kernel_optimize_test/sound/x86/intel_hdmi_audio.c
Jani Nikula 2ac5e38ea4 Merge drm/drm-next into drm-intel-next-queued
Pull in v4.20-rc3 via drm-next.

Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2018-11-20 13:14:08 +02:00

1918 lines
52 KiB
C

/*
* intel_hdmi_audio.c - Intel HDMI audio driver
*
* Copyright (C) 2016 Intel Corp
* Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
* Ramesh Babu K V <ramesh.babu@intel.com>
* Vaibhav Agarwal <vaibhav.agarwal@intel.com>
* Jerome Anand <jerome.anand@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ALSA driver for Intel HDMI audio
*/
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/asoundef.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/jack.h>
#include <drm/drm_edid.h>
#include <drm/intel_lpe_audio.h>
#include "intel_hdmi_audio.h"
#define for_each_pipe(card_ctx, pipe) \
for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
#define for_each_port(card_ctx, port) \
for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
static bool single_port;
module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
"ID string for INTEL Intel HDMI Audio controller.");
module_param(single_port, bool, 0444);
MODULE_PARM_DESC(single_port,
"Single-port mode (for compatibility)");
/*
* ELD SA bits in the CEA Speaker Allocation data block
*/
static const int eld_speaker_allocation_bits[] = {
[0] = FL | FR,
[1] = LFE,
[2] = FC,
[3] = RL | RR,
[4] = RC,
[5] = FLC | FRC,
[6] = RLC | RRC,
/* the following are not defined in ELD yet */
[7] = 0,
};
/*
* This is an ordered list!
*
* The preceding ones have better chances to be selected by
* hdmi_channel_allocation().
*/
static struct cea_channel_speaker_allocation channel_allocations[] = {
/* channel: 7 6 5 4 3 2 1 0 */
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
/* 2.1 */
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
/* Dolby Surround */
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
/* surround40 */
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
/* surround41 */
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
/* surround50 */
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
/* surround51 */
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
/* 6.1 */
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
/* surround71 */
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
};
static const struct channel_map_table map_tables[] = {
{ SNDRV_CHMAP_FL, 0x00, FL },
{ SNDRV_CHMAP_FR, 0x01, FR },
{ SNDRV_CHMAP_RL, 0x04, RL },
{ SNDRV_CHMAP_RR, 0x05, RR },
{ SNDRV_CHMAP_LFE, 0x02, LFE },
{ SNDRV_CHMAP_FC, 0x03, FC },
{ SNDRV_CHMAP_RLC, 0x06, RLC },
{ SNDRV_CHMAP_RRC, 0x07, RRC },
{} /* terminator */
};
/* hardware capability structure */
static const struct snd_pcm_hardware had_pcm_hardware = {
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.rate_min = HAD_MIN_RATE,
.rate_max = HAD_MAX_RATE,
.channels_min = HAD_MIN_CHANNEL,
.channels_max = HAD_MAX_CHANNEL,
.buffer_bytes_max = HAD_MAX_BUFFER,
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
.periods_min = HAD_MIN_PERIODS,
.periods_max = HAD_MAX_PERIODS,
.fifo_size = HAD_FIFO_SIZE,
};
/* Get the active PCM substream;
* Call had_substream_put() for unreferecing.
* Don't call this inside had_spinlock, as it takes by itself
*/
static struct snd_pcm_substream *
had_substream_get(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
substream = intelhaddata->stream_info.substream;
if (substream)
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
return substream;
}
/* Unref the active PCM substream;
* Don't call this inside had_spinlock, as it takes by itself
*/
static void had_substream_put(struct snd_intelhad *intelhaddata)
{
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
intelhaddata->stream_info.substream_refcount--;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
}
static u32 had_config_offset(int pipe)
{
switch (pipe) {
default:
case 0:
return AUDIO_HDMI_CONFIG_A;
case 1:
return AUDIO_HDMI_CONFIG_B;
case 2:
return AUDIO_HDMI_CONFIG_C;
}
}
/* Register access functions */
static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
int pipe, u32 reg)
{
return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
}
static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
int pipe, u32 reg, u32 val)
{
iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
}
static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
{
if (!ctx->connected)
*val = 0;
else
*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
}
static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
{
if (ctx->connected)
had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
}
/*
* enable / disable audio configuration
*
* The normal read/modify should not directly be used on VLV2 for
* updating AUD_CONFIG register.
* This is because:
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
* HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
* register. This field should be 1xy binary for configuration with 6 or
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
* causes the "channels" field to be updated as 0xy binary resulting in
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
* appropriate value when doing read-modify of AUD_CONFIG register.
*/
static void had_enable_audio(struct snd_intelhad *intelhaddata,
bool enable)
{
/* update the cached value */
intelhaddata->aud_config.regx.aud_en = enable;
had_write_register(intelhaddata, AUD_CONFIG,
intelhaddata->aud_config.regval);
}
/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
static void had_ack_irqs(struct snd_intelhad *ctx)
{
u32 status_reg;
if (!ctx->connected)
return;
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
}
/* Reset buffer pointers */
static void had_reset_audio(struct snd_intelhad *intelhaddata)
{
had_write_register(intelhaddata, AUD_HDMI_STATUS,
AUD_HDMI_STATUSG_MASK_FUNCRST);
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
}
/*
* initialize audio channel status registers
* This function is called in the prepare callback
*/
static int had_prog_status_reg(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_ch_status_0 ch_stat0 = {.regval = 0};
union aud_ch_status_1 ch_stat1 = {.regval = 0};
ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
IEC958_AES0_NONAUDIO) >> 1;
ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
IEC958_AES3_CON_CLOCK) >> 4;
switch (substream->runtime->rate) {
case AUD_SAMPLE_RATE_32:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
break;
case AUD_SAMPLE_RATE_44_1:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
break;
case AUD_SAMPLE_RATE_48:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
break;
case AUD_SAMPLE_RATE_88_2:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
break;
case AUD_SAMPLE_RATE_96:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
break;
case AUD_SAMPLE_RATE_176_4:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
break;
case AUD_SAMPLE_RATE_192:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
break;
default:
/* control should never come here */
return -EINVAL;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_0, ch_stat0.regval);
switch (substream->runtime->format) {
case SNDRV_PCM_FORMAT_S16_LE:
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
break;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S32_LE:
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
break;
default:
return -EINVAL;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_1, ch_stat1.regval);
return 0;
}
/*
* function to initialize audio
* registers and buffer confgiuration registers
* This function is called in the prepare callback
*/
static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.regval = 0};
union aud_buf_config buf_cfg = {.regval = 0};
u8 channels;
had_prog_status_reg(substream, intelhaddata);
buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
buf_cfg.regx.aud_delay = 0;
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
channels = substream->runtime->channels;
cfg_val.regx.num_ch = channels - 2;
if (channels <= 2)
cfg_val.regx.layout = LAYOUT0;
else
cfg_val.regx.layout = LAYOUT1;
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
cfg_val.regx.packet_mode = 1;
if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
cfg_val.regx.left_align = 1;
cfg_val.regx.val_bit = 1;
/* fix up the DP bits */
if (intelhaddata->dp_output) {
cfg_val.regx.dp_modei = 1;
cfg_val.regx.set = 1;
}
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
intelhaddata->aud_config = cfg_val;
return 0;
}
/*
* Compute derived values in channel_allocations[].
*/
static void init_channel_allocations(void)
{
int i, j;
struct cea_channel_speaker_allocation *p;
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
p = channel_allocations + i;
p->channels = 0;
p->spk_mask = 0;
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
if (p->speakers[j]) {
p->channels++;
p->spk_mask |= p->speakers[j];
}
}
}
/*
* The transformation takes two steps:
*
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
* spk_mask => (channel_allocations[]) => ai->CA
*
* TODO: it could select the wrong CA from multiple candidates.
*/
static int had_channel_allocation(struct snd_intelhad *intelhaddata,
int channels)
{
int i;
int ca = 0;
int spk_mask = 0;
/*
* CA defaults to 0 for basic stereo audio
*/
if (channels <= 2)
return 0;
/*
* expand ELD's speaker allocation mask
*
* ELD tells the speaker mask in a compact(paired) form,
* expand ELD's notions to match the ones used by Audio InfoFrame.
*/
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
/* search for the first working match in the CA table */
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (channels == channel_allocations[i].channels &&
(spk_mask & channel_allocations[i].spk_mask) ==
channel_allocations[i].spk_mask) {
ca = channel_allocations[i].ca_index;
break;
}
}
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
return ca;
}
/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
const struct channel_map_table *t = map_tables;
for (; t->map; t++) {
if (t->spk_mask == spk)
return t->map;
}
return 0;
}
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
{
int i, c;
int spk_mask = 0;
struct snd_pcm_chmap_elem *chmap;
u8 eld_high, eld_high_mask = 0xF0;
u8 high_msb;
kfree(intelhaddata->chmap->chmap);
intelhaddata->chmap->chmap = NULL;
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
if (!chmap)
return;
dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
intelhaddata->eld[DRM_ELD_SPEAKER]);
/* WA: Fix the max channel supported to 8 */
/*
* Sink may support more than 8 channels, if eld_high has more than
* one bit set. SOC supports max 8 channels.
* Refer eld_speaker_allocation_bits, for sink speaker allocation
*/
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
/* eld_high & (eld_high-1): if more than 1 bit set */
/* 0x1F: 7 channels */
for (i = 1; i < 4; i++) {
high_msb = eld_high & (0x80 >> i);
if (high_msb) {
intelhaddata->eld[DRM_ELD_SPEAKER] &=
high_msb | 0xF;
break;
}
}
}
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (spk_mask == channel_allocations[i].spk_mask) {
for (c = 0; c < channel_allocations[i].channels; c++) {
chmap->map[c] = spk_to_chmap(
channel_allocations[i].speakers[
(MAX_SPEAKERS - 1) - c]);
}
chmap->channels = channel_allocations[i].channels;
intelhaddata->chmap->chmap = chmap;
break;
}
}
if (i >= ARRAY_SIZE(channel_allocations))
kfree(chmap);
}
/*
* ALSA API channel-map control callbacks
*/
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = HAD_MAX_CHANNEL;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
return 0;
}
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
int i;
const struct snd_pcm_chmap_elem *chmap;
memset(ucontrol->value.integer.value, 0,
sizeof(long) * HAD_MAX_CHANNEL);
mutex_lock(&intelhaddata->mutex);
if (!intelhaddata->chmap->chmap) {
mutex_unlock(&intelhaddata->mutex);
return 0;
}
chmap = intelhaddata->chmap->chmap;
for (i = 0; i < chmap->channels; i++)
ucontrol->value.integer.value[i] = chmap->map[i];
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
struct snd_pcm *pcm)
{
int err;
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
NULL, 0, (unsigned long)intelhaddata,
&intelhaddata->chmap);
if (err < 0)
return err;
intelhaddata->chmap->private_data = intelhaddata;
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
intelhaddata->chmap->chmap = NULL;
return 0;
}
/*
* Initialize Data Island Packets registers
* This function is called in the prepare callback
*/
static void had_prog_dip(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int i;
union aud_ctrl_st ctrl_state = {.regval = 0};
union aud_info_frame2 frame2 = {.regval = 0};
union aud_info_frame3 frame3 = {.regval = 0};
u8 checksum = 0;
u32 info_frame;
int channels;
int ca;
channels = substream->runtime->channels;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
ca = had_channel_allocation(intelhaddata, channels);
if (intelhaddata->dp_output) {
info_frame = DP_INFO_FRAME_WORD1;
frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
} else {
info_frame = HDMI_INFO_FRAME_WORD1;
frame2.regx.chnl_cnt = substream->runtime->channels - 1;
frame3.regx.chnl_alloc = ca;
/* Calculte the byte wide checksum for all valid DIP words */
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (info_frame >> (i * 8)) & 0xff;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame2.regval >> (i * 8)) & 0xff;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame3.regval >> (i * 8)) & 0xff;
frame2.regx.chksum = -(checksum);
}
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
/* program remaining DIP words with zero */
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
ctrl_state.regx.dip_freq = 1;
ctrl_state.regx.dip_en_sta = 1;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
}
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
u32 maud_val;
/* Select maud according to DP 1.2 spec */
if (link_rate == DP_2_7_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else if (link_rate == DP_1_62_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else
maud_val = -EINVAL;
return maud_val;
}
/*
* Program HDMI audio CTS value
*
* @aud_samp_freq: sampling frequency of audio data
* @tmds: sampling frequency of the display data
* @link_rate: DP link rate
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata: substream private data
*
* Program CTS register based on the audio and display sampling frequency
*/
static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
u32 n_param, struct snd_intelhad *intelhaddata)
{
u32 cts_val;
u64 dividend, divisor;
if (intelhaddata->dp_output) {
/* Substitute cts_val with Maud according to DP 1.2 spec*/
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
} else {
/* Calculate CTS according to HDMI 1.3a spec*/
dividend = (u64)tmds * n_param*1000;
divisor = 128 * aud_samp_freq;
cts_val = div64_u64(dividend, divisor);
}
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
tmds, n_param, cts_val);
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
}
static int had_calculate_n_value(u32 aud_samp_freq)
{
int n_val;
/* Select N according to HDMI 1.3a spec*/
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
n_val = 4096;
break;
case AUD_SAMPLE_RATE_44_1:
n_val = 6272;
break;
case AUD_SAMPLE_RATE_48:
n_val = 6144;
break;
case AUD_SAMPLE_RATE_88_2:
n_val = 12544;
break;
case AUD_SAMPLE_RATE_96:
n_val = 12288;
break;
case AUD_SAMPLE_RATE_176_4:
n_val = 25088;
break;
case HAD_MAX_RATE:
n_val = 24576;
break;
default:
n_val = -EINVAL;
break;
}
return n_val;
}
/*
* Program HDMI audio N value
*
* @aud_samp_freq: sampling frequency of audio data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata: substream private data
*
* This function is called in the prepare callback.
* It programs based on the audio and display sampling frequency
*/
static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
struct snd_intelhad *intelhaddata)
{
int n_val;
if (intelhaddata->dp_output) {
/*
* According to DP specs, Maud and Naud values hold
* a relationship, which is stated as:
* Maud/Naud = 512 * fs / f_LS_Clk
* where, fs is the sampling frequency of the audio stream
* and Naud is 32768 for Async clock.
*/
n_val = DP_NAUD_VAL;
} else
n_val = had_calculate_n_value(aud_samp_freq);
if (n_val < 0)
return n_val;
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
*n_param = n_val;
return 0;
}
/*
* PCM ring buffer handling
*
* The hardware provides a ring buffer with the fixed 4 buffer descriptors
* (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
* moves at each period elapsed. The below illustrates how it works:
*
* At time=0
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 0 | 1 | 2 | 3 |
*
* At time=1 (period elapsed)
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 1 | 2 | 3 | 0 |
*
* At time=2 (second period elapsed)
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 2 | 3 | 0 | 1 |
*
* The bd_head field points to the index of the BD to be read. It's also the
* position to be filled at next. The pcm_head and the pcm_filled fields
* point to the indices of the current position and of the next position to
* be filled, respectively. For PCM buffer there are both _head and _filled
* because they may be difference when nperiods > 4. For example, in the
* example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
*
* pcm_head (=1) --v v-- pcm_filled (=5)
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 1 | 2 | 3 | 0 |
* bd_head (=1) --^ ^-- next to fill (= bd_head)
*
* For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
* the hardware skips those BDs in the loop.
*
* An exceptional setup is the case with nperiods=1. Since we have to update
* BDs after finishing one BD processing, we'd need at least two BDs, where
* both BDs point to the same content, the same address, the same size of the
* whole PCM buffer.
*/
#define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
#define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
/* Set up a buffer descriptor at the "filled" position */
static void had_prog_bd(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int idx = intelhaddata->bd_head;
int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
u32 addr = substream->runtime->dma_addr + ofs;
addr |= AUD_BUF_VALID;
if (!substream->runtime->no_period_wakeup)
addr |= AUD_BUF_INTR_EN;
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
had_write_register(intelhaddata, AUD_BUF_LEN(idx),
intelhaddata->period_bytes);
/* advance the indices to the next */
intelhaddata->bd_head++;
intelhaddata->bd_head %= intelhaddata->num_bds;
intelhaddata->pcmbuf_filled++;
intelhaddata->pcmbuf_filled %= substream->runtime->periods;
}
/* invalidate a buffer descriptor with the given index */
static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
int idx)
{
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
}
/* Initial programming of ring buffer */
static void had_init_ringbuf(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int i, num_periods;
num_periods = runtime->periods;
intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
/* set the minimum 2 BDs for num_periods=1 */
intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
intelhaddata->period_bytes =
frames_to_bytes(runtime, runtime->period_size);
WARN_ON(intelhaddata->period_bytes & 0x3f);
intelhaddata->bd_head = 0;
intelhaddata->pcmbuf_head = 0;
intelhaddata->pcmbuf_filled = 0;
for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
if (i < intelhaddata->num_bds)
had_prog_bd(substream, intelhaddata);
else /* invalidate the rest */
had_invalidate_bd(intelhaddata, i);
}
intelhaddata->bd_head = 0; /* reset at head again before starting */
}
/* process a bd, advance to the next */
static void had_advance_ringbuf(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int num_periods = substream->runtime->periods;
/* reprogram the next buffer */
had_prog_bd(substream, intelhaddata);
/* proceed to next */
intelhaddata->pcmbuf_head++;
intelhaddata->pcmbuf_head %= num_periods;
}
/* process the current BD(s);
* returns the current PCM buffer byte position, or -EPIPE for underrun.
*/
static int had_process_ringbuf(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int len, processed;
unsigned long flags;
processed = 0;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
for (;;) {
/* get the remaining bytes on the buffer */
had_read_register(intelhaddata,
AUD_BUF_LEN(intelhaddata->bd_head),
&len);
if (len < 0 || len > intelhaddata->period_bytes) {
dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
len);
len = -EPIPE;
goto out;
}
if (len > 0) /* OK, this is the current buffer */
break;
/* len=0 => already empty, check the next buffer */
if (++processed >= intelhaddata->num_bds) {
len = -EPIPE; /* all empty? - report underrun */
goto out;
}
had_advance_ringbuf(substream, intelhaddata);
}
len = intelhaddata->period_bytes - len;
len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
out:
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
return len;
}
/* called from irq handler */
static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
substream = had_substream_get(intelhaddata);
if (!substream)
return; /* no stream? - bail out */
if (!intelhaddata->connected) {
snd_pcm_stop_xrun(substream);
goto out; /* disconnected? - bail out */
}
/* process or stop the stream */
if (had_process_ringbuf(substream, intelhaddata) < 0)
snd_pcm_stop_xrun(substream);
else
snd_pcm_period_elapsed(substream);
out:
had_substream_put(intelhaddata);
}
/*
* The interrupt status 'sticky' bits might not be cleared by
* setting '1' to that bit once...
*/
static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
{
int i;
u32 val;
for (i = 0; i < 100; i++) {
/* clear bit30, 31 AUD_HDMI_STATUS */
had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
return;
udelay(100);
cond_resched();
had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
}
dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
}
/* Perform some reset procedure but only when need_reset is set;
* this is called from prepare or hw_free callbacks once after trigger STOP
* or underrun has been processed in order to settle down the h/w state.
*/
static void had_do_reset(struct snd_intelhad *intelhaddata)
{
if (!intelhaddata->need_reset || !intelhaddata->connected)
return;
/* Reset buffer pointers */
had_reset_audio(intelhaddata);
wait_clear_underrun_bit(intelhaddata);
intelhaddata->need_reset = false;
}
/* called from irq handler */
static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
/* Report UNDERRUN error to above layers */
substream = had_substream_get(intelhaddata);
if (substream) {
snd_pcm_stop_xrun(substream);
had_substream_put(intelhaddata);
}
intelhaddata->need_reset = true;
}
/*
* ALSA PCM open callback
*/
static int had_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
int retval;
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
pm_runtime_get_sync(intelhaddata->dev);
/* set the runtime hw parameter with local snd_pcm_hardware struct */
runtime->hw = had_pcm_hardware;
retval = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (retval < 0)
goto error;
/* Make sure, that the period size is always aligned
* 64byte boundary
*/
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
if (retval < 0)
goto error;
retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
if (retval < 0)
goto error;
/* expose PCM substream */
spin_lock_irq(&intelhaddata->had_spinlock);
intelhaddata->stream_info.substream = substream;
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irq(&intelhaddata->had_spinlock);
return retval;
error:
pm_runtime_mark_last_busy(intelhaddata->dev);
pm_runtime_put_autosuspend(intelhaddata->dev);
return retval;
}
/*
* ALSA PCM close callback
*/
static int had_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
/* unreference and sync with the pending PCM accesses */
spin_lock_irq(&intelhaddata->had_spinlock);
intelhaddata->stream_info.substream = NULL;
intelhaddata->stream_info.substream_refcount--;
while (intelhaddata->stream_info.substream_refcount > 0) {
spin_unlock_irq(&intelhaddata->had_spinlock);
cpu_relax();
spin_lock_irq(&intelhaddata->had_spinlock);
}
spin_unlock_irq(&intelhaddata->had_spinlock);
pm_runtime_mark_last_busy(intelhaddata->dev);
pm_runtime_put_autosuspend(intelhaddata->dev);
return 0;
}
/*
* ALSA PCM hw_params callback
*/
static int had_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_intelhad *intelhaddata;
int buf_size, retval;
intelhaddata = snd_pcm_substream_chip(substream);
buf_size = params_buffer_bytes(hw_params);
retval = snd_pcm_lib_malloc_pages(substream, buf_size);
if (retval < 0)
return retval;
dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
__func__, buf_size);
return retval;
}
/*
* ALSA PCM hw_free callback
*/
static int had_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
had_do_reset(intelhaddata);
return snd_pcm_lib_free_pages(substream);
}
/*
* ALSA PCM trigger callback
*/
static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
int retval = 0;
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
spin_lock(&intelhaddata->had_spinlock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
/* Enable Audio */
had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
had_enable_audio(intelhaddata, true);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
/* Disable Audio */
had_enable_audio(intelhaddata, false);
intelhaddata->need_reset = true;
break;
default:
retval = -EINVAL;
}
spin_unlock(&intelhaddata->had_spinlock);
return retval;
}
/*
* ALSA PCM prepare callback
*/
static int had_pcm_prepare(struct snd_pcm_substream *substream)
{
int retval;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
dev_dbg(intelhaddata->dev, "period_size=%d\n",
(int)frames_to_bytes(runtime, runtime->period_size));
dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
(int)snd_pcm_lib_buffer_bytes(substream));
dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
had_do_reset(intelhaddata);
/* Get N value in KHz */
disp_samp_freq = intelhaddata->tmds_clock_speed;
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
if (retval) {
dev_err(intelhaddata->dev,
"programming N value failed %#x\n", retval);
goto prep_end;
}
if (intelhaddata->dp_output)
link_rate = intelhaddata->link_rate;
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
n_param, intelhaddata);
had_prog_dip(substream, intelhaddata);
retval = had_init_audio_ctrl(substream, intelhaddata);
/* Prog buffer address */
had_init_ringbuf(substream, intelhaddata);
/*
* Program channel mapping in following order:
* FL, FR, C, LFE, RL, RR
*/
had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
prep_end:
return retval;
}
/*
* ALSA PCM pointer callback
*/
static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
int len;
intelhaddata = snd_pcm_substream_chip(substream);
if (!intelhaddata->connected)
return SNDRV_PCM_POS_XRUN;
len = had_process_ringbuf(substream, intelhaddata);
if (len < 0)
return SNDRV_PCM_POS_XRUN;
len = bytes_to_frames(substream->runtime, len);
/* wrapping may happen when periods=1 */
len %= substream->runtime->buffer_size;
return len;
}
/*
* ALSA PCM mmap callback
*/
static int had_pcm_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return remap_pfn_range(vma, vma->vm_start,
substream->dma_buffer.addr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot);
}
/*
* ALSA PCM ops
*/
static const struct snd_pcm_ops had_pcm_ops = {
.open = had_pcm_open,
.close = had_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = had_pcm_hw_params,
.hw_free = had_pcm_hw_free,
.prepare = had_pcm_prepare,
.trigger = had_pcm_trigger,
.pointer = had_pcm_pointer,
.mmap = had_pcm_mmap,
};
/* process mode change of the running stream; called in mutex */
static int had_process_mode_change(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
int retval = 0;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
substream = had_substream_get(intelhaddata);
if (!substream)
return 0;
/* Disable Audio */
had_enable_audio(intelhaddata, false);
/* Update CTS value */
disp_samp_freq = intelhaddata->tmds_clock_speed;
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
if (retval) {
dev_err(intelhaddata->dev,
"programming N value failed %#x\n", retval);
goto out;
}
if (intelhaddata->dp_output)
link_rate = intelhaddata->link_rate;
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
n_param, intelhaddata);
/* Enable Audio */
had_enable_audio(intelhaddata, true);
out:
had_substream_put(intelhaddata);
return retval;
}
/* process hot plug, called from wq with mutex locked */
static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->connected) {
dev_dbg(intelhaddata->dev, "Device already connected\n");
spin_unlock_irq(&intelhaddata->had_spinlock);
return;
}
/* Disable Audio */
had_enable_audio(intelhaddata, false);
intelhaddata->connected = true;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
had_build_channel_allocation_map(intelhaddata);
/* Report to above ALSA layer */
substream = had_substream_get(intelhaddata);
if (substream) {
snd_pcm_stop_xrun(substream);
had_substream_put(intelhaddata);
}
snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
}
/* process hot unplug, called from wq with mutex locked */
static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
spin_lock_irq(&intelhaddata->had_spinlock);
if (!intelhaddata->connected) {
dev_dbg(intelhaddata->dev, "Device already disconnected\n");
spin_unlock_irq(&intelhaddata->had_spinlock);
return;
}
/* Disable Audio */
had_enable_audio(intelhaddata, false);
intelhaddata->connected = false;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
kfree(intelhaddata->chmap->chmap);
intelhaddata->chmap->chmap = NULL;
/* Report to above ALSA layer */
substream = had_substream_get(intelhaddata);
if (substream) {
snd_pcm_stop_xrun(substream);
had_substream_put(intelhaddata);
}
snd_jack_report(intelhaddata->jack, 0);
}
/*
* ALSA iec958 and ELD controls
*/
static int had_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int had_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
mutex_lock(&intelhaddata->mutex);
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] =
(intelhaddata->aes_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] =
(intelhaddata->aes_bits >> 24) & 0xff;
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int had_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
unsigned int val;
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
int changed = 0;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
mutex_lock(&intelhaddata->mutex);
if (intelhaddata->aes_bits != val) {
intelhaddata->aes_bits = val;
changed = 1;
}
mutex_unlock(&intelhaddata->mutex);
return changed;
}
static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = HDMI_MAX_ELD_BYTES;
return 0;
}
static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
mutex_lock(&intelhaddata->mutex);
memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
HDMI_MAX_ELD_BYTES);
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static const struct snd_kcontrol_new had_controls[] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
.info = had_iec958_info, /* shared */
.get = had_iec958_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = had_iec958_info,
.get = had_iec958_get,
.put = had_iec958_put,
},
{
.access = (SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE),
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "ELD",
.info = had_ctl_eld_info,
.get = had_ctl_eld_get,
},
};
/*
* audio interrupt handler
*/
static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
{
struct snd_intelhad_card *card_ctx = dev_id;
u32 audio_stat[3] = {};
int pipe, port;
for_each_pipe(card_ctx, pipe) {
/* use raw register access to ack IRQs even while disconnected */
audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
AUD_HDMI_STATUS) &
(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
if (audio_stat[pipe])
had_write_register_raw(card_ctx, pipe,
AUD_HDMI_STATUS, audio_stat[pipe]);
}
for_each_port(card_ctx, port) {
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
int pipe = ctx->pipe;
if (pipe < 0)
continue;
if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
had_process_buffer_done(ctx);
if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
had_process_buffer_underrun(ctx);
}
return IRQ_HANDLED;
}
/*
* monitor plug/unplug notification from i915; just kick off the work
*/
static void notify_audio_lpe(struct platform_device *pdev, int port)
{
struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
struct snd_intelhad *ctx;
ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
if (single_port)
ctx->port = port;
schedule_work(&ctx->hdmi_audio_wq);
}
/* the work to handle monitor hot plug/unplug */
static void had_audio_wq(struct work_struct *work)
{
struct snd_intelhad *ctx =
container_of(work, struct snd_intelhad, hdmi_audio_wq);
struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
pm_runtime_get_sync(ctx->dev);
mutex_lock(&ctx->mutex);
if (ppdata->pipe < 0) {
dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
__func__, ctx->port);
memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
ctx->dp_output = false;
ctx->tmds_clock_speed = 0;
ctx->link_rate = 0;
/* Shut down the stream */
had_process_hot_unplug(ctx);
ctx->pipe = -1;
} else {
dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
__func__, ctx->port, ppdata->ls_clock);
memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
ctx->dp_output = ppdata->dp_output;
if (ctx->dp_output) {
ctx->tmds_clock_speed = 0;
ctx->link_rate = ppdata->ls_clock;
} else {
ctx->tmds_clock_speed = ppdata->ls_clock;
ctx->link_rate = 0;
}
/*
* Shut down the stream before we change
* the pipe assignment for this pcm device
*/
had_process_hot_plug(ctx);
ctx->pipe = ppdata->pipe;
/* Restart the stream if necessary */
had_process_mode_change(ctx);
}
mutex_unlock(&ctx->mutex);
pm_runtime_mark_last_busy(ctx->dev);
pm_runtime_put_autosuspend(ctx->dev);
}
/*
* Jack interface
*/
static int had_create_jack(struct snd_intelhad *ctx,
struct snd_pcm *pcm)
{
char hdmi_str[32];
int err;
snprintf(hdmi_str, sizeof(hdmi_str),
"HDMI/DP,pcm=%d", pcm->device);
err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
SND_JACK_AVOUT, &ctx->jack,
true, false);
if (err < 0)
return err;
ctx->jack->private_data = ctx;
return 0;
}
/*
* PM callbacks
*/
static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
{
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
int port;
for_each_port(card_ctx, port) {
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
struct snd_pcm_substream *substream;
substream = had_substream_get(ctx);
if (substream) {
snd_pcm_suspend(substream);
had_substream_put(ctx);
}
}
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
return 0;
}
static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
{
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
pm_runtime_mark_last_busy(dev);
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
return 0;
}
/* release resources */
static void hdmi_lpe_audio_free(struct snd_card *card)
{
struct snd_intelhad_card *card_ctx = card->private_data;
struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
int port;
spin_lock_irq(&pdata->lpe_audio_slock);
pdata->notify_audio_lpe = NULL;
spin_unlock_irq(&pdata->lpe_audio_slock);
for_each_port(card_ctx, port) {
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
cancel_work_sync(&ctx->hdmi_audio_wq);
}
if (card_ctx->mmio_start)
iounmap(card_ctx->mmio_start);
if (card_ctx->irq >= 0)
free_irq(card_ctx->irq, card_ctx);
}
/*
* hdmi_lpe_audio_probe - start bridge with i915
*
* This function is called when the i915 driver creates the
* hdmi-lpe-audio platform device.
*/
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
{
struct snd_card *card;
struct snd_intelhad_card *card_ctx;
struct snd_intelhad *ctx;
struct snd_pcm *pcm;
struct intel_hdmi_lpe_audio_pdata *pdata;
int irq;
struct resource *res_mmio;
int port, ret;
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
return -EINVAL;
}
/* get resources */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
return irq;
}
res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res_mmio) {
dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
return -ENXIO;
}
/* create a card instance with ALSA framework */
ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
THIS_MODULE, sizeof(*card_ctx), &card);
if (ret)
return ret;
card_ctx = card->private_data;
card_ctx->dev = &pdev->dev;
card_ctx->card = card;
strcpy(card->driver, INTEL_HAD);
strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
strcpy(card->longname, "Intel HDMI/DP LPE Audio");
card_ctx->irq = -1;
card->private_free = hdmi_lpe_audio_free;
platform_set_drvdata(pdev, card_ctx);
card_ctx->num_pipes = pdata->num_pipes;
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
for_each_port(card_ctx, port) {
ctx = &card_ctx->pcm_ctx[port];
ctx->card_ctx = card_ctx;
ctx->dev = card_ctx->dev;
ctx->port = single_port ? -1 : port;
ctx->pipe = -1;
spin_lock_init(&ctx->had_spinlock);
mutex_init(&ctx->mutex);
INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
}
dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
__func__, (unsigned int)res_mmio->start,
(unsigned int)res_mmio->end);
card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
(size_t)(resource_size(res_mmio)));
if (!card_ctx->mmio_start) {
dev_err(&pdev->dev, "Could not get ioremap\n");
ret = -EACCES;
goto err;
}
/* setup interrupt handler */
ret = request_irq(irq, display_pipe_interrupt_handler, 0,
pdev->name, card_ctx);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq failed\n");
goto err;
}
card_ctx->irq = irq;
/* only 32bit addressable */
dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
init_channel_allocations();
card_ctx->num_pipes = pdata->num_pipes;
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
for_each_port(card_ctx, port) {
int i;
ctx = &card_ctx->pcm_ctx[port];
ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
MAX_CAP_STREAMS, &pcm);
if (ret)
goto err;
/* setup private data which can be retrieved when required */
pcm->private_data = ctx;
pcm->info_flags = 0;
strlcpy(pcm->name, card->shortname, strlen(card->shortname));
/* setup the ops for playabck */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
/* allocate dma pages;
* try to allocate 600k buffer as default which is large enough
*/
snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV_UC, NULL,
HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
/* create controls */
for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(&had_controls[i], ctx);
if (!kctl) {
ret = -ENOMEM;
goto err;
}
kctl->id.device = pcm->device;
ret = snd_ctl_add(card, kctl);
if (ret < 0)
goto err;
}
/* Register channel map controls */
ret = had_register_chmap_ctls(ctx, pcm);
if (ret < 0)
goto err;
ret = had_create_jack(ctx, pcm);
if (ret < 0)
goto err;
}
ret = snd_card_register(card);
if (ret)
goto err;
spin_lock_irq(&pdata->lpe_audio_slock);
pdata->notify_audio_lpe = notify_audio_lpe;
spin_unlock_irq(&pdata->lpe_audio_slock);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_mark_last_busy(&pdev->dev);
dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
for_each_port(card_ctx, port) {
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
schedule_work(&ctx->hdmi_audio_wq);
}
return 0;
err:
snd_card_free(card);
return ret;
}
/*
* hdmi_lpe_audio_remove - stop bridge with i915
*
* This function is called when the platform device is destroyed.
*/
static int hdmi_lpe_audio_remove(struct platform_device *pdev)
{
struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
snd_card_free(card_ctx->card);
return 0;
}
static const struct dev_pm_ops hdmi_lpe_audio_pm = {
SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
};
static struct platform_driver hdmi_lpe_audio_driver = {
.driver = {
.name = "hdmi-lpe-audio",
.pm = &hdmi_lpe_audio_pm,
},
.probe = hdmi_lpe_audio_probe,
.remove = hdmi_lpe_audio_remove,
};
module_platform_driver(hdmi_lpe_audio_driver);
MODULE_ALIAS("platform:hdmi_lpe_audio");
MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
MODULE_DESCRIPTION("Intel HDMI Audio driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");