kernel_optimize_test/include
Rusty Lynch 802eae7c80 [PATCH] Return probe redesign: architecture independent changes
The following is the second version of the function return probe patches
I sent out earlier this week.  Changes since my last submission include:

* Fix in ppc64 code removing an unneeded call to re-enable preemption
* Fix a build problem in ia64 when kprobes was turned off
* Added another BUG_ON check to each of the architecture trampoline
  handlers

My initial patch description ==>

 From my experiences with adding return probes to x86_64 and ia64, and the
feedback on LKML to those patches, I think we can simplify the design
for return probes.

The following patch tweaks the original design such that:

* Instead of storing the stack address in the return probe instance, the
  task pointer is stored.  This gives us all we need in order to:
    - find the correct return probe instance when we enter the trampoline
      (even if we are recursing)
    - find all left-over return probe instances when the task is going away

  This has the side effect of simplifying the implementation since more
  work can be done in kernel/kprobes.c since architecture specific knowledge
  of the stack layout is no longer required.  Specifically, we no longer have:
	- arch_get_kprobe_task()
	- arch_kprobe_flush_task()
	- get_rp_inst_tsk()
	- get_rp_inst()
	- trampoline_post_handler() <see next bullet>

* Instead of splitting the return probe handling and cleanup logic across
  the pre and post trampoline handlers, all the work is pushed into the
  pre function (trampoline_probe_handler), and then we skip single stepping
  the original function.  In this case the original instruction to be single
  stepped was just a NOP, and we can do without the extra interruption.

The new flow of events to having a return probe handler execute when a target
function exits is:

* At system initialization time, a kprobe is inserted at the beginning of
  kretprobe_trampoline.  kernel/kprobes.c use to handle this on it's own,
  but ia64 needed to do this a little differently (i.e. a function pointer
  is really a pointer to a structure containing the instruction pointer and
  a global pointer), so I added the notion of arch_init(), so that
  kernel/kprobes.c:init_kprobes() now allows architecture specific
  initialization by calling arch_init() before exiting.  Each architecture
  now registers a kprobe on it's own trampoline function.

* register_kretprobe() will insert a kprobe at the beginning of the targeted
  function with the kprobe pre_handler set to arch_prepare_kretprobe
  (still no change)

* When the target function is entered, the kprobe is fired, calling
  arch_prepare_kretprobe (still no change)

* In arch_prepare_kretprobe() we try to get a free instance and if one is
  available then we fill out the instance with a pointer to the return probe,
  the original return address, and a pointer to the task structure (instead
  of the stack address.)  Just like before we change the return address
  to the trampoline function and mark the instance as used.

  If multiple return probes are registered for a given target function,
  then arch_prepare_kretprobe() will get called multiple times for the same
  task (since our kprobe implementation is able to handle multiple kprobes
  at the same address.)  Past the first call to arch_prepare_kretprobe,
  we end up with the original address stored in the return probe instance
  pointing to our trampoline function. (This is a significant difference
  from the original arch_prepare_kretprobe design.)

* Target function executes like normal and then returns to kretprobe_trampoline.

* kprobe inserted on the first instruction of kretprobe_trampoline is fired
  and calls trampoline_probe_handler() (no change here)

* trampoline_probe_handler() consumes each of the instances associated with
  the current task by calling the registered handler function and marking
  the instance as unused until an instance is found that has a return address
  different then the trampoline function.

  (change similar to my previous ia64 RFC)

* If the task is killed with some left-over return probe instances (meaning
  that a target function was entered, but never returned), then we just
  free any instances associated with the task.  (Not much different other
  then we can handle this without calling architecture specific functions.)

  There is a known problem that this patch does not yet solve where
  registering a return probe flush_old_exec or flush_thread will put us
  in a bad state.  Most likely the best way to handle this is to not allow
  registering return probes on these two functions.

  (Significant change)

This patch series applies to the 2.6.12-rc6-mm1 kernel, and provides:
  * kernel/kprobes.c changes
  * i386 patch of existing return probes implementation
  * x86_64 patch of existing return probe implementation
  * ia64 implementation
  * ppc64 implementation (provided by Ananth)

This patch implements the architecture independant changes for a reworking
of the kprobes based function return probes design. Changes include:

  * Removing functions for querying a return probe instance off a stack address
  * Removing the stack_addr field from the kretprobe_instance definition,
    and adding a task pointer
  * Adding architecture specific initialization via arch_init()
  * Removing extern definitions for the architecture trampoline functions
    (this isn't needed anymore since the architecture handles the
     initialization of the kprobe in the return probe trampoline function.)

Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 15:23:52 -07:00
..
acpi
asm-alpha
asm-arm Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/usb-2.6 2005-06-27 15:13:26 -07:00
asm-arm26
asm-cris
asm-frv
asm-generic [PATCH] kexec: vmlinux: fix physical addresses 2005-06-25 16:24:47 -07:00
asm-h8300
asm-i386 [PATCH] seccomp: tsc disable 2005-06-27 15:11:44 -07:00
asm-ia64 [PATCH] kprobes: fix single-step out of line - take2 2005-06-27 15:23:52 -07:00
asm-m32r
asm-m68k
asm-m68knommu
asm-mips [PATCH] sched: cleanup context switch locking 2005-06-25 16:24:43 -07:00
asm-parisc [PATCH] compat: introduce compat_time_t 2005-06-23 09:45:32 -07:00
asm-ppc [PATCH] ppc32: Bump PMU interrupt priority 2005-06-27 15:11:42 -07:00
asm-ppc64 [PATCH] kprobes: fix single-step out of line - take2 2005-06-27 15:23:52 -07:00
asm-s390 [PATCH] kexec: s390 support 2005-06-25 16:24:51 -07:00
asm-sh
asm-sh64
asm-sparc [PATCH] sched: cleanup context switch locking 2005-06-25 16:24:43 -07:00
asm-sparc64 [PATCH] sched: cleanup context switch locking 2005-06-25 16:24:43 -07:00
asm-um [PATCH] uml: add profile_pc for i386 2005-06-25 16:24:36 -07:00
asm-v850
asm-x86_64 [PATCH] seccomp: tsc disable 2005-06-27 15:11:44 -07:00
asm-xtensa [PATCH] xtensa: Architecture support for Tensilica Xtensa Part 8 2005-06-24 00:05:22 -07:00
linux [PATCH] Return probe redesign: architecture independent changes 2005-06-27 15:23:52 -07:00
math-emu
media [PATCH] v4l: update for SAA7134 cards 2005-06-24 00:06:39 -07:00
mtd
net [PATCH] bring over ieee80211.h from mainline 2005-06-27 00:23:54 -04:00
pcmcia [PATCH] yenta TI: turn off interrupts during card power-on #2 2005-06-23 09:45:31 -07:00
rxrpc
scsi [PATCH] I2O: Adaptec specific SG_IO access, firmware access through sysfs and 2400A workaround 2005-06-24 00:05:28 -07:00
sound
video