kernel_optimize_test/fs/ext4/page-io.c
Eric Biggers 4f74d15fe4 ext4: add inline encryption support
Wire up ext4 to support inline encryption via the helper functions which
fs/crypto/ now provides.  This includes:

- Adding a mount option 'inlinecrypt' which enables inline encryption
  on encrypted files where it can be used.

- Setting the bio_crypt_ctx on bios that will be submitted to an
  inline-encrypted file.

  Note: submit_bh_wbc() in fs/buffer.c also needed to be patched for
  this part, since ext4 sometimes uses ll_rw_block() on file data.

- Not adding logically discontiguous data to bios that will be submitted
  to an inline-encrypted file.

- Not doing filesystem-layer crypto on inline-encrypted files.

Co-developed-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Satya Tangirala <satyat@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200702015607.1215430-5-satyat@google.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-08 10:29:43 -07:00

565 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ext4/page-io.c
*
* This contains the new page_io functions for ext4
*
* Written by Theodore Ts'o, 2010.
*/
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/mpage.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include <linux/workqueue.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/backing-dev.h>
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
static struct kmem_cache *io_end_cachep;
static struct kmem_cache *io_end_vec_cachep;
int __init ext4_init_pageio(void)
{
io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
if (io_end_cachep == NULL)
return -ENOMEM;
io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
if (io_end_vec_cachep == NULL) {
kmem_cache_destroy(io_end_cachep);
return -ENOMEM;
}
return 0;
}
void ext4_exit_pageio(void)
{
kmem_cache_destroy(io_end_cachep);
kmem_cache_destroy(io_end_vec_cachep);
}
struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
{
struct ext4_io_end_vec *io_end_vec;
io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
if (!io_end_vec)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&io_end_vec->list);
list_add_tail(&io_end_vec->list, &io_end->list_vec);
return io_end_vec;
}
static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
{
struct ext4_io_end_vec *io_end_vec, *tmp;
if (list_empty(&io_end->list_vec))
return;
list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
list_del(&io_end_vec->list);
kmem_cache_free(io_end_vec_cachep, io_end_vec);
}
}
struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
{
BUG_ON(list_empty(&io_end->list_vec));
return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
}
/*
* Print an buffer I/O error compatible with the fs/buffer.c. This
* provides compatibility with dmesg scrapers that look for a specific
* buffer I/O error message. We really need a unified error reporting
* structure to userspace ala Digital Unix's uerf system, but it's
* probably not going to happen in my lifetime, due to LKML politics...
*/
static void buffer_io_error(struct buffer_head *bh)
{
printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
bh->b_bdev,
(unsigned long long)bh->b_blocknr);
}
static void ext4_finish_bio(struct bio *bio)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
struct page *page = bvec->bv_page;
struct page *bounce_page = NULL;
struct buffer_head *bh, *head;
unsigned bio_start = bvec->bv_offset;
unsigned bio_end = bio_start + bvec->bv_len;
unsigned under_io = 0;
unsigned long flags;
if (!page)
continue;
if (fscrypt_is_bounce_page(page)) {
bounce_page = page;
page = fscrypt_pagecache_page(bounce_page);
}
if (bio->bi_status) {
SetPageError(page);
mapping_set_error(page->mapping, -EIO);
}
bh = head = page_buffers(page);
/*
* We check all buffers in the page under b_uptodate_lock
* to avoid races with other end io clearing async_write flags
*/
spin_lock_irqsave(&head->b_uptodate_lock, flags);
do {
if (bh_offset(bh) < bio_start ||
bh_offset(bh) + bh->b_size > bio_end) {
if (buffer_async_write(bh))
under_io++;
continue;
}
clear_buffer_async_write(bh);
if (bio->bi_status)
buffer_io_error(bh);
} while ((bh = bh->b_this_page) != head);
spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
if (!under_io) {
fscrypt_free_bounce_page(bounce_page);
end_page_writeback(page);
}
}
}
static void ext4_release_io_end(ext4_io_end_t *io_end)
{
struct bio *bio, *next_bio;
BUG_ON(!list_empty(&io_end->list));
BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
WARN_ON(io_end->handle);
for (bio = io_end->bio; bio; bio = next_bio) {
next_bio = bio->bi_private;
ext4_finish_bio(bio);
bio_put(bio);
}
ext4_free_io_end_vec(io_end);
kmem_cache_free(io_end_cachep, io_end);
}
/*
* Check a range of space and convert unwritten extents to written. Note that
* we are protected from truncate touching same part of extent tree by the
* fact that truncate code waits for all DIO to finish (thus exclusion from
* direct IO is achieved) and also waits for PageWriteback bits. Thus we
* cannot get to ext4_ext_truncate() before all IOs overlapping that range are
* completed (happens from ext4_free_ioend()).
*/
static int ext4_end_io_end(ext4_io_end_t *io_end)
{
struct inode *inode = io_end->inode;
handle_t *handle = io_end->handle;
int ret = 0;
ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
"list->prev 0x%p\n",
io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
io_end->handle = NULL; /* Following call will use up the handle */
ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
ext4_msg(inode->i_sb, KERN_EMERG,
"failed to convert unwritten extents to written "
"extents -- potential data loss! "
"(inode %lu, error %d)", inode->i_ino, ret);
}
ext4_clear_io_unwritten_flag(io_end);
ext4_release_io_end(io_end);
return ret;
}
static void dump_completed_IO(struct inode *inode, struct list_head *head)
{
#ifdef EXT4FS_DEBUG
struct list_head *cur, *before, *after;
ext4_io_end_t *io_end, *io_end0, *io_end1;
if (list_empty(head))
return;
ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
list_for_each_entry(io_end, head, list) {
cur = &io_end->list;
before = cur->prev;
io_end0 = container_of(before, ext4_io_end_t, list);
after = cur->next;
io_end1 = container_of(after, ext4_io_end_t, list);
ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
io_end, inode->i_ino, io_end0, io_end1);
}
#endif
}
/* Add the io_end to per-inode completed end_io list. */
static void ext4_add_complete_io(ext4_io_end_t *io_end)
{
struct ext4_inode_info *ei = EXT4_I(io_end->inode);
struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
struct workqueue_struct *wq;
unsigned long flags;
/* Only reserved conversions from writeback should enter here */
WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
WARN_ON(!io_end->handle && sbi->s_journal);
spin_lock_irqsave(&ei->i_completed_io_lock, flags);
wq = sbi->rsv_conversion_wq;
if (list_empty(&ei->i_rsv_conversion_list))
queue_work(wq, &ei->i_rsv_conversion_work);
list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
}
static int ext4_do_flush_completed_IO(struct inode *inode,
struct list_head *head)
{
ext4_io_end_t *io_end;
struct list_head unwritten;
unsigned long flags;
struct ext4_inode_info *ei = EXT4_I(inode);
int err, ret = 0;
spin_lock_irqsave(&ei->i_completed_io_lock, flags);
dump_completed_IO(inode, head);
list_replace_init(head, &unwritten);
spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
while (!list_empty(&unwritten)) {
io_end = list_entry(unwritten.next, ext4_io_end_t, list);
BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
list_del_init(&io_end->list);
err = ext4_end_io_end(io_end);
if (unlikely(!ret && err))
ret = err;
}
return ret;
}
/*
* work on completed IO, to convert unwritten extents to extents
*/
void ext4_end_io_rsv_work(struct work_struct *work)
{
struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
i_rsv_conversion_work);
ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
}
ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
{
ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
if (io_end) {
io_end->inode = inode;
INIT_LIST_HEAD(&io_end->list);
INIT_LIST_HEAD(&io_end->list_vec);
atomic_set(&io_end->count, 1);
}
return io_end;
}
void ext4_put_io_end_defer(ext4_io_end_t *io_end)
{
if (atomic_dec_and_test(&io_end->count)) {
if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
list_empty(&io_end->list_vec)) {
ext4_release_io_end(io_end);
return;
}
ext4_add_complete_io(io_end);
}
}
int ext4_put_io_end(ext4_io_end_t *io_end)
{
int err = 0;
if (atomic_dec_and_test(&io_end->count)) {
if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
err = ext4_convert_unwritten_io_end_vec(io_end->handle,
io_end);
io_end->handle = NULL;
ext4_clear_io_unwritten_flag(io_end);
}
ext4_release_io_end(io_end);
}
return err;
}
ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
{
atomic_inc(&io_end->count);
return io_end;
}
/* BIO completion function for page writeback */
static void ext4_end_bio(struct bio *bio)
{
ext4_io_end_t *io_end = bio->bi_private;
sector_t bi_sector = bio->bi_iter.bi_sector;
char b[BDEVNAME_SIZE];
if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
bio_devname(bio, b),
(long long) bio->bi_iter.bi_sector,
(unsigned) bio_sectors(bio),
bio->bi_status)) {
ext4_finish_bio(bio);
bio_put(bio);
return;
}
bio->bi_end_io = NULL;
if (bio->bi_status) {
struct inode *inode = io_end->inode;
ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
"starting block %llu)",
bio->bi_status, inode->i_ino,
(unsigned long long)
bi_sector >> (inode->i_blkbits - 9));
mapping_set_error(inode->i_mapping,
blk_status_to_errno(bio->bi_status));
}
if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
/*
* Link bio into list hanging from io_end. We have to do it
* atomically as bio completions can be racing against each
* other.
*/
bio->bi_private = xchg(&io_end->bio, bio);
ext4_put_io_end_defer(io_end);
} else {
/*
* Drop io_end reference early. Inode can get freed once
* we finish the bio.
*/
ext4_put_io_end_defer(io_end);
ext4_finish_bio(bio);
bio_put(bio);
}
}
void ext4_io_submit(struct ext4_io_submit *io)
{
struct bio *bio = io->io_bio;
if (bio) {
int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
REQ_SYNC : 0;
io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
submit_bio(io->io_bio);
}
io->io_bio = NULL;
}
void ext4_io_submit_init(struct ext4_io_submit *io,
struct writeback_control *wbc)
{
io->io_wbc = wbc;
io->io_bio = NULL;
io->io_end = NULL;
}
static void io_submit_init_bio(struct ext4_io_submit *io,
struct buffer_head *bh)
{
struct bio *bio;
/*
* bio_alloc will _always_ be able to allocate a bio if
* __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
*/
bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
bio_set_dev(bio, bh->b_bdev);
bio->bi_end_io = ext4_end_bio;
bio->bi_private = ext4_get_io_end(io->io_end);
io->io_bio = bio;
io->io_next_block = bh->b_blocknr;
wbc_init_bio(io->io_wbc, bio);
}
static void io_submit_add_bh(struct ext4_io_submit *io,
struct inode *inode,
struct page *page,
struct buffer_head *bh)
{
int ret;
if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
!fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
submit_and_retry:
ext4_io_submit(io);
}
if (io->io_bio == NULL) {
io_submit_init_bio(io, bh);
io->io_bio->bi_write_hint = inode->i_write_hint;
}
ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
if (ret != bh->b_size)
goto submit_and_retry;
wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
io->io_next_block++;
}
int ext4_bio_write_page(struct ext4_io_submit *io,
struct page *page,
int len,
struct writeback_control *wbc,
bool keep_towrite)
{
struct page *bounce_page = NULL;
struct inode *inode = page->mapping->host;
unsigned block_start;
struct buffer_head *bh, *head;
int ret = 0;
int nr_submitted = 0;
int nr_to_submit = 0;
BUG_ON(!PageLocked(page));
BUG_ON(PageWriteback(page));
if (keep_towrite)
set_page_writeback_keepwrite(page);
else
set_page_writeback(page);
ClearPageError(page);
/*
* Comments copied from block_write_full_page:
*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
if (len < PAGE_SIZE)
zero_user_segment(page, len, PAGE_SIZE);
/*
* In the first loop we prepare and mark buffers to submit. We have to
* mark all buffers in the page before submitting so that
* end_page_writeback() cannot be called from ext4_bio_end_io() when IO
* on the first buffer finishes and we are still working on submitting
* the second buffer.
*/
bh = head = page_buffers(page);
do {
block_start = bh_offset(bh);
if (block_start >= len) {
clear_buffer_dirty(bh);
set_buffer_uptodate(bh);
continue;
}
if (!buffer_dirty(bh) || buffer_delay(bh) ||
!buffer_mapped(bh) || buffer_unwritten(bh)) {
/* A hole? We can safely clear the dirty bit */
if (!buffer_mapped(bh))
clear_buffer_dirty(bh);
if (io->io_bio)
ext4_io_submit(io);
continue;
}
if (buffer_new(bh))
clear_buffer_new(bh);
set_buffer_async_write(bh);
nr_to_submit++;
} while ((bh = bh->b_this_page) != head);
bh = head = page_buffers(page);
/*
* If any blocks are being written to an encrypted file, encrypt them
* into a bounce page. For simplicity, just encrypt until the last
* block which might be needed. This may cause some unneeded blocks
* (e.g. holes) to be unnecessarily encrypted, but this is rare and
* can't happen in the common case of blocksize == PAGE_SIZE.
*/
if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
gfp_t gfp_flags = GFP_NOFS;
unsigned int enc_bytes = round_up(len, i_blocksize(inode));
/*
* Since bounce page allocation uses a mempool, we can only use
* a waiting mask (i.e. request guaranteed allocation) on the
* first page of the bio. Otherwise it can deadlock.
*/
if (io->io_bio)
gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
retry_encrypt:
bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
0, gfp_flags);
if (IS_ERR(bounce_page)) {
ret = PTR_ERR(bounce_page);
if (ret == -ENOMEM &&
(io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
gfp_flags = GFP_NOFS;
if (io->io_bio)
ext4_io_submit(io);
else
gfp_flags |= __GFP_NOFAIL;
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry_encrypt;
}
printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
redirty_page_for_writepage(wbc, page);
do {
clear_buffer_async_write(bh);
bh = bh->b_this_page;
} while (bh != head);
goto unlock;
}
}
/* Now submit buffers to write */
do {
if (!buffer_async_write(bh))
continue;
io_submit_add_bh(io, inode,
bounce_page ? bounce_page : page, bh);
nr_submitted++;
clear_buffer_dirty(bh);
} while ((bh = bh->b_this_page) != head);
unlock:
unlock_page(page);
/* Nothing submitted - we have to end page writeback */
if (!nr_submitted)
end_page_writeback(page);
return ret;
}