kernel_optimize_test/kernel/irq/handle.c
Yinghai Lu 9059d8fa4a irq: add irq_desc_without_new
add an irq_desc accessor that will not allocate any sparse entry
but returns failure if there's no entry present.

Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-16 16:52:32 +02:00

481 lines
10 KiB
C

/*
* linux/kernel/irq/handle.c
*
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
* Copyright (C) 2005-2006, Thomas Gleixner, Russell King
*
* This file contains the core interrupt handling code.
*
* Detailed information is available in Documentation/DocBook/genericirq
*
*/
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include "internals.h"
#ifdef CONFIG_TRACE_IRQFLAGS
/*
* lockdep: we want to handle all irq_desc locks as a single lock-class:
*/
static struct lock_class_key irq_desc_lock_class;
#endif
/**
* handle_bad_irq - handle spurious and unhandled irqs
* @irq: the interrupt number
* @desc: description of the interrupt
*
* Handles spurious and unhandled IRQ's. It also prints a debugmessage.
*/
void
handle_bad_irq(unsigned int irq, struct irq_desc *desc)
{
print_irq_desc(irq, desc);
kstat_irqs_this_cpu(desc)++;
ack_bad_irq(irq);
}
/*
* Linux has a controller-independent interrupt architecture.
* Every controller has a 'controller-template', that is used
* by the main code to do the right thing. Each driver-visible
* interrupt source is transparently wired to the appropriate
* controller. Thus drivers need not be aware of the
* interrupt-controller.
*
* The code is designed to be easily extended with new/different
* interrupt controllers, without having to do assembly magic or
* having to touch the generic code.
*
* Controller mappings for all interrupt sources:
*/
int nr_irqs = NR_IRQS;
EXPORT_SYMBOL_GPL(nr_irqs);
#ifdef CONFIG_HAVE_DYN_ARRAY
static struct irq_desc irq_desc_init = {
.irq = -1U,
.status = IRQ_DISABLED,
.chip = &no_irq_chip,
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
#ifdef CONFIG_SMP
.affinity = CPU_MASK_ALL
#endif
};
static void init_one_irq_desc(struct irq_desc *desc)
{
memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
#ifdef CONFIG_TRACE_IRQFLAGS
lockdep_set_class(&desc->lock, &irq_desc_lock_class);
#endif
}
extern int after_bootmem;
extern void *__alloc_bootmem_nopanic(unsigned long size,
unsigned long align,
unsigned long goal);
static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr)
{
unsigned long bytes, total_bytes;
char *ptr;
int i;
unsigned long phys;
/* Compute how many bytes we need per irq and allocate them */
bytes = nr * sizeof(unsigned int);
total_bytes = bytes * nr_desc;
if (after_bootmem)
ptr = kzalloc(total_bytes, GFP_ATOMIC);
else
ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
if (!ptr)
panic(" can not allocate kstat_irqs\n");
phys = __pa(ptr);
printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
for (i = 0; i < nr_desc; i++) {
desc[i].kstat_irqs = (unsigned int *)ptr;
ptr += bytes;
}
}
static void __init init_work(void *data)
{
struct dyn_array *da = data;
int i;
struct irq_desc *desc;
desc = *da->name;
for (i = 0; i < *da->nr; i++) {
init_one_irq_desc(&desc[i]);
#ifndef CONFIG_HAVE_SPARSE_IRQ
desc[i].irq = i;
#endif
}
#ifdef CONFIG_HAVE_SPARSE_IRQ
for (i = 1; i < *da->nr; i++)
desc[i-1].next = &desc[i];
#endif
/* init kstat_irqs, nr_cpu_ids is ready already */
init_kstat_irqs(desc, *da->nr, nr_cpu_ids);
}
#ifdef CONFIG_HAVE_SPARSE_IRQ
static int nr_irq_desc = 32;
static int __init parse_nr_irq_desc(char *arg)
{
if (arg)
nr_irq_desc = simple_strtoul(arg, NULL, 0);
return 0;
}
early_param("nr_irq_desc", parse_nr_irq_desc);
struct irq_desc *sparse_irqs;
DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work);
struct irq_desc *__irq_to_desc(unsigned int irq)
{
struct irq_desc *desc;
BUG_ON(irq == -1U);
desc = &sparse_irqs[0];
while (desc) {
if (desc->irq == irq)
return desc;
if (desc->irq == -1U)
return NULL;
desc = desc->next;
}
return NULL;
}
struct irq_desc *irq_to_desc(unsigned int irq)
{
struct irq_desc *desc, *desc_pri;
int i;
int count = 0;
unsigned long phys;
unsigned long total_bytes;
BUG_ON(irq == -1U);
desc_pri = desc = &sparse_irqs[0];
while (desc) {
if (desc->irq == irq)
return desc;
if (desc->irq == -1U) {
desc->irq = irq;
return desc;
}
desc_pri = desc;
desc = desc->next;
count++;
}
/*
* we run out of pre-allocate ones, allocate more
*/
printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc);
total_bytes = sizeof(struct irq_desc) * nr_irq_desc;
if (after_bootmem)
desc = kzalloc(total_bytes, GFP_ATOMIC);
else
desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
if (!desc)
panic("please boot with nr_irq_desc= %d\n", count * 2);
phys = __pa(desc);
printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
for (i = 0; i < nr_irq_desc; i++)
init_one_irq_desc(&desc[i]);
for (i = 1; i < nr_irq_desc; i++)
desc[i-1].next = &desc[i];
/* init kstat_irqs, nr_cpu_ids is ready already */
init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids);
desc->irq = irq;
desc_pri->next = desc;
return desc;
}
#else
struct irq_desc *irq_desc;
DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work);
#endif
#else
struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
[0 ... NR_IRQS-1] = {
.status = IRQ_DISABLED,
.chip = &no_irq_chip,
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock),
#ifdef CONFIG_SMP
.affinity = CPU_MASK_ALL
#endif
}
};
#endif
#ifndef CONFIG_HAVE_SPARSE_IRQ
struct irq_desc *irq_to_desc(unsigned int irq)
{
if (irq < nr_irqs)
return &irq_desc[irq];
return NULL;
}
struct irq_desc *__irq_to_desc(unsigned int irq)
{
return irq_to_desc(irq);
}
#endif
/*
* What should we do if we get a hw irq event on an illegal vector?
* Each architecture has to answer this themself.
*/
static void ack_bad(unsigned int irq)
{
struct irq_desc *desc;
desc = irq_to_desc(irq);
print_irq_desc(irq, desc);
ack_bad_irq(irq);
}
/*
* NOP functions
*/
static void noop(unsigned int irq)
{
}
static unsigned int noop_ret(unsigned int irq)
{
return 0;
}
/*
* Generic no controller implementation
*/
struct irq_chip no_irq_chip = {
.name = "none",
.startup = noop_ret,
.shutdown = noop,
.enable = noop,
.disable = noop,
.ack = ack_bad,
.end = noop,
};
/*
* Generic dummy implementation which can be used for
* real dumb interrupt sources
*/
struct irq_chip dummy_irq_chip = {
.name = "dummy",
.startup = noop_ret,
.shutdown = noop,
.enable = noop,
.disable = noop,
.ack = noop,
.mask = noop,
.unmask = noop,
.end = noop,
};
/*
* Special, empty irq handler:
*/
irqreturn_t no_action(int cpl, void *dev_id)
{
return IRQ_NONE;
}
/**
* handle_IRQ_event - irq action chain handler
* @irq: the interrupt number
* @action: the interrupt action chain for this irq
*
* Handles the action chain of an irq event
*/
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
{
irqreturn_t ret, retval = IRQ_NONE;
unsigned int status = 0;
if (!(action->flags & IRQF_DISABLED))
local_irq_enable_in_hardirq();
do {
ret = action->handler(irq, action->dev_id);
if (ret == IRQ_HANDLED)
status |= action->flags;
retval |= ret;
action = action->next;
} while (action);
if (status & IRQF_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
local_irq_disable();
return retval;
}
#ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
/**
* __do_IRQ - original all in one highlevel IRQ handler
* @irq: the interrupt number
*
* __do_IRQ handles all normal device IRQ's (the special
* SMP cross-CPU interrupts have their own specific
* handlers).
*
* This is the original x86 implementation which is used for every
* interrupt type.
*/
unsigned int __do_IRQ(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
struct irqaction *action;
unsigned int status;
kstat_irqs_this_cpu(desc)++;
if (CHECK_IRQ_PER_CPU(desc->status)) {
irqreturn_t action_ret;
/*
* No locking required for CPU-local interrupts:
*/
if (desc->chip->ack)
desc->chip->ack(irq);
if (likely(!(desc->status & IRQ_DISABLED))) {
action_ret = handle_IRQ_event(irq, desc->action);
if (!noirqdebug)
note_interrupt(irq, desc, action_ret);
}
desc->chip->end(irq);
return 1;
}
spin_lock(&desc->lock);
if (desc->chip->ack)
desc->chip->ack(irq);
/*
* REPLAY is when Linux resends an IRQ that was dropped earlier
* WAITING is used by probe to mark irqs that are being tested
*/
status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
status |= IRQ_PENDING; /* we _want_ to handle it */
/*
* If the IRQ is disabled for whatever reason, we cannot
* use the action we have.
*/
action = NULL;
if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
action = desc->action;
status &= ~IRQ_PENDING; /* we commit to handling */
status |= IRQ_INPROGRESS; /* we are handling it */
}
desc->status = status;
/*
* If there is no IRQ handler or it was disabled, exit early.
* Since we set PENDING, if another processor is handling
* a different instance of this same irq, the other processor
* will take care of it.
*/
if (unlikely(!action))
goto out;
/*
* Edge triggered interrupts need to remember
* pending events.
* This applies to any hw interrupts that allow a second
* instance of the same irq to arrive while we are in do_IRQ
* or in the handler. But the code here only handles the _second_
* instance of the irq, not the third or fourth. So it is mostly
* useful for irq hardware that does not mask cleanly in an
* SMP environment.
*/
for (;;) {
irqreturn_t action_ret;
spin_unlock(&desc->lock);
action_ret = handle_IRQ_event(irq, action);
if (!noirqdebug)
note_interrupt(irq, desc, action_ret);
spin_lock(&desc->lock);
if (likely(!(desc->status & IRQ_PENDING)))
break;
desc->status &= ~IRQ_PENDING;
}
desc->status &= ~IRQ_INPROGRESS;
out:
/*
* The ->end() handler has to deal with interrupts which got
* disabled while the handler was running.
*/
desc->chip->end(irq);
spin_unlock(&desc->lock);
return 1;
}
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
void early_init_irq_lock_class(void)
{
#ifndef CONFIG_HAVE_DYN_ARRAY
int i;
for (i = 0; i < nr_irqs; i++)
lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
#endif
}
#endif
unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
{
struct irq_desc *desc = irq_to_desc(irq);
return desc->kstat_irqs[cpu];
}
EXPORT_SYMBOL(kstat_irqs_cpu);