forked from luck/tmp_suning_uos_patched
d7e02a9312
Most dma_map_ops implementations already had some issues with a NULL device, or did simply crash if one was fed to them. Now that we have cleaned up all the obvious offenders we can stop to pretend we support this mode. Signed-off-by: Christoph Hellwig <hch@lst.de>
407 lines
11 KiB
C
407 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2018 Christoph Hellwig.
|
|
*
|
|
* DMA operations that map physical memory directly without using an IOMMU.
|
|
*/
|
|
#include <linux/memblock.h> /* for max_pfn */
|
|
#include <linux/export.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/dma-noncoherent.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/swiotlb.h>
|
|
|
|
/*
|
|
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
|
|
* some use it for entirely different regions:
|
|
*/
|
|
#ifndef ARCH_ZONE_DMA_BITS
|
|
#define ARCH_ZONE_DMA_BITS 24
|
|
#endif
|
|
|
|
/*
|
|
* For AMD SEV all DMA must be to unencrypted addresses.
|
|
*/
|
|
static inline bool force_dma_unencrypted(void)
|
|
{
|
|
return sev_active();
|
|
}
|
|
|
|
static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
if (!dev->dma_mask) {
|
|
dev_err_once(dev, "DMA map on device without dma_mask\n");
|
|
} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
|
|
dev_err_once(dev,
|
|
"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
|
|
&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
|
|
}
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
|
|
phys_addr_t phys)
|
|
{
|
|
if (force_dma_unencrypted())
|
|
return __phys_to_dma(dev, phys);
|
|
return phys_to_dma(dev, phys);
|
|
}
|
|
|
|
u64 dma_direct_get_required_mask(struct device *dev)
|
|
{
|
|
u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
|
|
|
|
if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
|
|
max_dma = dev->bus_dma_mask;
|
|
|
|
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
|
|
}
|
|
|
|
static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
|
|
u64 *phys_mask)
|
|
{
|
|
if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
|
|
dma_mask = dev->bus_dma_mask;
|
|
|
|
if (force_dma_unencrypted())
|
|
*phys_mask = __dma_to_phys(dev, dma_mask);
|
|
else
|
|
*phys_mask = dma_to_phys(dev, dma_mask);
|
|
|
|
/*
|
|
* Optimistically try the zone that the physical address mask falls
|
|
* into first. If that returns memory that isn't actually addressable
|
|
* we will fallback to the next lower zone and try again.
|
|
*
|
|
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
|
|
* zones.
|
|
*/
|
|
if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
|
|
return GFP_DMA;
|
|
if (*phys_mask <= DMA_BIT_MASK(32))
|
|
return GFP_DMA32;
|
|
return 0;
|
|
}
|
|
|
|
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
|
|
{
|
|
return phys_to_dma_direct(dev, phys) + size - 1 <=
|
|
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
|
|
}
|
|
|
|
struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
int page_order = get_order(size);
|
|
struct page *page = NULL;
|
|
u64 phys_mask;
|
|
|
|
if (attrs & DMA_ATTR_NO_WARN)
|
|
gfp |= __GFP_NOWARN;
|
|
|
|
/* we always manually zero the memory once we are done: */
|
|
gfp &= ~__GFP_ZERO;
|
|
gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
|
|
&phys_mask);
|
|
again:
|
|
/* CMA can be used only in the context which permits sleeping */
|
|
if (gfpflags_allow_blocking(gfp)) {
|
|
page = dma_alloc_from_contiguous(dev, count, page_order,
|
|
gfp & __GFP_NOWARN);
|
|
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
|
dma_release_from_contiguous(dev, page, count);
|
|
page = NULL;
|
|
}
|
|
}
|
|
if (!page)
|
|
page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
|
|
|
|
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
|
__free_pages(page, page_order);
|
|
page = NULL;
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
|
|
phys_mask < DMA_BIT_MASK(64) &&
|
|
!(gfp & (GFP_DMA32 | GFP_DMA))) {
|
|
gfp |= GFP_DMA32;
|
|
goto again;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
|
|
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
void *dma_direct_alloc_pages(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
struct page *page;
|
|
void *ret;
|
|
|
|
page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (PageHighMem(page)) {
|
|
/*
|
|
* Depending on the cma= arguments and per-arch setup
|
|
* dma_alloc_from_contiguous could return highmem pages.
|
|
* Without remapping there is no way to return them here,
|
|
* so log an error and fail.
|
|
*/
|
|
dev_info(dev, "Rejecting highmem page from CMA.\n");
|
|
__dma_direct_free_pages(dev, size, page);
|
|
return NULL;
|
|
}
|
|
|
|
ret = page_address(page);
|
|
if (force_dma_unencrypted()) {
|
|
set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
|
|
*dma_handle = __phys_to_dma(dev, page_to_phys(page));
|
|
} else {
|
|
*dma_handle = phys_to_dma(dev, page_to_phys(page));
|
|
}
|
|
memset(ret, 0, size);
|
|
return ret;
|
|
}
|
|
|
|
void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
|
|
{
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
if (!dma_release_from_contiguous(dev, page, count))
|
|
__free_pages(page, get_order(size));
|
|
}
|
|
|
|
void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t dma_addr, unsigned long attrs)
|
|
{
|
|
unsigned int page_order = get_order(size);
|
|
|
|
if (force_dma_unencrypted())
|
|
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
|
|
__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
|
|
}
|
|
|
|
void *dma_direct_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
if (!dev_is_dma_coherent(dev))
|
|
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
|
|
return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
|
|
}
|
|
|
|
void dma_direct_free(struct device *dev, size_t size,
|
|
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
|
|
{
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
|
|
else
|
|
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
|
|
}
|
|
|
|
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
|
|
defined(CONFIG_SWIOTLB)
|
|
void dma_direct_sync_single_for_device(struct device *dev,
|
|
dma_addr_t addr, size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = dma_to_phys(dev, addr);
|
|
|
|
if (unlikely(is_swiotlb_buffer(paddr)))
|
|
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_device(dev, paddr, size, dir);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_single_for_device);
|
|
|
|
void dma_direct_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
|
|
swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
|
|
dir, SYNC_FOR_DEVICE);
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
|
|
dir);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
|
|
#endif
|
|
|
|
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
|
|
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
|
|
defined(CONFIG_SWIOTLB)
|
|
void dma_direct_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t addr, size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = dma_to_phys(dev, addr);
|
|
|
|
if (!dev_is_dma_coherent(dev)) {
|
|
arch_sync_dma_for_cpu(dev, paddr, size, dir);
|
|
arch_sync_dma_for_cpu_all(dev);
|
|
}
|
|
|
|
if (unlikely(is_swiotlb_buffer(paddr)))
|
|
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
|
|
|
|
void dma_direct_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
|
|
|
|
if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
|
|
swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
|
|
SYNC_FOR_CPU);
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_cpu_all(dev);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
|
|
|
|
void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
phys_addr_t phys = dma_to_phys(dev, addr);
|
|
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
|
|
|
|
if (unlikely(is_swiotlb_buffer(phys)))
|
|
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_unmap_page);
|
|
|
|
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nents, i)
|
|
dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
|
|
attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_unmap_sg);
|
|
#endif
|
|
|
|
static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
|
|
size_t size)
|
|
{
|
|
return swiotlb_force != SWIOTLB_FORCE &&
|
|
dma_capable(dev, dma_addr, size);
|
|
}
|
|
|
|
dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
phys_addr_t phys = page_to_phys(page) + offset;
|
|
dma_addr_t dma_addr = phys_to_dma(dev, phys);
|
|
|
|
if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
|
|
!swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
|
|
report_addr(dev, dma_addr, size);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
arch_sync_dma_for_device(dev, phys, size, dir);
|
|
return dma_addr;
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_map_page);
|
|
|
|
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
|
|
sg->offset, sg->length, dir, attrs);
|
|
if (sg->dma_address == DMA_MAPPING_ERROR)
|
|
goto out_unmap;
|
|
sg_dma_len(sg) = sg->length;
|
|
}
|
|
|
|
return nents;
|
|
|
|
out_unmap:
|
|
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_map_sg);
|
|
|
|
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
dma_addr_t dma_addr = paddr;
|
|
|
|
if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
|
|
report_addr(dev, dma_addr, size);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
return dma_addr;
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_map_resource);
|
|
|
|
/*
|
|
* Because 32-bit DMA masks are so common we expect every architecture to be
|
|
* able to satisfy them - either by not supporting more physical memory, or by
|
|
* providing a ZONE_DMA32. If neither is the case, the architecture needs to
|
|
* use an IOMMU instead of the direct mapping.
|
|
*/
|
|
int dma_direct_supported(struct device *dev, u64 mask)
|
|
{
|
|
u64 min_mask;
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA))
|
|
min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
|
|
else
|
|
min_mask = DMA_BIT_MASK(32);
|
|
|
|
min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
|
|
|
|
/*
|
|
* This check needs to be against the actual bit mask value, so
|
|
* use __phys_to_dma() here so that the SME encryption mask isn't
|
|
* part of the check.
|
|
*/
|
|
return mask >= __phys_to_dma(dev, min_mask);
|
|
}
|
|
|
|
size_t dma_direct_max_mapping_size(struct device *dev)
|
|
{
|
|
size_t size = SIZE_MAX;
|
|
|
|
/* If SWIOTLB is active, use its maximum mapping size */
|
|
if (is_swiotlb_active())
|
|
size = swiotlb_max_mapping_size(dev);
|
|
|
|
return size;
|
|
}
|