kernel_optimize_test/drivers/char/hvc_console.c
Alan Cox 33f0f88f1c [PATCH] TTY layer buffering revamp
The API and code have been through various bits of initial review by
serial driver people but they definitely need to live somewhere for a
while so the unconverted drivers can get knocked into shape, existing
drivers that have been updated can be better tuned and bugs whacked out.

This replaces the tty flip buffers with kmalloc objects in rings. In the
normal situation for an IRQ driven serial port at typical speeds the
behaviour is pretty much the same, two buffers end up allocated and the
kernel cycles between them as before.

When there are delays or at high speed we now behave far better as the
buffer pool can grow a bit rather than lose characters. This also means
that we can operate at higher speeds reliably.

For drivers that receive characters in blocks (DMA based, USB and
especially virtualisation) the layer allows a lot of driver specific
code that works around the tty layer with private secondary queues to be
removed. The IBM folks need this sort of layer, the smart serial port
people do, the virtualisers do (because a virtualised tty typically
operates at infinite speed rather than emulating 9600 baud).

Finally many drivers had invalid and unsafe attempts to avoid buffer
overflows by directly invoking tty methods extracted out of the innards
of work queue structs. These are no longer needed and all go away. That
fixes various random hangs with serial ports on overflow.

The other change in here is to optimise the receive_room path that is
used by some callers. It turns out that only one ldisc uses receive room
except asa constant and it updates it far far less than the value is
read. We thus make it a variable not a function call.

I expect the code to contain bugs due to the size alone but I'll be
watching and squashing them and feeding out new patches as it goes.

Because the buffers now dynamically expand you should only run out of
buffering when the kernel runs out of memory for real.  That means a lot of
the horrible hacks high performance drivers used to do just aren't needed any
more.

Description:

tty_insert_flip_char is an old API and continues to work as before, as does
tty_flip_buffer_push() [this is why many drivers dont need modification].  It
does now also return the number of chars inserted

There are also

tty_buffer_request_room(tty, len)

which asks for a buffer block of the length requested and returns the space
found.  This improves efficiency with hardware that knows how much to
transfer.

and tty_insert_flip_string_flags(tty, str, flags, len)

to insert a string of characters and flags

For a smart interface the usual code is

    len = tty_request_buffer_room(tty, amount_hardware_says);
    tty_insert_flip_string(tty, buffer_from_card, len);

More description!

At the moment tty buffers are attached directly to the tty.  This is causing a
lot of the problems related to tty layer locking, also problems at high speed
and also with bursty data (such as occurs in virtualised environments)

I'm working on ripping out the flip buffers and replacing them with a pool of
dynamically allocated buffers.  This allows both for old style "byte I/O"
devices and also helps virtualisation and smart devices where large blocks of
data suddenely materialise and need storing.

So far so good.  Lots of drivers reference tty->flip.*.  Several of them also
call directly and unsafely into function pointers it provides.  This will all
break.  Most drivers can use tty_insert_flip_char which can be kept as an API
but others need more.

At the moment I've added the following interfaces, if people think more will
be needed now is a good time to say

 int tty_buffer_request_room(tty, size)

Try and ensure at least size bytes are available, returns actual room (may be
zero).  At the moment it just uses the flipbuf space but that will change.
Repeated calls without characters being added are not cumulative.  (ie if you
call it with 1, 1, 1, and then 4 you'll have four characters of space.  The
other functions will also try and grow buffers in future but this will be a
more efficient way when you know block sizes.

 int tty_insert_flip_char(tty, ch, flag)

As before insert a character if there is room.  Now returns 1 for success, 0
for failure.

 int tty_insert_flip_string(tty, str, len)

Insert a block of non error characters.  Returns the number inserted.

 int tty_prepare_flip_string(tty, strptr, len)

Adjust the buffer to allow len characters to be added.  Returns a buffer
pointer in strptr and the length available.  This allows for hardware that
needs to use functions like insl or mencpy_fromio.

Signed-off-by: Alan Cox <alan@redhat.com>
Cc: Paul Fulghum <paulkf@microgate.com>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 08:01:59 -08:00

869 lines
21 KiB
C

/*
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
* Copyright (C) 2001 Paul Mackerras <paulus@au.ibm.com>, IBM
* Copyright (C) 2004 Benjamin Herrenschmidt <benh@kernel.crashing.org>, IBM Corp.
* Copyright (C) 2004 IBM Corporation
*
* Additional Author(s):
* Ryan S. Arnold <rsa@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/config.h>
#include <linux/console.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/kbd_kern.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/major.h>
#include <linux/sysrq.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <asm/uaccess.h>
#include <asm/hvconsole.h>
#define HVC_MAJOR 229
#define HVC_MINOR 0
#define TIMEOUT (10)
/*
* Wait this long per iteration while trying to push buffered data to the
* hypervisor before allowing the tty to complete a close operation.
*/
#define HVC_CLOSE_WAIT (HZ/100) /* 1/10 of a second */
/*
* The Linux TTY code does not support dynamic addition of tty derived devices
* so we need to know how many tty devices we might need when space is allocated
* for the tty device. Since this driver supports hotplug of vty adapters we
* need to make sure we have enough allocated.
*/
#define HVC_ALLOC_TTY_ADAPTERS 8
#define N_OUTBUF 16
#define N_INBUF 16
#define __ALIGNED__ __attribute__((__aligned__(8)))
static struct tty_driver *hvc_driver;
static struct task_struct *hvc_task;
/* Picks up late kicks after list walk but before schedule() */
static int hvc_kicked;
#ifdef CONFIG_MAGIC_SYSRQ
static int sysrq_pressed;
#endif
struct hvc_struct {
spinlock_t lock;
int index;
struct tty_struct *tty;
unsigned int count;
int do_wakeup;
char outbuf[N_OUTBUF] __ALIGNED__;
int n_outbuf;
uint32_t vtermno;
struct hv_ops *ops;
int irq_requested;
int irq;
struct list_head next;
struct kobject kobj; /* ref count & hvc_struct lifetime */
};
/* dynamic list of hvc_struct instances */
static struct list_head hvc_structs = LIST_HEAD_INIT(hvc_structs);
/*
* Protect the list of hvc_struct instances from inserts and removals during
* list traversal.
*/
static DEFINE_SPINLOCK(hvc_structs_lock);
/*
* This value is used to assign a tty->index value to a hvc_struct based
* upon order of exposure via hvc_probe(), when we can not match it to
* a console canidate registered with hvc_instantiate().
*/
static int last_hvc = -1;
/*
* Do not call this function with either the hvc_strucst_lock or the hvc_struct
* lock held. If successful, this function increments the kobject reference
* count against the target hvc_struct so it should be released when finished.
*/
struct hvc_struct *hvc_get_by_index(int index)
{
struct hvc_struct *hp;
unsigned long flags;
spin_lock(&hvc_structs_lock);
list_for_each_entry(hp, &hvc_structs, next) {
spin_lock_irqsave(&hp->lock, flags);
if (hp->index == index) {
kobject_get(&hp->kobj);
spin_unlock_irqrestore(&hp->lock, flags);
spin_unlock(&hvc_structs_lock);
return hp;
}
spin_unlock_irqrestore(&hp->lock, flags);
}
hp = NULL;
spin_unlock(&hvc_structs_lock);
return hp;
}
/*
* Initial console vtermnos for console API usage prior to full console
* initialization. Any vty adapter outside this range will not have usable
* console interfaces but can still be used as a tty device. This has to be
* static because kmalloc will not work during early console init.
*/
static struct hv_ops *cons_ops[MAX_NR_HVC_CONSOLES];
static uint32_t vtermnos[MAX_NR_HVC_CONSOLES] =
{[0 ... MAX_NR_HVC_CONSOLES - 1] = -1};
/*
* Console APIs, NOT TTY. These APIs are available immediately when
* hvc_console_setup() finds adapters.
*/
void hvc_console_print(struct console *co, const char *b, unsigned count)
{
char c[16] __ALIGNED__;
unsigned i = 0, n = 0;
int r, donecr = 0, index = co->index;
/* Console access attempt outside of acceptable console range. */
if (index >= MAX_NR_HVC_CONSOLES)
return;
/* This console adapter was removed so it is not useable. */
if (vtermnos[index] < 0)
return;
while (count > 0 || i > 0) {
if (count > 0 && i < sizeof(c)) {
if (b[n] == '\n' && !donecr) {
c[i++] = '\r';
donecr = 1;
} else {
c[i++] = b[n++];
donecr = 0;
--count;
}
} else {
r = cons_ops[index]->put_chars(vtermnos[index], c, i);
if (r < 0) {
/* throw away chars on error */
i = 0;
} else if (r > 0) {
i -= r;
if (i > 0)
memmove(c, c+r, i);
}
}
}
}
static struct tty_driver *hvc_console_device(struct console *c, int *index)
{
if (vtermnos[c->index] == -1)
return NULL;
*index = c->index;
return hvc_driver;
}
static int __init hvc_console_setup(struct console *co, char *options)
{
if (co->index < 0 || co->index >= MAX_NR_HVC_CONSOLES)
return -ENODEV;
if (vtermnos[co->index] == -1)
return -ENODEV;
return 0;
}
struct console hvc_con_driver = {
.name = "hvc",
.write = hvc_console_print,
.device = hvc_console_device,
.setup = hvc_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
};
/*
* Early console initialization. Preceeds driver initialization.
*
* (1) we are first, and the user specified another driver
* -- index will remain -1
* (2) we are first and the user specified no driver
* -- index will be set to 0, then we will fail setup.
* (3) we are first and the user specified our driver
* -- index will be set to user specified driver, and we will fail
* (4) we are after driver, and this initcall will register us
* -- if the user didn't specify a driver then the console will match
*
* Note that for cases 2 and 3, we will match later when the io driver
* calls hvc_instantiate() and call register again.
*/
static int __init hvc_console_init(void)
{
register_console(&hvc_con_driver);
return 0;
}
console_initcall(hvc_console_init);
/*
* hvc_instantiate() is an early console discovery method which locates
* consoles * prior to the vio subsystem discovering them. Hotplugged
* vty adapters do NOT get an hvc_instantiate() callback since they
* appear after early console init.
*/
int hvc_instantiate(uint32_t vtermno, int index, struct hv_ops *ops)
{
struct hvc_struct *hp;
if (index < 0 || index >= MAX_NR_HVC_CONSOLES)
return -1;
if (vtermnos[index] != -1)
return -1;
/* make sure no no tty has been registerd in this index */
hp = hvc_get_by_index(index);
if (hp) {
kobject_put(&hp->kobj);
return -1;
}
vtermnos[index] = vtermno;
cons_ops[index] = ops;
/* reserve all indices upto and including this index */
if (last_hvc < index)
last_hvc = index;
/* if this index is what the user requested, then register
* now (setup won't fail at this point). It's ok to just
* call register again if previously .setup failed.
*/
if (index == hvc_con_driver.index)
register_console(&hvc_con_driver);
return 0;
}
EXPORT_SYMBOL(hvc_instantiate);
/* Wake the sleeping khvcd */
static void hvc_kick(void)
{
hvc_kicked = 1;
wake_up_process(hvc_task);
}
static int hvc_poll(struct hvc_struct *hp);
/*
* NOTE: This API isn't used if the console adapter doesn't support interrupts.
* In this case the console is poll driven.
*/
static irqreturn_t hvc_handle_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
/* if hvc_poll request a repoll, then kick the hvcd thread */
if (hvc_poll(dev_instance))
hvc_kick();
return IRQ_HANDLED;
}
static void hvc_unthrottle(struct tty_struct *tty)
{
hvc_kick();
}
/*
* The TTY interface won't be used until after the vio layer has exposed the vty
* adapter to the kernel.
*/
static int hvc_open(struct tty_struct *tty, struct file * filp)
{
struct hvc_struct *hp;
unsigned long flags;
int irq = NO_IRQ;
int rc = 0;
struct kobject *kobjp;
/* Auto increments kobject reference if found. */
if (!(hp = hvc_get_by_index(tty->index))) {
printk(KERN_WARNING "hvc_console: tty open failed, no vty associated with tty.\n");
return -ENODEV;
}
spin_lock_irqsave(&hp->lock, flags);
/* Check and then increment for fast path open. */
if (hp->count++ > 0) {
spin_unlock_irqrestore(&hp->lock, flags);
hvc_kick();
return 0;
} /* else count == 0 */
tty->driver_data = hp;
hp->tty = tty;
/* Save for request_irq outside of spin_lock. */
irq = hp->irq;
if (irq != NO_IRQ)
hp->irq_requested = 1;
kobjp = &hp->kobj;
spin_unlock_irqrestore(&hp->lock, flags);
/* check error, fallback to non-irq */
if (irq != NO_IRQ)
rc = request_irq(irq, hvc_handle_interrupt, SA_INTERRUPT, "hvc_console", hp);
/*
* If the request_irq() fails and we return an error. The tty layer
* will call hvc_close() after a failed open but we don't want to clean
* up there so we'll clean up here and clear out the previously set
* tty fields and return the kobject reference.
*/
if (rc) {
spin_lock_irqsave(&hp->lock, flags);
hp->tty = NULL;
hp->irq_requested = 0;
spin_unlock_irqrestore(&hp->lock, flags);
tty->driver_data = NULL;
kobject_put(kobjp);
printk(KERN_ERR "hvc_open: request_irq failed with rc %d.\n", rc);
}
/* Force wakeup of the polling thread */
hvc_kick();
return rc;
}
static void hvc_close(struct tty_struct *tty, struct file * filp)
{
struct hvc_struct *hp;
struct kobject *kobjp;
int irq = NO_IRQ;
unsigned long flags;
if (tty_hung_up_p(filp))
return;
/*
* No driver_data means that this close was issued after a failed
* hvc_open by the tty layer's release_dev() function and we can just
* exit cleanly because the kobject reference wasn't made.
*/
if (!tty->driver_data)
return;
hp = tty->driver_data;
spin_lock_irqsave(&hp->lock, flags);
kobjp = &hp->kobj;
if (--hp->count == 0) {
if (hp->irq_requested)
irq = hp->irq;
hp->irq_requested = 0;
/* We are done with the tty pointer now. */
hp->tty = NULL;
spin_unlock_irqrestore(&hp->lock, flags);
/*
* Chain calls chars_in_buffer() and returns immediately if
* there is no buffered data otherwise sleeps on a wait queue
* waking periodically to check chars_in_buffer().
*/
tty_wait_until_sent(tty, HVC_CLOSE_WAIT);
if (irq != NO_IRQ)
free_irq(irq, hp);
} else {
if (hp->count < 0)
printk(KERN_ERR "hvc_close %X: oops, count is %d\n",
hp->vtermno, hp->count);
spin_unlock_irqrestore(&hp->lock, flags);
}
kobject_put(kobjp);
}
static void hvc_hangup(struct tty_struct *tty)
{
struct hvc_struct *hp = tty->driver_data;
unsigned long flags;
int irq = NO_IRQ;
int temp_open_count;
struct kobject *kobjp;
if (!hp)
return;
spin_lock_irqsave(&hp->lock, flags);
/*
* The N_TTY line discipline has problems such that in a close vs
* open->hangup case this can be called after the final close so prevent
* that from happening for now.
*/
if (hp->count <= 0) {
spin_unlock_irqrestore(&hp->lock, flags);
return;
}
kobjp = &hp->kobj;
temp_open_count = hp->count;
hp->count = 0;
hp->n_outbuf = 0;
hp->tty = NULL;
if (hp->irq_requested)
/* Saved for use outside of spin_lock. */
irq = hp->irq;
hp->irq_requested = 0;
spin_unlock_irqrestore(&hp->lock, flags);
if (irq != NO_IRQ)
free_irq(irq, hp);
while(temp_open_count) {
--temp_open_count;
kobject_put(kobjp);
}
}
/*
* Push buffered characters whether they were just recently buffered or waiting
* on a blocked hypervisor. Call this function with hp->lock held.
*/
static void hvc_push(struct hvc_struct *hp)
{
int n;
n = hp->ops->put_chars(hp->vtermno, hp->outbuf, hp->n_outbuf);
if (n <= 0) {
if (n == 0)
return;
/* throw away output on error; this happens when
there is no session connected to the vterm. */
hp->n_outbuf = 0;
} else
hp->n_outbuf -= n;
if (hp->n_outbuf > 0)
memmove(hp->outbuf, hp->outbuf + n, hp->n_outbuf);
else
hp->do_wakeup = 1;
}
static inline int __hvc_write_kernel(struct hvc_struct *hp,
const unsigned char *buf, int count)
{
unsigned long flags;
int rsize, written = 0;
spin_lock_irqsave(&hp->lock, flags);
/* Push pending writes */
if (hp->n_outbuf > 0)
hvc_push(hp);
while (count > 0 && (rsize = N_OUTBUF - hp->n_outbuf) > 0) {
if (rsize > count)
rsize = count;
memcpy(hp->outbuf + hp->n_outbuf, buf, rsize);
count -= rsize;
buf += rsize;
hp->n_outbuf += rsize;
written += rsize;
hvc_push(hp);
}
spin_unlock_irqrestore(&hp->lock, flags);
return written;
}
static int hvc_write(struct tty_struct *tty, const unsigned char *buf, int count)
{
struct hvc_struct *hp = tty->driver_data;
int written;
/* This write was probably executed during a tty close. */
if (!hp)
return -EPIPE;
if (hp->count <= 0)
return -EIO;
written = __hvc_write_kernel(hp, buf, count);
/*
* Racy, but harmless, kick thread if there is still pending data.
* There really is nothing wrong with kicking the thread, even if there
* is no buffered data.
*/
if (hp->n_outbuf)
hvc_kick();
return written;
}
/*
* This is actually a contract between the driver and the tty layer outlining
* how much write room the driver can guarentee will be sent OR BUFFERED. This
* driver MUST honor the return value.
*/
static int hvc_write_room(struct tty_struct *tty)
{
struct hvc_struct *hp = tty->driver_data;
if (!hp)
return -1;
return N_OUTBUF - hp->n_outbuf;
}
static int hvc_chars_in_buffer(struct tty_struct *tty)
{
struct hvc_struct *hp = tty->driver_data;
if (!hp)
return -1;
return hp->n_outbuf;
}
#define HVC_POLL_READ 0x00000001
#define HVC_POLL_WRITE 0x00000002
#define HVC_POLL_QUICK 0x00000004
static int hvc_poll(struct hvc_struct *hp)
{
struct tty_struct *tty;
int i, n, poll_mask = 0;
char buf[N_INBUF] __ALIGNED__;
unsigned long flags;
int read_total = 0;
spin_lock_irqsave(&hp->lock, flags);
/* Push pending writes */
if (hp->n_outbuf > 0)
hvc_push(hp);
/* Reschedule us if still some write pending */
if (hp->n_outbuf > 0)
poll_mask |= HVC_POLL_WRITE;
/* No tty attached, just skip */
tty = hp->tty;
if (tty == NULL)
goto bail;
/* Now check if we can get data (are we throttled ?) */
if (test_bit(TTY_THROTTLED, &tty->flags))
goto throttled;
/* If we aren't interrupt driven and aren't throttled, we always
* request a reschedule
*/
if (hp->irq == NO_IRQ)
poll_mask |= HVC_POLL_READ;
/* Read data if any */
for (;;) {
int count = tty_buffer_request_room(tty, N_INBUF);
/* If flip is full, just reschedule a later read */
if (count == 0) {
poll_mask |= HVC_POLL_READ;
break;
}
n = hp->ops->get_chars(hp->vtermno, buf, count);
if (n <= 0) {
/* Hangup the tty when disconnected from host */
if (n == -EPIPE) {
spin_unlock_irqrestore(&hp->lock, flags);
tty_hangup(tty);
spin_lock_irqsave(&hp->lock, flags);
}
break;
}
for (i = 0; i < n; ++i) {
#ifdef CONFIG_MAGIC_SYSRQ
if (hp->index == hvc_con_driver.index) {
/* Handle the SysRq Hack */
/* XXX should support a sequence */
if (buf[i] == '\x0f') { /* ^O */
sysrq_pressed = 1;
continue;
} else if (sysrq_pressed) {
handle_sysrq(buf[i], NULL, tty);
sysrq_pressed = 0;
continue;
}
}
#endif /* CONFIG_MAGIC_SYSRQ */
tty_insert_flip_char(tty, buf[i], 0);
}
if (count)
tty_schedule_flip(tty);
/*
* Account for the total amount read in one loop, and if above
* 64 bytes, we do a quick schedule loop to let the tty grok
* the data and eventually throttle us.
*/
read_total += n;
if (read_total >= 64) {
poll_mask |= HVC_POLL_QUICK;
break;
}
}
throttled:
/* Wakeup write queue if necessary */
if (hp->do_wakeup) {
hp->do_wakeup = 0;
tty_wakeup(tty);
}
bail:
spin_unlock_irqrestore(&hp->lock, flags);
return poll_mask;
}
#if defined(CONFIG_XMON) && defined(CONFIG_SMP)
extern cpumask_t cpus_in_xmon;
#else
static const cpumask_t cpus_in_xmon = CPU_MASK_NONE;
#endif
/*
* This kthread is either polling or interrupt driven. This is determined by
* calling hvc_poll() who determines whether a console adapter support
* interrupts.
*/
int khvcd(void *unused)
{
int poll_mask;
struct hvc_struct *hp;
__set_current_state(TASK_RUNNING);
do {
poll_mask = 0;
hvc_kicked = 0;
wmb();
if (cpus_empty(cpus_in_xmon)) {
spin_lock(&hvc_structs_lock);
list_for_each_entry(hp, &hvc_structs, next) {
poll_mask |= hvc_poll(hp);
}
spin_unlock(&hvc_structs_lock);
} else
poll_mask |= HVC_POLL_READ;
if (hvc_kicked)
continue;
if (poll_mask & HVC_POLL_QUICK) {
yield();
continue;
}
set_current_state(TASK_INTERRUPTIBLE);
if (!hvc_kicked) {
if (poll_mask == 0)
schedule();
else
msleep_interruptible(TIMEOUT);
}
__set_current_state(TASK_RUNNING);
} while (!kthread_should_stop());
return 0;
}
static struct tty_operations hvc_ops = {
.open = hvc_open,
.close = hvc_close,
.write = hvc_write,
.hangup = hvc_hangup,
.unthrottle = hvc_unthrottle,
.write_room = hvc_write_room,
.chars_in_buffer = hvc_chars_in_buffer,
};
/* callback when the kboject ref count reaches zero. */
static void destroy_hvc_struct(struct kobject *kobj)
{
struct hvc_struct *hp = container_of(kobj, struct hvc_struct, kobj);
unsigned long flags;
spin_lock(&hvc_structs_lock);
spin_lock_irqsave(&hp->lock, flags);
list_del(&(hp->next));
spin_unlock_irqrestore(&hp->lock, flags);
spin_unlock(&hvc_structs_lock);
kfree(hp);
}
static struct kobj_type hvc_kobj_type = {
.release = destroy_hvc_struct,
};
struct hvc_struct __devinit *hvc_alloc(uint32_t vtermno, int irq,
struct hv_ops *ops)
{
struct hvc_struct *hp;
int i;
hp = kmalloc(sizeof(*hp), GFP_KERNEL);
if (!hp)
return ERR_PTR(-ENOMEM);
memset(hp, 0x00, sizeof(*hp));
hp->vtermno = vtermno;
hp->irq = irq;
hp->ops = ops;
kobject_init(&hp->kobj);
hp->kobj.ktype = &hvc_kobj_type;
spin_lock_init(&hp->lock);
spin_lock(&hvc_structs_lock);
/*
* find index to use:
* see if this vterm id matches one registered for console.
*/
for (i=0; i < MAX_NR_HVC_CONSOLES; i++)
if (vtermnos[i] == hp->vtermno)
break;
/* no matching slot, just use a counter */
if (i >= MAX_NR_HVC_CONSOLES)
i = ++last_hvc;
hp->index = i;
list_add_tail(&(hp->next), &hvc_structs);
spin_unlock(&hvc_structs_lock);
return hp;
}
EXPORT_SYMBOL(hvc_alloc);
int __devexit hvc_remove(struct hvc_struct *hp)
{
unsigned long flags;
struct kobject *kobjp;
struct tty_struct *tty;
spin_lock_irqsave(&hp->lock, flags);
tty = hp->tty;
kobjp = &hp->kobj;
if (hp->index < MAX_NR_HVC_CONSOLES)
vtermnos[hp->index] = -1;
/* Don't whack hp->irq because tty_hangup() will need to free the irq. */
spin_unlock_irqrestore(&hp->lock, flags);
/*
* We 'put' the instance that was grabbed when the kobject instance
* was intialized using kobject_init(). Let the last holder of this
* kobject cause it to be removed, which will probably be the tty_hangup
* below.
*/
kobject_put(kobjp);
/*
* This function call will auto chain call hvc_hangup. The tty should
* always be valid at this time unless a simultaneous tty close already
* cleaned up the hvc_struct.
*/
if (tty)
tty_hangup(tty);
return 0;
}
EXPORT_SYMBOL(hvc_remove);
/* Driver initialization. Follow console initialization. This is where the TTY
* interfaces start to become available. */
int __init hvc_init(void)
{
/* We need more than hvc_count adapters due to hotplug additions. */
hvc_driver = alloc_tty_driver(HVC_ALLOC_TTY_ADAPTERS);
if (!hvc_driver)
return -ENOMEM;
hvc_driver->owner = THIS_MODULE;
hvc_driver->devfs_name = "hvc/";
hvc_driver->driver_name = "hvc";
hvc_driver->name = "hvc";
hvc_driver->major = HVC_MAJOR;
hvc_driver->minor_start = HVC_MINOR;
hvc_driver->type = TTY_DRIVER_TYPE_SYSTEM;
hvc_driver->init_termios = tty_std_termios;
hvc_driver->flags = TTY_DRIVER_REAL_RAW;
tty_set_operations(hvc_driver, &hvc_ops);
/* Always start the kthread because there can be hotplug vty adapters
* added later. */
hvc_task = kthread_run(khvcd, NULL, "khvcd");
if (IS_ERR(hvc_task)) {
panic("Couldn't create kthread for console.\n");
put_tty_driver(hvc_driver);
return -EIO;
}
if (tty_register_driver(hvc_driver))
panic("Couldn't register hvc console driver\n");
return 0;
}
module_init(hvc_init);
/* This isn't particularily necessary due to this being a console driver
* but it is nice to be thorough.
*/
static void __exit hvc_exit(void)
{
kthread_stop(hvc_task);
tty_unregister_driver(hvc_driver);
/* return tty_struct instances allocated in hvc_init(). */
put_tty_driver(hvc_driver);
unregister_console(&hvc_con_driver);
}
module_exit(hvc_exit);