kernel_optimize_test/arch/powerpc/mm/pgtable.c
Peter Zijlstra f2e785ed5f powerpc: Use call_rcu_sched() for pagetables
PowerPC relies on IRQ-disable to guard against RCU quiecent states,
use the appropriate RCU call version.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-11-30 10:42:20 +11:00

346 lines
9.2 KiB
C

/*
* This file contains common routines for dealing with free of page tables
* Along with common page table handling code
*
* Derived from arch/powerpc/mm/tlb_64.c:
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include "mmu_decl.h"
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
#ifdef CONFIG_SMP
/*
* Handle batching of page table freeing on SMP. Page tables are
* queued up and send to be freed later by RCU in order to avoid
* freeing a page table page that is being walked without locks
*/
static DEFINE_PER_CPU(struct pte_freelist_batch *, pte_freelist_cur);
static unsigned long pte_freelist_forced_free;
struct pte_freelist_batch
{
struct rcu_head rcu;
unsigned int index;
unsigned long tables[0];
};
#define PTE_FREELIST_SIZE \
((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \
/ sizeof(unsigned long))
static void pte_free_smp_sync(void *arg)
{
/* Do nothing, just ensure we sync with all CPUs */
}
/* This is only called when we are critically out of memory
* (and fail to get a page in pte_free_tlb).
*/
static void pgtable_free_now(void *table, unsigned shift)
{
pte_freelist_forced_free++;
smp_call_function(pte_free_smp_sync, NULL, 1);
pgtable_free(table, shift);
}
static void pte_free_rcu_callback(struct rcu_head *head)
{
struct pte_freelist_batch *batch =
container_of(head, struct pte_freelist_batch, rcu);
unsigned int i;
for (i = 0; i < batch->index; i++) {
void *table = (void *)(batch->tables[i] & ~MAX_PGTABLE_INDEX_SIZE);
unsigned shift = batch->tables[i] & MAX_PGTABLE_INDEX_SIZE;
pgtable_free(table, shift);
}
free_page((unsigned long)batch);
}
static void pte_free_submit(struct pte_freelist_batch *batch)
{
call_rcu_sched(&batch->rcu, pte_free_rcu_callback);
}
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, unsigned shift)
{
/* This is safe since tlb_gather_mmu has disabled preemption */
struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
unsigned long pgf;
if (atomic_read(&tlb->mm->mm_users) < 2 ||
cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))){
pgtable_free(table, shift);
return;
}
if (*batchp == NULL) {
*batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC);
if (*batchp == NULL) {
pgtable_free_now(table, shift);
return;
}
(*batchp)->index = 0;
}
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
pgf = (unsigned long)table | shift;
(*batchp)->tables[(*batchp)->index++] = pgf;
if ((*batchp)->index == PTE_FREELIST_SIZE) {
pte_free_submit(*batchp);
*batchp = NULL;
}
}
void pte_free_finish(void)
{
/* This is safe since tlb_gather_mmu has disabled preemption */
struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
if (*batchp == NULL)
return;
pte_free_submit(*batchp);
*batchp = NULL;
}
#endif /* CONFIG_SMP */
static inline int is_exec_fault(void)
{
return current->thread.regs && TRAP(current->thread.regs) == 0x400;
}
/* We only try to do i/d cache coherency on stuff that looks like
* reasonably "normal" PTEs. We currently require a PTE to be present
* and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
* on userspace PTEs
*/
static inline int pte_looks_normal(pte_t pte)
{
return (pte_val(pte) &
(_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) ==
(_PAGE_PRESENT | _PAGE_USER);
}
struct page * maybe_pte_to_page(pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
struct page *page;
if (unlikely(!pfn_valid(pfn)))
return NULL;
page = pfn_to_page(pfn);
if (PageReserved(page))
return NULL;
return page;
}
#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
/* Server-style MMU handles coherency when hashing if HW exec permission
* is supposed per page (currently 64-bit only). If not, then, we always
* flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
* support falls into the same category.
*/
static pte_t set_pte_filter(pte_t pte, unsigned long addr)
{
pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
cpu_has_feature(CPU_FTR_NOEXECUTE))) {
struct page *pg = maybe_pte_to_page(pte);
if (!pg)
return pte;
if (!test_bit(PG_arch_1, &pg->flags)) {
#ifdef CONFIG_8xx
/* On 8xx, cache control instructions (particularly
* "dcbst" from flush_dcache_icache) fault as write
* operation if there is an unpopulated TLB entry
* for the address in question. To workaround that,
* we invalidate the TLB here, thus avoiding dcbst
* misbehaviour.
*/
/* 8xx doesn't care about PID, size or ind args */
_tlbil_va(addr, 0, 0, 0);
#endif /* CONFIG_8xx */
flush_dcache_icache_page(pg);
set_bit(PG_arch_1, &pg->flags);
}
}
return pte;
}
static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
int dirty)
{
return pte;
}
#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
/* Embedded type MMU with HW exec support. This is a bit more complicated
* as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
* instead we "filter out" the exec permission for non clean pages.
*/
static pte_t set_pte_filter(pte_t pte, unsigned long addr)
{
struct page *pg;
/* No exec permission in the first place, move on */
if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
return pte;
/* If you set _PAGE_EXEC on weird pages you're on your own */
pg = maybe_pte_to_page(pte);
if (unlikely(!pg))
return pte;
/* If the page clean, we move on */
if (test_bit(PG_arch_1, &pg->flags))
return pte;
/* If it's an exec fault, we flush the cache and make it clean */
if (is_exec_fault()) {
flush_dcache_icache_page(pg);
set_bit(PG_arch_1, &pg->flags);
return pte;
}
/* Else, we filter out _PAGE_EXEC */
return __pte(pte_val(pte) & ~_PAGE_EXEC);
}
static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
int dirty)
{
struct page *pg;
/* So here, we only care about exec faults, as we use them
* to recover lost _PAGE_EXEC and perform I$/D$ coherency
* if necessary. Also if _PAGE_EXEC is already set, same deal,
* we just bail out
*/
if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
return pte;
#ifdef CONFIG_DEBUG_VM
/* So this is an exec fault, _PAGE_EXEC is not set. If it was
* an error we would have bailed out earlier in do_page_fault()
* but let's make sure of it
*/
if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
return pte;
#endif /* CONFIG_DEBUG_VM */
/* If you set _PAGE_EXEC on weird pages you're on your own */
pg = maybe_pte_to_page(pte);
if (unlikely(!pg))
goto bail;
/* If the page is already clean, we move on */
if (test_bit(PG_arch_1, &pg->flags))
goto bail;
/* Clean the page and set PG_arch_1 */
flush_dcache_icache_page(pg);
set_bit(PG_arch_1, &pg->flags);
bail:
return __pte(pte_val(pte) | _PAGE_EXEC);
}
#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
/*
* set_pte stores a linux PTE into the linux page table.
*/
void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
pte_t pte)
{
#ifdef CONFIG_DEBUG_VM
WARN_ON(pte_present(*ptep));
#endif
/* Note: mm->context.id might not yet have been assigned as
* this context might not have been activated yet when this
* is called.
*/
pte = set_pte_filter(pte, addr);
/* Perform the setting of the PTE */
__set_pte_at(mm, addr, ptep, pte, 0);
}
/*
* This is called when relaxing access to a PTE. It's also called in the page
* fault path when we don't hit any of the major fault cases, ie, a minor
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
* handled those two for us, we additionally deal with missing execute
* permission here on some processors
*/
int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep, pte_t entry, int dirty)
{
int changed;
entry = set_access_flags_filter(entry, vma, dirty);
changed = !pte_same(*(ptep), entry);
if (changed) {
if (!(vma->vm_flags & VM_HUGETLB))
assert_pte_locked(vma->vm_mm, address);
__ptep_set_access_flags(ptep, entry);
flush_tlb_page_nohash(vma, address);
}
return changed;
}
#ifdef CONFIG_DEBUG_VM
void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
if (mm == &init_mm)
return;
pgd = mm->pgd + pgd_index(addr);
BUG_ON(pgd_none(*pgd));
pud = pud_offset(pgd, addr);
BUG_ON(pud_none(*pud));
pmd = pmd_offset(pud, addr);
BUG_ON(!pmd_present(*pmd));
assert_spin_locked(pte_lockptr(mm, pmd));
}
#endif /* CONFIG_DEBUG_VM */