn't the last console and it has CON_CONSDEV set, we
* need to set it on the next preferred console.
*/
if (console_drivers != NULL && console->flags & CON_CONSDEV)
console_drivers->flags |= CON_CONSDEV;
console->flags &= ~CON_ENABLED;
console_unlock();
console_sysfs_notify();
if (console->exit)
res = console->exit(console);
return res;
out_disable_unlock:
console->flags &= ~CON_ENABLED;
console_unlock();
return res;
}
EXPORT_SYMBOL(unregister_console);
/*
* Initialize the console device. This is called *early*, so
* we can't necessarily depend on lots of kernel help here.
* Just do some early initializations, and do the complex setup
* later.
*/
void __init console_init(void)
{
int ret;
initcall_t call;
initcall_entry_t *ce;
/* Setup the default TTY line discipline. */
n_tty_init();
/*
* set up the console device so that later boot sequences can
* inform about problems etc..
*/
ce = __con_initcall_start;
trace_initcall_level("console");
while (ce < __con_initcall_end) {
call = initcall_from_entry(ce);
trace_initcall_start(call);
ret = call();
trace_initcall_finish(call, ret);
ce++;
}
}
/*
* Some boot consoles access data that is in the init section and which will
* be discarded after the initcalls have been run. To make sure that no code
* will access this data, unregister the boot consoles in a late initcall.
*
* If for some reason, such as deferred probe or the driver being a loadable
* module, the real console hasn't registered yet at this point, there will
* be a brief interval in which no messages are logged to the console, which
* makes it difficult to diagnose problems that occur during this time.
*
* To mitigate this problem somewhat, only unregister consoles whose memory
* intersects with the init section. Note that all other boot consoles will
* get unregistred when the real preferred console is registered.
*/
static int __init printk_late_init(void)
{
struct console *con;
int ret;
for_each_console(con) {
if (!(con->flags & CON_BOOT))
continue;
/* Check addresses that might be used for enabled consoles. */
if (init_section_intersects(con, sizeof(*con)) ||
init_section_contains(con->write, 0) ||
init_section_contains(con->read, 0) ||
init_section_contains(con->device, 0) ||
init_section_contains(con->unblank, 0) ||
init_section_contains(con->data, 0)) {
/*
* Please, consider moving the reported consoles out
* of the init section.
*/
pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
con->name, con->index);
unregister_console(con);
}
}
ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
console_cpu_notify);
WARN_ON(ret < 0);
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
console_cpu_notify, NULL);
WARN_ON(ret < 0);
return 0;
}
late_initcall(printk_late_init);
#if defined CONFIG_PRINTK
/*
* Delayed printk version, for scheduler-internal messages:
*/
#define PRINTK_PENDING_WAKEUP 0x01
#define PRINTK_PENDING_OUTPUT 0x02
static DEFINE_PER_CPU(int, printk_pending);
static void wake_up_klogd_work_func(struct irq_work *irq_work)
{
int pending = __this_cpu_xchg(printk_pending, 0);
if (pending & PRINTK_PENDING_OUTPUT) {
/* If trylock fails, someone else is doing the printing */
if (console_trylock())
console_unlock();
}
if (pending & PRINTK_PENDING_WAKEUP)
wake_up_interruptible(&log_wait);
}
static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
.func = wake_up_klogd_work_func,
.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
};
void wake_up_klogd(void)
{
if (!printk_percpu_data_ready())
return;
preempt_disable();
if (waitqueue_active(&log_wait)) {
this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
}
preempt_enable();
}
void defer_console_output(void)
{
if (!printk_percpu_data_ready())
return;
preempt_disable();
__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
preempt_enable();
}
int vprintk_deferred(const char *fmt, va_list args)
{
int r;
r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
defer_console_output();
return r;
}
int printk_deferred(const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_deferred(fmt, args);
va_end(args);
return r;
}
/*
* printk rate limiting, lifted from the networking subsystem.
*
* This enforces a rate limit: not more than 10 kernel messages
* every 5s to make a denial-of-service attack impossible.
*/
DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
int __printk_ratelimit(const char *func)
{
return ___ratelimit(&printk_ratelimit_state, func);
}
EXPORT_SYMBOL(__printk_ratelimit);
/**
* printk_timed_ratelimit - caller-controlled printk ratelimiting
* @caller_jiffies: pointer to caller's state
* @interval_msecs: minimum interval between prints
*
* printk_timed_ratelimit() returns true if more than @interval_msecs
* milliseconds have elapsed since the last time printk_timed_ratelimit()
* returned true.
*/
bool printk_timed_ratelimit(unsigned long *caller_jiffies,
unsigned int interval_msecs)
{
unsigned long elapsed = jiffies - *caller_jiffies;
if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
return false;
*caller_jiffies = jiffies;
return true;
}
EXPORT_SYMBOL(printk_timed_ratelimit);
static DEFINE_SPINLOCK(dump_list_lock);
static LIST_HEAD(dump_list);
/**
* kmsg_dump_register - register a kernel log dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Adds a kernel log dumper to the system. The dump callback in the
* structure will be called when the kernel oopses or panics and must be
* set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
*/
int kmsg_dump_register(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EBUSY;
/* The dump callback needs to be set */
if (!dumper->dump)
return -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
/* Don't allow registering multiple times */
if (!dumper->registered) {
dumper->registered = 1;
list_add_tail_rcu(&dumper->list, &dump_list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_register);
/**
* kmsg_dump_unregister - unregister a kmsg dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Removes a dump device from the system. Returns zero on success and
* %-EINVAL otherwise.
*/
int kmsg_dump_unregister(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
if (dumper->registered) {
dumper->registered = 0;
list_del_rcu(&dumper->list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
static bool always_kmsg_dump;
module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
{
switch (reason) {
case KMSG_DUMP_PANIC:
return "Panic";
case KMSG_DUMP_OOPS:
return "Oops";
case KMSG_DUMP_EMERG:
return "Emergency";
case KMSG_DUMP_SHUTDOWN:
return "Shutdown";
default:
return "Unknown";
}
}
EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
/**
* kmsg_dump - dump kernel log to kernel message dumpers.
* @reason: the reason (oops, panic etc) for dumping
*
* Call each of the registered dumper's dump() callback, which can
* retrieve the kmsg records with kmsg_dump_get_line() or
* kmsg_dump_get_buffer().
*/
void kmsg_dump(enum kmsg_dump_reason reason)
{
struct kmsg_dumper *dumper;
unsigned long flags;
rcu_read_lock();
list_for_each_entry_rcu(dumper, &dump_list, list) {
enum kmsg_dump_reason max_reason = dumper->max_reason;
/*
* If client has not provided a specific max_reason, default
* to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
*/
if (max_reason == KMSG_DUMP_UNDEF) {
max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
KMSG_DUMP_OOPS;
}
if (reason > max_reason)
continue;
/* initialize iterator with data about the stored records */
dumper->active = true;
logbuf_lock_irqsave(flags);
dumper->cur_seq = clear_seq;
dumper->next_seq = prb_next_seq(prb);
logbuf_unlock_irqrestore(flags);
/* invoke dumper which will iterate over records */
dumper->dump(dumper, reason);
/* reset iterator */
dumper->active = false;
}
rcu_read_unlock();
}
/**
* kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
* @dumper: registered kmsg dumper
* @syslog: include the "<4>" prefixes
* @line: buffer to copy the line to
* @size: maximum size of the buffer
* @len: length of line placed into buffer
*
* Start at the beginning of the kmsg buffer, with the oldest kmsg
* record, and copy one record into the provided buffer.
*
* Consecutive calls will return the next available record moving
* towards the end of the buffer with the youngest messages.
*
* A return value of FALSE indicates that there are no more records to
* read.
*
* The function is similar to kmsg_dump_get_line(), but grabs no locks.
*/
bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
char *line, size_t size, size_t *len)
{
struct printk_info info;
unsigned int line_count;
struct printk_record r;
size_t l = 0;
bool ret = false;
prb_rec_init_rd(&r, &info, line, size);
if (!dumper->active)
goto out;
/* Read text or count text lines? */
if (line) {
if (!prb_read_valid(prb, dumper->cur_seq, &r))
goto out;
l = record_print_text(&r, syslog, printk_time);
} else {
if (!prb_read_valid_info(prb, dumper->cur_seq,
&info, &line_count)) {
goto out;
}
l = get_record_print_text_size(&info, line_count, syslog,
printk_time);
}
dumper->cur_seq = r.info->seq + 1;
ret = true;
out:
if (len)
*len = l;
return ret;
}
/**
* kmsg_dump_get_line - retrieve one kmsg log line
* @dumper: registered kmsg dumper
* @syslog: include the "<4>" prefixes
* @line: buffer to copy the line to
* @size: maximum size of the buffer
* @len: length of line placed into buffer
*
* Start at the beginning of the kmsg buffer, with the oldest kmsg
* record, and copy one record into the provided buffer.
*
* Consecutive calls will return the next available record moving
* towards the end of the buffer with the youngest messages.
*
* A return value of FALSE indicates that there are no more records to
* read.
*/
bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
char *line, size_t size, size_t *len)
{
unsigned long flags;
bool ret;
logbuf_lock_irqsave(flags);
ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
logbuf_unlock_irqrestore(flags);
return ret;
}
EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
/**
* kmsg_dump_get_buffer - copy kmsg log lines
* @dumper: registered kmsg dumper
* @syslog: include the "<4>" prefixes
* @buf: buffer to copy the line to
* @size: maximum size of the buffer
* @len: length of line placed into buffer
*
* Start at the end of the kmsg buffer and fill the provided buffer
* with as many of the *youngest* kmsg records that fit into it.
* If the buffer is large enough, all available kmsg records will be
* copied with a single call.
*
* Consecutive calls will fill the buffer with the next block of
* available older records, not including the earlier retrieved ones.
*
* A return value of FALSE indicates that there are no more records to
* read.
*/
bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
char *buf, size_t size, size_t *len)
{
struct printk_info info;
unsigned int line_count;
struct printk_record r;
unsigned long flags;
u64 seq;
u64 next_seq;
size_t l = 0;
bool ret = false;
bool time = printk_time;
prb_rec_init_rd(&r, &info, buf, size);
if (!dumper->active || !buf || !size)
goto out;
logbuf_lock_irqsave(flags);
if (prb_read_valid_info(prb, dumper->cur_seq, &info, NULL)) {
if (info.seq != dumper->cur_seq) {
/* messages are gone, move to first available one */
dumper->cur_seq = info.seq;
}
}
/* last entry */
if (dumper->cur_seq >= dumper->next_seq) {
logbuf_unlock_irqrestore(flags);
goto out;
}
/* calculate length of entire buffer */
seq = dumper->cur_seq;
while (prb_read_valid_info(prb, seq, &info, &line_count)) {
if (r.info->seq >= dumper->next_seq)
break;
l += get_record_print_text_size(&info, line_count, syslog, time);
seq = r.info->seq + 1;
}
/* move first record forward until length fits into the buffer */
seq = dumper->cur_seq;
while (l >= size && prb_read_valid_info(prb, seq,
&info, &line_count)) {
if (r.info->seq >= dumper->next_seq)
break;
l -= get_record_print_text_size(&info, line_count, syslog, time);
seq = r.info->seq + 1;
}
/* last message in next interation */
next_seq = seq;
/* actually read text into the buffer now */
l = 0;
while (prb_read_valid(prb, seq, &r)) {
if (r.info->seq >= dumper->next_seq)
break;
l += record_print_text(&r, syslog, time);
/* adjust record to store to remaining buffer space */
prb_rec_init_rd(&r, &info, buf + l, size - l);
seq = r.info->seq + 1;
}
dumper->next_seq = next_seq;
ret = true;
logbuf_unlock_irqrestore(flags);
out:
if (len)
*len = l;
return ret;
}
EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
/**
* kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
* @dumper: registered kmsg dumper
*
* Reset the dumper's iterator so that kmsg_dump_get_line() and
* kmsg_dump_get_buffer() can be called again and used multiple
* times within the same dumper.dump() callback.
*
* The function is similar to kmsg_dump_rewind(), but grabs no locks.
*/
void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
{
dumper->cur_seq = clear_seq;
dumper->next_seq = prb_next_seq(prb);
}
/**
* kmsg_dump_rewind - reset the iterator
* @dumper: registered kmsg dumper
*
* Reset the dumper's iterator so that kmsg_dump_get_line() and
* kmsg_dump_get_buffer() can be called again and used multiple
* times within the same dumper.dump() callback.
*/
void kmsg_dump_rewind(struct kmsg_dumper *dumper)
{
unsigned long flags;
logbuf_lock_irqsave(flags);
kmsg_dump_rewind_nolock(dumper);
logbuf_unlock_irqrestore(flags);
}
EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
#endif