kernel_optimize_test/arch/x86/crypto/twofish_avx_glue.c
Jussi Kivilinna 30a0400882 crypto: twofish-avx - change to use shared ablk_* functions
Remove duplicate ablk_* functions and make use of ablk_helper module instead.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-06-27 14:42:01 +08:00

983 lines
24 KiB
C

/*
* Glue Code for AVX assembler version of Twofish Cipher
*
* Copyright (C) 2012 Johannes Goetzfried
* <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
*
* Glue code based on serpent_sse2_glue.c by:
* Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*/
#include <linux/module.h>
#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/twofish.h>
#include <crypto/cryptd.h>
#include <crypto/b128ops.h>
#include <crypto/ctr.h>
#include <crypto/lrw.h>
#include <crypto/xts.h>
#include <asm/i387.h>
#include <asm/xcr.h>
#include <asm/xsave.h>
#include <asm/crypto/ablk_helper.h>
#include <crypto/scatterwalk.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#define TWOFISH_PARALLEL_BLOCKS 8
/* regular block cipher functions from twofish_x86_64 module */
asmlinkage void twofish_enc_blk(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_dec_blk(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
/* 3-way parallel cipher functions from twofish_x86_64-3way module */
asmlinkage void __twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, bool xor);
asmlinkage void twofish_dec_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_3way(ctx, dst, src, false);
}
static inline void twofish_enc_blk_3way_xor(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_3way(ctx, dst, src, true);
}
/* 8-way parallel cipher functions */
asmlinkage void __twofish_enc_blk_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, bool xor);
asmlinkage void twofish_dec_blk_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
static inline void twofish_enc_blk_xway(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_8way(ctx, dst, src, false);
}
static inline void twofish_enc_blk_xway_xor(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_8way(ctx, dst, src, true);
}
static inline void twofish_dec_blk_xway(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
twofish_dec_blk_8way(ctx, dst, src);
}
static inline bool twofish_fpu_begin(bool fpu_enabled, unsigned int nbytes)
{
if (fpu_enabled)
return true;
/* AVX is only used when chunk to be processed is large enough, so
* do not enable FPU until it is necessary.
*/
if (nbytes < TF_BLOCK_SIZE * TWOFISH_PARALLEL_BLOCKS)
return false;
kernel_fpu_begin();
return true;
}
static inline void twofish_fpu_end(bool fpu_enabled)
{
if (fpu_enabled)
kernel_fpu_end();
}
static int ecb_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk,
bool enc)
{
bool fpu_enabled = false;
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes;
int err;
err = blkcipher_walk_virt(desc, walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
while ((nbytes = walk->nbytes)) {
u8 *wsrc = walk->src.virt.addr;
u8 *wdst = walk->dst.virt.addr;
fpu_enabled = twofish_fpu_begin(fpu_enabled, nbytes);
/* Process multi-block batch */
if (nbytes >= bsize * TWOFISH_PARALLEL_BLOCKS) {
do {
if (enc)
twofish_enc_blk_xway(ctx, wdst, wsrc);
else
twofish_dec_blk_xway(ctx, wdst, wsrc);
wsrc += bsize * TWOFISH_PARALLEL_BLOCKS;
wdst += bsize * TWOFISH_PARALLEL_BLOCKS;
nbytes -= bsize * TWOFISH_PARALLEL_BLOCKS;
} while (nbytes >= bsize * TWOFISH_PARALLEL_BLOCKS);
if (nbytes < bsize)
goto done;
}
/* Process three block batch */
if (nbytes >= bsize * 3) {
do {
if (enc)
twofish_enc_blk_3way(ctx, wdst, wsrc);
else
twofish_dec_blk_3way(ctx, wdst, wsrc);
wsrc += bsize * 3;
wdst += bsize * 3;
nbytes -= bsize * 3;
} while (nbytes >= bsize * 3);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
do {
if (enc)
twofish_enc_blk(ctx, wdst, wsrc);
else
twofish_dec_blk(ctx, wdst, wsrc);
wsrc += bsize;
wdst += bsize;
nbytes -= bsize;
} while (nbytes >= bsize);
done:
err = blkcipher_walk_done(desc, walk, nbytes);
}
twofish_fpu_end(fpu_enabled);
return err;
}
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_crypt(desc, &walk, true);
}
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_crypt(desc, &walk, false);
}
static unsigned int __cbc_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 *iv = (u128 *)walk->iv;
do {
u128_xor(dst, src, iv);
twofish_enc_blk(ctx, (u8 *)dst, (u8 *)dst);
iv = dst;
src += 1;
dst += 1;
nbytes -= bsize;
} while (nbytes >= bsize);
u128_xor((u128 *)walk->iv, (u128 *)walk->iv, iv);
return nbytes;
}
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
while ((nbytes = walk.nbytes)) {
nbytes = __cbc_encrypt(desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
return err;
}
static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 ivs[TWOFISH_PARALLEL_BLOCKS - 1];
u128 last_iv;
int i;
/* Start of the last block. */
src += nbytes / bsize - 1;
dst += nbytes / bsize - 1;
last_iv = *src;
/* Process multi-block batch */
if (nbytes >= bsize * TWOFISH_PARALLEL_BLOCKS) {
do {
nbytes -= bsize * (TWOFISH_PARALLEL_BLOCKS - 1);
src -= TWOFISH_PARALLEL_BLOCKS - 1;
dst -= TWOFISH_PARALLEL_BLOCKS - 1;
for (i = 0; i < TWOFISH_PARALLEL_BLOCKS - 1; i++)
ivs[i] = src[i];
twofish_dec_blk_xway(ctx, (u8 *)dst, (u8 *)src);
for (i = 0; i < TWOFISH_PARALLEL_BLOCKS - 1; i++)
u128_xor(dst + (i + 1), dst + (i + 1), ivs + i);
nbytes -= bsize;
if (nbytes < bsize)
goto done;
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
} while (nbytes >= bsize * TWOFISH_PARALLEL_BLOCKS);
if (nbytes < bsize)
goto done;
}
/* Process three block batch */
if (nbytes >= bsize * 3) {
do {
nbytes -= bsize * (3 - 1);
src -= 3 - 1;
dst -= 3 - 1;
ivs[0] = src[0];
ivs[1] = src[1];
twofish_dec_blk_3way(ctx, (u8 *)dst, (u8 *)src);
u128_xor(dst + 1, dst + 1, ivs + 0);
u128_xor(dst + 2, dst + 2, ivs + 1);
nbytes -= bsize;
if (nbytes < bsize)
goto done;
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
} while (nbytes >= bsize * 3);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
for (;;) {
twofish_dec_blk(ctx, (u8 *)dst, (u8 *)src);
nbytes -= bsize;
if (nbytes < bsize)
break;
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
}
done:
u128_xor(dst, dst, (u128 *)walk->iv);
*(u128 *)walk->iv = last_iv;
return nbytes;
}
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
bool fpu_enabled = false;
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
while ((nbytes = walk.nbytes)) {
fpu_enabled = twofish_fpu_begin(fpu_enabled, nbytes);
nbytes = __cbc_decrypt(desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
twofish_fpu_end(fpu_enabled);
return err;
}
static inline void u128_to_be128(be128 *dst, const u128 *src)
{
dst->a = cpu_to_be64(src->a);
dst->b = cpu_to_be64(src->b);
}
static inline void be128_to_u128(u128 *dst, const be128 *src)
{
dst->a = be64_to_cpu(src->a);
dst->b = be64_to_cpu(src->b);
}
static inline void u128_inc(u128 *i)
{
i->b++;
if (!i->b)
i->a++;
}
static void ctr_crypt_final(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
u8 *ctrblk = walk->iv;
u8 keystream[TF_BLOCK_SIZE];
u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
twofish_enc_blk(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_inc(ctrblk, TF_BLOCK_SIZE);
}
static unsigned int __ctr_crypt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 ctrblk;
be128 ctrblocks[TWOFISH_PARALLEL_BLOCKS];
int i;
be128_to_u128(&ctrblk, (be128 *)walk->iv);
/* Process multi-block batch */
if (nbytes >= bsize * TWOFISH_PARALLEL_BLOCKS) {
do {
/* create ctrblks for parallel encrypt */
for (i = 0; i < TWOFISH_PARALLEL_BLOCKS; i++) {
if (dst != src)
dst[i] = src[i];
u128_to_be128(&ctrblocks[i], &ctrblk);
u128_inc(&ctrblk);
}
twofish_enc_blk_xway_xor(ctx, (u8 *)dst,
(u8 *)ctrblocks);
src += TWOFISH_PARALLEL_BLOCKS;
dst += TWOFISH_PARALLEL_BLOCKS;
nbytes -= bsize * TWOFISH_PARALLEL_BLOCKS;
} while (nbytes >= bsize * TWOFISH_PARALLEL_BLOCKS);
if (nbytes < bsize)
goto done;
}
/* Process three block batch */
if (nbytes >= bsize * 3) {
do {
if (dst != src) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
/* create ctrblks for parallel encrypt */
u128_to_be128(&ctrblocks[0], &ctrblk);
u128_inc(&ctrblk);
u128_to_be128(&ctrblocks[1], &ctrblk);
u128_inc(&ctrblk);
u128_to_be128(&ctrblocks[2], &ctrblk);
u128_inc(&ctrblk);
twofish_enc_blk_3way_xor(ctx, (u8 *)dst,
(u8 *)ctrblocks);
src += 3;
dst += 3;
nbytes -= bsize * 3;
} while (nbytes >= bsize * 3);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
do {
if (dst != src)
*dst = *src;
u128_to_be128(&ctrblocks[0], &ctrblk);
u128_inc(&ctrblk);
twofish_enc_blk(ctx, (u8 *)ctrblocks, (u8 *)ctrblocks);
u128_xor(dst, dst, (u128 *)ctrblocks);
src += 1;
dst += 1;
nbytes -= bsize;
} while (nbytes >= bsize);
done:
u128_to_be128((be128 *)walk->iv, &ctrblk);
return nbytes;
}
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
bool fpu_enabled = false;
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt_block(desc, &walk, TF_BLOCK_SIZE);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
while ((nbytes = walk.nbytes) >= TF_BLOCK_SIZE) {
fpu_enabled = twofish_fpu_begin(fpu_enabled, nbytes);
nbytes = __ctr_crypt(desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
twofish_fpu_end(fpu_enabled);
if (walk.nbytes) {
ctr_crypt_final(desc, &walk);
err = blkcipher_walk_done(desc, &walk, 0);
}
return err;
}
struct crypt_priv {
struct twofish_ctx *ctx;
bool fpu_enabled;
};
static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
{
const unsigned int bsize = TF_BLOCK_SIZE;
struct crypt_priv *ctx = priv;
int i;
ctx->fpu_enabled = twofish_fpu_begin(ctx->fpu_enabled, nbytes);
if (nbytes == bsize * TWOFISH_PARALLEL_BLOCKS) {
twofish_enc_blk_xway(ctx->ctx, srcdst, srcdst);
return;
}
for (i = 0; i < nbytes / (bsize * 3); i++, srcdst += bsize * 3)
twofish_enc_blk_3way(ctx->ctx, srcdst, srcdst);
nbytes %= bsize * 3;
for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
twofish_enc_blk(ctx->ctx, srcdst, srcdst);
}
static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
{
const unsigned int bsize = TF_BLOCK_SIZE;
struct crypt_priv *ctx = priv;
int i;
ctx->fpu_enabled = twofish_fpu_begin(ctx->fpu_enabled, nbytes);
if (nbytes == bsize * TWOFISH_PARALLEL_BLOCKS) {
twofish_dec_blk_xway(ctx->ctx, srcdst, srcdst);
return;
}
for (i = 0; i < nbytes / (bsize * 3); i++, srcdst += bsize * 3)
twofish_dec_blk_3way(ctx->ctx, srcdst, srcdst);
nbytes %= bsize * 3;
for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
twofish_dec_blk(ctx->ctx, srcdst, srcdst);
}
struct twofish_lrw_ctx {
struct lrw_table_ctx lrw_table;
struct twofish_ctx twofish_ctx;
};
static int lrw_twofish_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct twofish_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
int err;
err = __twofish_setkey(&ctx->twofish_ctx, key,
keylen - TF_BLOCK_SIZE, &tfm->crt_flags);
if (err)
return err;
return lrw_init_table(&ctx->lrw_table, key + keylen -
TF_BLOCK_SIZE);
}
static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[TWOFISH_PARALLEL_BLOCKS];
struct crypt_priv crypt_ctx = {
.ctx = &ctx->twofish_ctx,
.fpu_enabled = false,
};
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = &crypt_ctx,
.crypt_fn = encrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ret = lrw_crypt(desc, dst, src, nbytes, &req);
twofish_fpu_end(crypt_ctx.fpu_enabled);
return ret;
}
static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[TWOFISH_PARALLEL_BLOCKS];
struct crypt_priv crypt_ctx = {
.ctx = &ctx->twofish_ctx,
.fpu_enabled = false,
};
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = &crypt_ctx,
.crypt_fn = decrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ret = lrw_crypt(desc, dst, src, nbytes, &req);
twofish_fpu_end(crypt_ctx.fpu_enabled);
return ret;
}
static void lrw_exit_tfm(struct crypto_tfm *tfm)
{
struct twofish_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
lrw_free_table(&ctx->lrw_table);
}
struct twofish_xts_ctx {
struct twofish_ctx tweak_ctx;
struct twofish_ctx crypt_ctx;
};
static int xts_twofish_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct twofish_xts_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
int err;
/* key consists of keys of equal size concatenated, therefore
* the length must be even
*/
if (keylen % 2) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/* first half of xts-key is for crypt */
err = __twofish_setkey(&ctx->crypt_ctx, key, keylen / 2, flags);
if (err)
return err;
/* second half of xts-key is for tweak */
return __twofish_setkey(&ctx->tweak_ctx,
key + keylen / 2, keylen / 2, flags);
}
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[TWOFISH_PARALLEL_BLOCKS];
struct crypt_priv crypt_ctx = {
.ctx = &ctx->crypt_ctx,
.fpu_enabled = false,
};
struct xts_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.tweak_ctx = &ctx->tweak_ctx,
.tweak_fn = XTS_TWEAK_CAST(twofish_enc_blk),
.crypt_ctx = &crypt_ctx,
.crypt_fn = encrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ret = xts_crypt(desc, dst, src, nbytes, &req);
twofish_fpu_end(crypt_ctx.fpu_enabled);
return ret;
}
static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[TWOFISH_PARALLEL_BLOCKS];
struct crypt_priv crypt_ctx = {
.ctx = &ctx->crypt_ctx,
.fpu_enabled = false,
};
struct xts_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.tweak_ctx = &ctx->tweak_ctx,
.tweak_fn = XTS_TWEAK_CAST(twofish_enc_blk),
.crypt_ctx = &crypt_ctx,
.crypt_fn = decrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ret = xts_crypt(desc, dst, src, nbytes, &req);
twofish_fpu_end(crypt_ctx.fpu_enabled);
return ret;
}
static struct crypto_alg twofish_algs[10] = { {
.cra_name = "__ecb-twofish-avx",
.cra_driver_name = "__driver-ecb-twofish-avx",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[0].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = twofish_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "__cbc-twofish-avx",
.cra_driver_name = "__driver-cbc-twofish-avx",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[1].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = twofish_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "__ctr-twofish-avx",
.cra_driver_name = "__driver-ctr-twofish-avx",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[2].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = twofish_setkey,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
}, {
.cra_name = "__lrw-twofish-avx",
.cra_driver_name = "__driver-lrw-twofish-avx",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_lrw_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[3].cra_list),
.cra_exit = lrw_exit_tfm,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE +
TF_BLOCK_SIZE,
.max_keysize = TF_MAX_KEY_SIZE +
TF_BLOCK_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = lrw_twofish_setkey,
.encrypt = lrw_encrypt,
.decrypt = lrw_decrypt,
},
},
}, {
.cra_name = "__xts-twofish-avx",
.cra_driver_name = "__driver-xts-twofish-avx",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_xts_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[4].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE * 2,
.max_keysize = TF_MAX_KEY_SIZE * 2,
.ivsize = TF_BLOCK_SIZE,
.setkey = xts_twofish_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
},
},
}, {
.cra_name = "ecb(twofish)",
.cra_driver_name = "ecb-twofish-avx",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[5].cra_list),
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "cbc(twofish)",
.cra_driver_name = "cbc-twofish-avx",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[6].cra_list),
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = __ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "ctr(twofish)",
.cra_driver_name = "ctr-twofish-avx",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[7].cra_list),
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_encrypt,
.geniv = "chainiv",
},
},
}, {
.cra_name = "lrw(twofish)",
.cra_driver_name = "lrw-twofish-avx",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[8].cra_list),
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE +
TF_BLOCK_SIZE,
.max_keysize = TF_MAX_KEY_SIZE +
TF_BLOCK_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "xts(twofish)",
.cra_driver_name = "xts-twofish-avx",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(twofish_algs[9].cra_list),
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE * 2,
.max_keysize = TF_MAX_KEY_SIZE * 2,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
} };
static int __init twofish_init(void)
{
u64 xcr0;
if (!cpu_has_avx || !cpu_has_osxsave) {
printk(KERN_INFO "AVX instructions are not detected.\n");
return -ENODEV;
}
xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
printk(KERN_INFO "AVX detected but unusable.\n");
return -ENODEV;
}
return crypto_register_algs(twofish_algs, ARRAY_SIZE(twofish_algs));
}
static void __exit twofish_exit(void)
{
crypto_unregister_algs(twofish_algs, ARRAY_SIZE(twofish_algs));
}
module_init(twofish_init);
module_exit(twofish_exit);
MODULE_DESCRIPTION("Twofish Cipher Algorithm, AVX optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS("twofish");