kernel_optimize_test/drivers/acpi/processor_idle.c

1244 lines
31 KiB
C

/*
* processor_idle - idle state submodule to the ACPI processor driver
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
* Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* - Added processor hotplug support
* Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* - Added support for C3 on SMP
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/moduleparam.h>
#include <linux/sched.h> /* need_resched() */
#include <linux/pm_qos_params.h>
#include <linux/clockchips.h>
#include <linux/cpuidle.h>
#include <linux/irqflags.h>
/*
* Include the apic definitions for x86 to have the APIC timer related defines
* available also for UP (on SMP it gets magically included via linux/smp.h).
* asm/acpi.h is not an option, as it would require more include magic. Also
* creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
*/
#ifdef CONFIG_X86
#include <asm/apic.h>
#endif
#include <asm/io.h>
#include <asm/uaccess.h>
#include <acpi/acpi_bus.h>
#include <acpi/processor.h>
#include <asm/processor.h>
#define ACPI_PROCESSOR_CLASS "processor"
#define _COMPONENT ACPI_PROCESSOR_COMPONENT
ACPI_MODULE_NAME("processor_idle");
#define ACPI_PROCESSOR_FILE_POWER "power"
#define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
#define C2_OVERHEAD 1 /* 1us */
#define C3_OVERHEAD 1 /* 1us */
#define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
module_param(max_cstate, uint, 0000);
static unsigned int nocst __read_mostly;
module_param(nocst, uint, 0000);
static unsigned int latency_factor __read_mostly = 2;
module_param(latency_factor, uint, 0644);
static s64 us_to_pm_timer_ticks(s64 t)
{
return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
}
/*
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
* For now disable this. Probably a bug somewhere else.
*
* To skip this limit, boot/load with a large max_cstate limit.
*/
static int set_max_cstate(const struct dmi_system_id *id)
{
if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
return 0;
printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
" Override with \"processor.max_cstate=%d\"\n", id->ident,
(long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
max_cstate = (long)id->driver_data;
return 0;
}
/* Actually this shouldn't be __cpuinitdata, would be better to fix the
callers to only run once -AK */
static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
{ set_max_cstate, "Clevo 5600D", {
DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
(void *)2},
{},
};
/*
* Callers should disable interrupts before the call and enable
* interrupts after return.
*/
static void acpi_safe_halt(void)
{
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
if (!need_resched()) {
safe_halt();
local_irq_disable();
}
current_thread_info()->status |= TS_POLLING;
}
#ifdef ARCH_APICTIMER_STOPS_ON_C3
/*
* Some BIOS implementations switch to C3 in the published C2 state.
* This seems to be a common problem on AMD boxen, but other vendors
* are affected too. We pick the most conservative approach: we assume
* that the local APIC stops in both C2 and C3.
*/
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
struct acpi_processor_cx *cx)
{
struct acpi_processor_power *pwr = &pr->power;
u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
return;
if (boot_cpu_has(X86_FEATURE_AMDC1E))
type = ACPI_STATE_C1;
/*
* Check, if one of the previous states already marked the lapic
* unstable
*/
if (pwr->timer_broadcast_on_state < state)
return;
if (cx->type >= type)
pr->power.timer_broadcast_on_state = state;
}
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
{
unsigned long reason;
reason = pr->power.timer_broadcast_on_state < INT_MAX ?
CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
clockevents_notify(reason, &pr->id);
}
/* Power(C) State timer broadcast control */
static void lapic_timer_state_broadcast(struct acpi_processor *pr,
struct acpi_processor_cx *cx,
int broadcast)
{
int state = cx - pr->power.states;
if (state >= pr->power.timer_broadcast_on_state) {
unsigned long reason;
reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
clockevents_notify(reason, &pr->id);
}
}
#else
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
struct acpi_processor_cx *cstate) { }
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
static void lapic_timer_state_broadcast(struct acpi_processor *pr,
struct acpi_processor_cx *cx,
int broadcast)
{
}
#endif
/*
* Suspend / resume control
*/
static int acpi_idle_suspend;
static u32 saved_bm_rld;
static void acpi_idle_bm_rld_save(void)
{
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
}
static void acpi_idle_bm_rld_restore(void)
{
u32 resumed_bm_rld;
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
if (resumed_bm_rld != saved_bm_rld)
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
}
int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
{
if (acpi_idle_suspend == 1)
return 0;
acpi_idle_bm_rld_save();
acpi_idle_suspend = 1;
return 0;
}
int acpi_processor_resume(struct acpi_device * device)
{
if (acpi_idle_suspend == 0)
return 0;
acpi_idle_bm_rld_restore();
acpi_idle_suspend = 0;
return 0;
}
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
static void tsc_check_state(int state)
{
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
case X86_VENDOR_INTEL:
/*
* AMD Fam10h TSC will tick in all
* C/P/S0/S1 states when this bit is set.
*/
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
return;
/*FALL THROUGH*/
default:
/* TSC could halt in idle, so notify users */
if (state > ACPI_STATE_C1)
mark_tsc_unstable("TSC halts in idle");
}
}
#else
static void tsc_check_state(int state) { return; }
#endif
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
{
if (!pr)
return -EINVAL;
if (!pr->pblk)
return -ENODEV;
/* if info is obtained from pblk/fadt, type equals state */
pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
#ifndef CONFIG_HOTPLUG_CPU
/*
* Check for P_LVL2_UP flag before entering C2 and above on
* an SMP system.
*/
if ((num_online_cpus() > 1) &&
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
return -ENODEV;
#endif
/* determine C2 and C3 address from pblk */
pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
/* determine latencies from FADT */
pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"lvl2[0x%08x] lvl3[0x%08x]\n",
pr->power.states[ACPI_STATE_C2].address,
pr->power.states[ACPI_STATE_C3].address));
return 0;
}
static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
{
if (!pr->power.states[ACPI_STATE_C1].valid) {
/* set the first C-State to C1 */
/* all processors need to support C1 */
pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
pr->power.states[ACPI_STATE_C1].valid = 1;
pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
}
/* the C0 state only exists as a filler in our array */
pr->power.states[ACPI_STATE_C0].valid = 1;
return 0;
}
static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
{
acpi_status status = 0;
acpi_integer count;
int current_count;
int i;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *cst;
if (nocst)
return -ENODEV;
current_count = 0;
status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
return -ENODEV;
}
cst = buffer.pointer;
/* There must be at least 2 elements */
if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
printk(KERN_ERR PREFIX "not enough elements in _CST\n");
status = -EFAULT;
goto end;
}
count = cst->package.elements[0].integer.value;
/* Validate number of power states. */
if (count < 1 || count != cst->package.count - 1) {
printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
status = -EFAULT;
goto end;
}
/* Tell driver that at least _CST is supported. */
pr->flags.has_cst = 1;
for (i = 1; i <= count; i++) {
union acpi_object *element;
union acpi_object *obj;
struct acpi_power_register *reg;
struct acpi_processor_cx cx;
memset(&cx, 0, sizeof(cx));
element = &(cst->package.elements[i]);
if (element->type != ACPI_TYPE_PACKAGE)
continue;
if (element->package.count != 4)
continue;
obj = &(element->package.elements[0]);
if (obj->type != ACPI_TYPE_BUFFER)
continue;
reg = (struct acpi_power_register *)obj->buffer.pointer;
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
(reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
continue;
/* There should be an easy way to extract an integer... */
obj = &(element->package.elements[1]);
if (obj->type != ACPI_TYPE_INTEGER)
continue;
cx.type = obj->integer.value;
/*
* Some buggy BIOSes won't list C1 in _CST -
* Let acpi_processor_get_power_info_default() handle them later
*/
if (i == 1 && cx.type != ACPI_STATE_C1)
current_count++;
cx.address = reg->address;
cx.index = current_count + 1;
cx.entry_method = ACPI_CSTATE_SYSTEMIO;
if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
if (acpi_processor_ffh_cstate_probe
(pr->id, &cx, reg) == 0) {
cx.entry_method = ACPI_CSTATE_FFH;
} else if (cx.type == ACPI_STATE_C1) {
/*
* C1 is a special case where FIXED_HARDWARE
* can be handled in non-MWAIT way as well.
* In that case, save this _CST entry info.
* Otherwise, ignore this info and continue.
*/
cx.entry_method = ACPI_CSTATE_HALT;
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
} else {
continue;
}
if (cx.type == ACPI_STATE_C1 &&
(idle_halt || idle_nomwait)) {
/*
* In most cases the C1 space_id obtained from
* _CST object is FIXED_HARDWARE access mode.
* But when the option of idle=halt is added,
* the entry_method type should be changed from
* CSTATE_FFH to CSTATE_HALT.
* When the option of idle=nomwait is added,
* the C1 entry_method type should be
* CSTATE_HALT.
*/
cx.entry_method = ACPI_CSTATE_HALT;
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
}
} else {
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
cx.address);
}
if (cx.type == ACPI_STATE_C1) {
cx.valid = 1;
}
obj = &(element->package.elements[2]);
if (obj->type != ACPI_TYPE_INTEGER)
continue;
cx.latency = obj->integer.value;
obj = &(element->package.elements[3]);
if (obj->type != ACPI_TYPE_INTEGER)
continue;
cx.power = obj->integer.value;
current_count++;
memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
/*
* We support total ACPI_PROCESSOR_MAX_POWER - 1
* (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
*/
if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
printk(KERN_WARNING
"Limiting number of power states to max (%d)\n",
ACPI_PROCESSOR_MAX_POWER);
printk(KERN_WARNING
"Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
break;
}
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
current_count));
/* Validate number of power states discovered */
if (current_count < 2)
status = -EFAULT;
end:
kfree(buffer.pointer);
return status;
}
static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
{
if (!cx->address)
return;
/*
* C2 latency must be less than or equal to 100
* microseconds.
*/
else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"latency too large [%d]\n", cx->latency));
return;
}
/*
* Otherwise we've met all of our C2 requirements.
* Normalize the C2 latency to expidite policy
*/
cx->valid = 1;
cx->latency_ticks = cx->latency;
return;
}
static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
struct acpi_processor_cx *cx)
{
static int bm_check_flag = -1;
static int bm_control_flag = -1;
if (!cx->address)
return;
/*
* C3 latency must be less than or equal to 1000
* microseconds.
*/
else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"latency too large [%d]\n", cx->latency));
return;
}
/*
* PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
* DMA transfers are used by any ISA device to avoid livelock.
* Note that we could disable Type-F DMA (as recommended by
* the erratum), but this is known to disrupt certain ISA
* devices thus we take the conservative approach.
*/
else if (errata.piix4.fdma) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 not supported on PIIX4 with Type-F DMA\n"));
return;
}
/* All the logic here assumes flags.bm_check is same across all CPUs */
if (bm_check_flag == -1) {
/* Determine whether bm_check is needed based on CPU */
acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
bm_check_flag = pr->flags.bm_check;
bm_control_flag = pr->flags.bm_control;
} else {
pr->flags.bm_check = bm_check_flag;
pr->flags.bm_control = bm_control_flag;
}
if (pr->flags.bm_check) {
if (!pr->flags.bm_control) {
if (pr->flags.has_cst != 1) {
/* bus mastering control is necessary */
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 support requires BM control\n"));
return;
} else {
/* Here we enter C3 without bus mastering */
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 support without BM control\n"));
}
}
} else {
/*
* WBINVD should be set in fadt, for C3 state to be
* supported on when bm_check is not required.
*/
if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Cache invalidation should work properly"
" for C3 to be enabled on SMP systems\n"));
return;
}
}
/*
* Otherwise we've met all of our C3 requirements.
* Normalize the C3 latency to expidite policy. Enable
* checking of bus mastering status (bm_check) so we can
* use this in our C3 policy
*/
cx->valid = 1;
cx->latency_ticks = cx->latency;
/*
* On older chipsets, BM_RLD needs to be set
* in order for Bus Master activity to wake the
* system from C3. Newer chipsets handle DMA
* during C3 automatically and BM_RLD is a NOP.
* In either case, the proper way to
* handle BM_RLD is to set it and leave it set.
*/
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
return;
}
static int acpi_processor_power_verify(struct acpi_processor *pr)
{
unsigned int i;
unsigned int working = 0;
pr->power.timer_broadcast_on_state = INT_MAX;
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
struct acpi_processor_cx *cx = &pr->power.states[i];
switch (cx->type) {
case ACPI_STATE_C1:
cx->valid = 1;
break;
case ACPI_STATE_C2:
acpi_processor_power_verify_c2(cx);
break;
case ACPI_STATE_C3:
acpi_processor_power_verify_c3(pr, cx);
break;
}
if (!cx->valid)
continue;
lapic_timer_check_state(i, pr, cx);
tsc_check_state(cx->type);
working++;
}
lapic_timer_propagate_broadcast(pr);
return (working);
}
static int acpi_processor_get_power_info(struct acpi_processor *pr)
{
unsigned int i;
int result;
/* NOTE: the idle thread may not be running while calling
* this function */
/* Zero initialize all the C-states info. */
memset(pr->power.states, 0, sizeof(pr->power.states));
result = acpi_processor_get_power_info_cst(pr);
if (result == -ENODEV)
result = acpi_processor_get_power_info_fadt(pr);
if (result)
return result;
acpi_processor_get_power_info_default(pr);
pr->power.count = acpi_processor_power_verify(pr);
/*
* if one state of type C2 or C3 is available, mark this
* CPU as being "idle manageable"
*/
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
if (pr->power.states[i].valid) {
pr->power.count = i;
if (pr->power.states[i].type >= ACPI_STATE_C2)
pr->flags.power = 1;
}
}
return 0;
}
static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_processor *pr = seq->private;
unsigned int i;
if (!pr)
goto end;
seq_printf(seq, "active state: C%zd\n"
"max_cstate: C%d\n"
"maximum allowed latency: %d usec\n",
pr->power.state ? pr->power.state - pr->power.states : 0,
max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
seq_puts(seq, "states:\n");
for (i = 1; i <= pr->power.count; i++) {
seq_printf(seq, " %cC%d: ",
(&pr->power.states[i] ==
pr->power.state ? '*' : ' '), i);
if (!pr->power.states[i].valid) {
seq_puts(seq, "<not supported>\n");
continue;
}
switch (pr->power.states[i].type) {
case ACPI_STATE_C1:
seq_printf(seq, "type[C1] ");
break;
case ACPI_STATE_C2:
seq_printf(seq, "type[C2] ");
break;
case ACPI_STATE_C3:
seq_printf(seq, "type[C3] ");
break;
default:
seq_printf(seq, "type[--] ");
break;
}
if (pr->power.states[i].promotion.state)
seq_printf(seq, "promotion[C%zd] ",
(pr->power.states[i].promotion.state -
pr->power.states));
else
seq_puts(seq, "promotion[--] ");
if (pr->power.states[i].demotion.state)
seq_printf(seq, "demotion[C%zd] ",
(pr->power.states[i].demotion.state -
pr->power.states));
else
seq_puts(seq, "demotion[--] ");
seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
pr->power.states[i].latency,
pr->power.states[i].usage,
(unsigned long long)pr->power.states[i].time);
}
end:
return 0;
}
static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_processor_power_seq_show,
PDE(inode)->data);
}
static const struct file_operations acpi_processor_power_fops = {
.owner = THIS_MODULE,
.open = acpi_processor_power_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* acpi_idle_bm_check - checks if bus master activity was detected
*/
static int acpi_idle_bm_check(void)
{
u32 bm_status = 0;
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
if (bm_status)
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
/*
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
* the true state of bus mastering activity; forcing us to
* manually check the BMIDEA bit of each IDE channel.
*/
else if (errata.piix4.bmisx) {
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
bm_status = 1;
}
return bm_status;
}
/**
* acpi_idle_do_entry - a helper function that does C2 and C3 type entry
* @cx: cstate data
*
* Caller disables interrupt before call and enables interrupt after return.
*/
static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
{
/* Don't trace irqs off for idle */
stop_critical_timings();
if (cx->entry_method == ACPI_CSTATE_FFH) {
/* Call into architectural FFH based C-state */
acpi_processor_ffh_cstate_enter(cx);
} else if (cx->entry_method == ACPI_CSTATE_HALT) {
acpi_safe_halt();
} else {
int unused;
/* IO port based C-state */
inb(cx->address);
/* Dummy wait op - must do something useless after P_LVL2 read
because chipsets cannot guarantee that STPCLK# signal
gets asserted in time to freeze execution properly. */
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
}
start_critical_timings();
}
/**
* acpi_idle_enter_c1 - enters an ACPI C1 state-type
* @dev: the target CPU
* @state: the state data
*
* This is equivalent to the HALT instruction.
*/
static int acpi_idle_enter_c1(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
ktime_t kt1, kt2;
s64 idle_time;
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
pr = __get_cpu_var(processors);
if (unlikely(!pr))
return 0;
local_irq_disable();
/* Do not access any ACPI IO ports in suspend path */
if (acpi_idle_suspend) {
local_irq_enable();
cpu_relax();
return 0;
}
lapic_timer_state_broadcast(pr, cx, 1);
kt1 = ktime_get_real();
acpi_idle_do_entry(cx);
kt2 = ktime_get_real();
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
local_irq_enable();
cx->usage++;
lapic_timer_state_broadcast(pr, cx, 0);
return idle_time;
}
/**
* acpi_idle_enter_simple - enters an ACPI state without BM handling
* @dev: the target CPU
* @state: the state data
*/
static int acpi_idle_enter_simple(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
ktime_t kt1, kt2;
s64 idle_time;
s64 sleep_ticks = 0;
pr = __get_cpu_var(processors);
if (unlikely(!pr))
return 0;
if (acpi_idle_suspend)
return(acpi_idle_enter_c1(dev, state));
local_irq_disable();
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (unlikely(need_resched())) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return 0;
}
/*
* Must be done before busmaster disable as we might need to
* access HPET !
*/
lapic_timer_state_broadcast(pr, cx, 1);
if (cx->type == ACPI_STATE_C3)
ACPI_FLUSH_CPU_CACHE();
kt1 = ktime_get_real();
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
acpi_idle_do_entry(cx);
kt2 = ktime_get_real();
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
sleep_ticks = us_to_pm_timer_ticks(idle_time);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
lapic_timer_state_broadcast(pr, cx, 0);
cx->time += sleep_ticks;
return idle_time;
}
static int c3_cpu_count;
static DEFINE_SPINLOCK(c3_lock);
/**
* acpi_idle_enter_bm - enters C3 with proper BM handling
* @dev: the target CPU
* @state: the state data
*
* If BM is detected, the deepest non-C3 idle state is entered instead.
*/
static int acpi_idle_enter_bm(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
ktime_t kt1, kt2;
s64 idle_time;
s64 sleep_ticks = 0;
pr = __get_cpu_var(processors);
if (unlikely(!pr))
return 0;
if (acpi_idle_suspend)
return(acpi_idle_enter_c1(dev, state));
if (acpi_idle_bm_check()) {
if (dev->safe_state) {
dev->last_state = dev->safe_state;
return dev->safe_state->enter(dev, dev->safe_state);
} else {
local_irq_disable();
acpi_safe_halt();
local_irq_enable();
return 0;
}
}
local_irq_disable();
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (unlikely(need_resched())) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return 0;
}
acpi_unlazy_tlb(smp_processor_id());
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
/*
* Must be done before busmaster disable as we might need to
* access HPET !
*/
lapic_timer_state_broadcast(pr, cx, 1);
kt1 = ktime_get_real();
/*
* disable bus master
* bm_check implies we need ARB_DIS
* !bm_check implies we need cache flush
* bm_control implies whether we can do ARB_DIS
*
* That leaves a case where bm_check is set and bm_control is
* not set. In that case we cannot do much, we enter C3
* without doing anything.
*/
if (pr->flags.bm_check && pr->flags.bm_control) {
spin_lock(&c3_lock);
c3_cpu_count++;
/* Disable bus master arbitration when all CPUs are in C3 */
if (c3_cpu_count == num_online_cpus())
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
spin_unlock(&c3_lock);
} else if (!pr->flags.bm_check) {
ACPI_FLUSH_CPU_CACHE();
}
acpi_idle_do_entry(cx);
/* Re-enable bus master arbitration */
if (pr->flags.bm_check && pr->flags.bm_control) {
spin_lock(&c3_lock);
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
c3_cpu_count--;
spin_unlock(&c3_lock);
}
kt2 = ktime_get_real();
idle_time = ktime_to_us(ktime_sub(kt2, kt1));
sleep_ticks = us_to_pm_timer_ticks(idle_time);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
lapic_timer_state_broadcast(pr, cx, 0);
cx->time += sleep_ticks;
return idle_time;
}
struct cpuidle_driver acpi_idle_driver = {
.name = "acpi_idle",
.owner = THIS_MODULE,
};
/**
* acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
* @pr: the ACPI processor
*/
static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
{
int i, count = CPUIDLE_DRIVER_STATE_START;
struct acpi_processor_cx *cx;
struct cpuidle_state *state;
struct cpuidle_device *dev = &pr->power.dev;
if (!pr->flags.power_setup_done)
return -EINVAL;
if (pr->flags.power == 0) {
return -EINVAL;
}
dev->cpu = pr->id;
for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
dev->states[i].name[0] = '\0';
dev->states[i].desc[0] = '\0';
}
if (max_cstate == 0)
max_cstate = 1;
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
cx = &pr->power.states[i];
state = &dev->states[count];
if (!cx->valid)
continue;
#ifdef CONFIG_HOTPLUG_CPU
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst &&
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
continue;
#endif
cpuidle_set_statedata(state, cx);
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
state->exit_latency = cx->latency;
state->target_residency = cx->latency * latency_factor;
state->power_usage = cx->power;
state->flags = 0;
switch (cx->type) {
case ACPI_STATE_C1:
state->flags |= CPUIDLE_FLAG_SHALLOW;
if (cx->entry_method == ACPI_CSTATE_FFH)
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->enter = acpi_idle_enter_c1;
dev->safe_state = state;
break;
case ACPI_STATE_C2:
state->flags |= CPUIDLE_FLAG_BALANCED;
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->enter = acpi_idle_enter_simple;
dev->safe_state = state;
break;
case ACPI_STATE_C3:
state->flags |= CPUIDLE_FLAG_DEEP;
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->flags |= CPUIDLE_FLAG_CHECK_BM;
state->enter = pr->flags.bm_check ?
acpi_idle_enter_bm :
acpi_idle_enter_simple;
break;
}
count++;
if (count == CPUIDLE_STATE_MAX)
break;
}
dev->state_count = count;
if (!count)
return -EINVAL;
return 0;
}
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int ret = 0;
if (boot_option_idle_override)
return 0;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
cpuidle_pause_and_lock();
cpuidle_disable_device(&pr->power.dev);
acpi_processor_get_power_info(pr);
if (pr->flags.power) {
acpi_processor_setup_cpuidle(pr);
ret = cpuidle_enable_device(&pr->power.dev);
}
cpuidle_resume_and_unlock();
return ret;
}
int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
struct acpi_device *device)
{
acpi_status status = 0;
static int first_run;
struct proc_dir_entry *entry = NULL;
unsigned int i;
if (boot_option_idle_override)
return 0;
if (!first_run) {
if (idle_halt) {
/*
* When the boot option of "idle=halt" is added, halt
* is used for CPU IDLE.
* In such case C2/C3 is meaningless. So the max_cstate
* is set to one.
*/
max_cstate = 1;
}
dmi_check_system(processor_power_dmi_table);
max_cstate = acpi_processor_cstate_check(max_cstate);
if (max_cstate < ACPI_C_STATES_MAX)
printk(KERN_NOTICE
"ACPI: processor limited to max C-state %d\n",
max_cstate);
first_run++;
}
if (!pr)
return -EINVAL;
if (acpi_gbl_FADT.cst_control && !nocst) {
status =
acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status,
"Notifying BIOS of _CST ability failed"));
}
}
acpi_processor_get_power_info(pr);
pr->flags.power_setup_done = 1;
/*
* Install the idle handler if processor power management is supported.
* Note that we use previously set idle handler will be used on
* platforms that only support C1.
*/
if (pr->flags.power) {
acpi_processor_setup_cpuidle(pr);
if (cpuidle_register_device(&pr->power.dev))
return -EIO;
printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
for (i = 1; i <= pr->power.count; i++)
if (pr->power.states[i].valid)
printk(" C%d[C%d]", i,
pr->power.states[i].type);
printk(")\n");
}
/* 'power' [R] */
entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
S_IRUGO, acpi_device_dir(device),
&acpi_processor_power_fops,
acpi_driver_data(device));
if (!entry)
return -EIO;
return 0;
}
int acpi_processor_power_exit(struct acpi_processor *pr,
struct acpi_device *device)
{
if (boot_option_idle_override)
return 0;
cpuidle_unregister_device(&pr->power.dev);
pr->flags.power_setup_done = 0;
if (acpi_device_dir(device))
remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
acpi_device_dir(device));
return 0;
}