kernel_optimize_test/arch/blackfin/kernel/bfin_dma_5xx.c
Mike Frysinger 41245ac595 Blackfin arch: fix bug - Dmacopy failed in BF537-STAMP
Dmacopy failed in BF537-STAMP when copy from SRAM to SDRAM and kernel
will reboot automatically.

Fixing by doing a SSYNC before mucking with DMA registers

Signed-off-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Bryan Wu <cooloney@kernel.org>
2009-02-04 16:49:45 +08:00

426 lines
11 KiB
C

/*
* bfin_dma_5xx.c - Blackfin DMA implementation
*
* Copyright 2004-2008 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/param.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/blackfin.h>
#include <asm/cacheflush.h>
#include <asm/dma.h>
#include <asm/uaccess.h>
struct dma_channel dma_ch[MAX_DMA_CHANNELS];
EXPORT_SYMBOL(dma_ch);
static int __init blackfin_dma_init(void)
{
int i;
printk(KERN_INFO "Blackfin DMA Controller\n");
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
dma_ch[i].chan_status = DMA_CHANNEL_FREE;
dma_ch[i].regs = dma_io_base_addr[i];
mutex_init(&(dma_ch[i].dmalock));
}
/* Mark MEMDMA Channel 0 as requested since we're using it internally */
request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
#if defined(CONFIG_DEB_DMA_URGENT)
bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
| DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
#endif
return 0;
}
arch_initcall(blackfin_dma_init);
#ifdef CONFIG_PROC_FS
static int proc_dma_show(struct seq_file *m, void *v)
{
int i;
for (i = 0; i < MAX_DMA_CHANNELS; ++i)
if (dma_ch[i].chan_status != DMA_CHANNEL_FREE)
seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
return 0;
}
static int proc_dma_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_dma_show, NULL);
}
static const struct file_operations proc_dma_operations = {
.open = proc_dma_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init proc_dma_init(void)
{
return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL;
}
late_initcall(proc_dma_init);
#endif
/**
* request_dma - request a DMA channel
*
* Request the specific DMA channel from the system if it's available.
*/
int request_dma(unsigned int channel, const char *device_id)
{
pr_debug("request_dma() : BEGIN \n");
if (device_id == NULL)
printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
#if defined(CONFIG_BF561) && ANOMALY_05000182
if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
if (get_cclk() > 500000000) {
printk(KERN_WARNING
"Request IMDMA failed due to ANOMALY 05000182\n");
return -EFAULT;
}
}
#endif
mutex_lock(&(dma_ch[channel].dmalock));
if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED)
|| (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) {
mutex_unlock(&(dma_ch[channel].dmalock));
pr_debug("DMA CHANNEL IN USE \n");
return -EBUSY;
} else {
dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
pr_debug("DMA CHANNEL IS ALLOCATED \n");
}
mutex_unlock(&(dma_ch[channel].dmalock));
#ifdef CONFIG_BF54x
if (channel >= CH_UART2_RX && channel <= CH_UART3_TX) {
unsigned int per_map;
per_map = dma_ch[channel].regs->peripheral_map & 0xFFF;
if (strncmp(device_id, "BFIN_UART", 9) == 0)
dma_ch[channel].regs->peripheral_map = per_map |
((channel - CH_UART2_RX + 0xC)<<12);
else
dma_ch[channel].regs->peripheral_map = per_map |
((channel - CH_UART2_RX + 0x6)<<12);
}
#endif
dma_ch[channel].device_id = device_id;
dma_ch[channel].irq = 0;
/* This is to be enabled by putting a restriction -
* you have to request DMA, before doing any operations on
* descriptor/channel
*/
pr_debug("request_dma() : END \n");
return 0;
}
EXPORT_SYMBOL(request_dma);
int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_DMA_CHANNELS));
if (callback != NULL) {
int ret;
unsigned int irq = channel2irq(channel);
ret = request_irq(irq, callback, IRQF_DISABLED,
dma_ch[channel].device_id, data);
if (ret)
return ret;
dma_ch[channel].irq = irq;
dma_ch[channel].data = data;
}
return 0;
}
EXPORT_SYMBOL(set_dma_callback);
/**
* clear_dma_buffer - clear DMA fifos for specified channel
*
* Set the Buffer Clear bit in the Configuration register of specific DMA
* channel. This will stop the descriptor based DMA operation.
*/
static void clear_dma_buffer(unsigned int channel)
{
dma_ch[channel].regs->cfg |= RESTART;
SSYNC();
dma_ch[channel].regs->cfg &= ~RESTART;
}
void free_dma(unsigned int channel)
{
pr_debug("freedma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_DMA_CHANNELS));
/* Halt the DMA */
disable_dma(channel);
clear_dma_buffer(channel);
if (dma_ch[channel].irq)
free_irq(dma_ch[channel].irq, dma_ch[channel].data);
/* Clear the DMA Variable in the Channel */
mutex_lock(&(dma_ch[channel].dmalock));
dma_ch[channel].chan_status = DMA_CHANNEL_FREE;
mutex_unlock(&(dma_ch[channel].dmalock));
pr_debug("freedma() : END \n");
}
EXPORT_SYMBOL(free_dma);
#ifdef CONFIG_PM
# ifndef MAX_DMA_SUSPEND_CHANNELS
# define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
# endif
int blackfin_dma_suspend(void)
{
int i;
for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i) {
if (dma_ch[i].chan_status == DMA_CHANNEL_ENABLED) {
printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
return -EBUSY;
}
dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
}
return 0;
}
void blackfin_dma_resume(void)
{
int i;
for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i)
dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
}
#endif
/**
* blackfin_dma_early_init - minimal DMA init
*
* Setup a few DMA registers so we can safely do DMA transfers early on in
* the kernel booting process. Really this just means using dma_memcpy().
*/
void __init blackfin_dma_early_init(void)
{
bfin_write_MDMA_S0_CONFIG(0);
}
/**
* __dma_memcpy - program the MDMA registers
*
* Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
* while programming registers so that everything is fully configured. Wait
* for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
* check will make sure we don't clobber any existing transfer.
*/
static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
{
static DEFINE_SPINLOCK(mdma_lock);
unsigned long flags;
spin_lock_irqsave(&mdma_lock, flags);
/* Force a sync in case a previous config reset on this channel
* occurred. This is needed so subsequent writes to DMA registers
* are not spuriously lost/corrupted. Do it under irq lock and
* without the anomaly version (because we are atomic already).
*/
__builtin_bfin_ssync();
if (bfin_read_MDMA_S0_CONFIG())
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
continue;
if (conf & DMA2D) {
/* For larger bit sizes, we've already divided down cnt so it
* is no longer a multiple of 64k. So we have to break down
* the limit here so it is a multiple of the incoming size.
* There is no limitation here in terms of total size other
* than the hardware though as the bits lost in the shift are
* made up by MODIFY (== we can hit the whole address space).
* X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
*/
u32 shift = abs(dmod) >> 1;
size_t ycnt = cnt >> (16 - shift);
cnt = 1 << (16 - shift);
bfin_write_MDMA_D0_Y_COUNT(ycnt);
bfin_write_MDMA_S0_Y_COUNT(ycnt);
bfin_write_MDMA_D0_Y_MODIFY(dmod);
bfin_write_MDMA_S0_Y_MODIFY(smod);
}
bfin_write_MDMA_D0_START_ADDR(daddr);
bfin_write_MDMA_D0_X_COUNT(cnt);
bfin_write_MDMA_D0_X_MODIFY(dmod);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(saddr);
bfin_write_MDMA_S0_X_COUNT(cnt);
bfin_write_MDMA_S0_X_MODIFY(smod);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | conf);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf);
spin_unlock_irqrestore(&mdma_lock, flags);
SSYNC();
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
if (bfin_read_MDMA_S0_CONFIG())
continue;
else
return;
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
}
/**
* _dma_memcpy - translate C memcpy settings into MDMA settings
*
* Handle all the high level steps before we touch the MDMA registers. So
* handle direction, tweaking of sizes, and formatting of addresses.
*/
static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
{
u32 conf, shift;
s16 mod;
unsigned long dst = (unsigned long)pdst;
unsigned long src = (unsigned long)psrc;
if (size == 0)
return NULL;
if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
conf = WDSIZE_32;
shift = 2;
} else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
conf = WDSIZE_16;
shift = 1;
} else {
conf = WDSIZE_8;
shift = 0;
}
/* If the two memory regions have a chance of overlapping, make
* sure the memcpy still works as expected. Do this by having the
* copy run backwards instead.
*/
mod = 1 << shift;
if (src < dst) {
mod *= -1;
dst += size + mod;
src += size + mod;
}
size >>= shift;
if (size > 0x10000)
conf |= DMA2D;
__dma_memcpy(dst, mod, src, mod, size, conf);
return pdst;
}
/**
* dma_memcpy - DMA memcpy under mutex lock
*
* Do not check arguments before starting the DMA memcpy. Break the transfer
* up into two pieces. The first transfer is in multiples of 64k and the
* second transfer is the piece smaller than 64k.
*/
void *dma_memcpy(void *pdst, const void *psrc, size_t size)
{
unsigned long dst = (unsigned long)pdst;
unsigned long src = (unsigned long)psrc;
size_t bulk, rest;
if (bfin_addr_dcachable(src))
blackfin_dcache_flush_range(src, src + size);
if (bfin_addr_dcachable(dst))
blackfin_dcache_invalidate_range(dst, dst + size);
bulk = size & ~0xffff;
rest = size - bulk;
if (bulk)
_dma_memcpy(pdst, psrc, bulk);
_dma_memcpy(pdst + bulk, psrc + bulk, rest);
return pdst;
}
EXPORT_SYMBOL(dma_memcpy);
/**
* safe_dma_memcpy - DMA memcpy w/argument checking
*
* Verify arguments are safe before heading to dma_memcpy().
*/
void *safe_dma_memcpy(void *dst, const void *src, size_t size)
{
if (!access_ok(VERIFY_WRITE, dst, size))
return NULL;
if (!access_ok(VERIFY_READ, src, size))
return NULL;
return dma_memcpy(dst, src, size);
}
EXPORT_SYMBOL(safe_dma_memcpy);
static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len,
u16 size, u16 dma_size)
{
blackfin_dcache_flush_range(buf, buf + len * size);
__dma_memcpy(addr, 0, buf, size, len, dma_size);
}
static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len,
u16 size, u16 dma_size)
{
blackfin_dcache_invalidate_range(buf, buf + len * size);
__dma_memcpy(buf, size, addr, 0, len, dma_size);
}
#define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
{ \
_dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
} \
EXPORT_SYMBOL(dma_##io##s##bwl)
MAKE_DMA_IO(out, b, 1, 8, const);
MAKE_DMA_IO(in, b, 1, 8, );
MAKE_DMA_IO(out, w, 2, 16, const);
MAKE_DMA_IO(in, w, 2, 16, );
MAKE_DMA_IO(out, l, 4, 32, const);
MAKE_DMA_IO(in, l, 4, 32, );