kernel_optimize_test/drivers/input/mouse/cyapa.c
Benson Leung 6ddaf744c9 Input: cyapa - add support for smbus protocol
This patch adds support for the Cypress APA Smbus Trackpad type,
which uses a modified register map that fits within the
limitations of the smbus protocol.

Devices that use this protocol include:
CYTRA-116001-00 - Samsung Series 5 550 Chromebook trackpad
CYTRA-103002-00 - Acer C7 Chromebook trackpad
CYTRA-101003-00 - HP Pavilion 14 Chromebook trackpad

Signed-off-by: Dudley Du <dudl@cypress.com>
Signed-off-by: Benson Leung <bleung@chromium.org>
Reviewed-by: Daniel Kurtz <djkurtz@chromium.org>
Reviewed-by: Henrik Rydberg <rydberg@euromail.se>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
2013-02-13 20:21:17 -08:00

974 lines
26 KiB
C

/*
* Cypress APA trackpad with I2C interface
*
* Author: Dudley Du <dudl@cypress.com>
* Further cleanup and restructuring by:
* Daniel Kurtz <djkurtz@chromium.org>
* Benson Leung <bleung@chromium.org>
*
* Copyright (C) 2011-2012 Cypress Semiconductor, Inc.
* Copyright (C) 2011-2012 Google, Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/slab.h>
/* APA trackpad firmware generation */
#define CYAPA_GEN3 0x03 /* support MT-protocol B with tracking ID. */
#define CYAPA_NAME "Cypress APA Trackpad (cyapa)"
/* commands for read/write registers of Cypress trackpad */
#define CYAPA_CMD_SOFT_RESET 0x00
#define CYAPA_CMD_POWER_MODE 0x01
#define CYAPA_CMD_DEV_STATUS 0x02
#define CYAPA_CMD_GROUP_DATA 0x03
#define CYAPA_CMD_GROUP_CMD 0x04
#define CYAPA_CMD_GROUP_QUERY 0x05
#define CYAPA_CMD_BL_STATUS 0x06
#define CYAPA_CMD_BL_HEAD 0x07
#define CYAPA_CMD_BL_CMD 0x08
#define CYAPA_CMD_BL_DATA 0x09
#define CYAPA_CMD_BL_ALL 0x0a
#define CYAPA_CMD_BLK_PRODUCT_ID 0x0b
#define CYAPA_CMD_BLK_HEAD 0x0c
/* report data start reg offset address. */
#define DATA_REG_START_OFFSET 0x0000
#define BL_HEAD_OFFSET 0x00
#define BL_DATA_OFFSET 0x10
/*
* Operational Device Status Register
*
* bit 7: Valid interrupt source
* bit 6 - 4: Reserved
* bit 3 - 2: Power status
* bit 1 - 0: Device status
*/
#define REG_OP_STATUS 0x00
#define OP_STATUS_SRC 0x80
#define OP_STATUS_POWER 0x0c
#define OP_STATUS_DEV 0x03
#define OP_STATUS_MASK (OP_STATUS_SRC | OP_STATUS_POWER | OP_STATUS_DEV)
/*
* Operational Finger Count/Button Flags Register
*
* bit 7 - 4: Number of touched finger
* bit 3: Valid data
* bit 2: Middle Physical Button
* bit 1: Right Physical Button
* bit 0: Left physical Button
*/
#define REG_OP_DATA1 0x01
#define OP_DATA_VALID 0x08
#define OP_DATA_MIDDLE_BTN 0x04
#define OP_DATA_RIGHT_BTN 0x02
#define OP_DATA_LEFT_BTN 0x01
#define OP_DATA_BTN_MASK (OP_DATA_MIDDLE_BTN | OP_DATA_RIGHT_BTN | \
OP_DATA_LEFT_BTN)
/*
* Bootloader Status Register
*
* bit 7: Busy
* bit 6 - 5: Reserved
* bit 4: Bootloader running
* bit 3 - 1: Reserved
* bit 0: Checksum valid
*/
#define REG_BL_STATUS 0x01
#define BL_STATUS_BUSY 0x80
#define BL_STATUS_RUNNING 0x10
#define BL_STATUS_DATA_VALID 0x08
#define BL_STATUS_CSUM_VALID 0x01
/*
* Bootloader Error Register
*
* bit 7: Invalid
* bit 6: Invalid security key
* bit 5: Bootloading
* bit 4: Command checksum
* bit 3: Flash protection error
* bit 2: Flash checksum error
* bit 1 - 0: Reserved
*/
#define REG_BL_ERROR 0x02
#define BL_ERROR_INVALID 0x80
#define BL_ERROR_INVALID_KEY 0x40
#define BL_ERROR_BOOTLOADING 0x20
#define BL_ERROR_CMD_CSUM 0x10
#define BL_ERROR_FLASH_PROT 0x08
#define BL_ERROR_FLASH_CSUM 0x04
#define BL_STATUS_SIZE 3 /* length of bootloader status registers */
#define BLK_HEAD_BYTES 32
#define PRODUCT_ID_SIZE 16
#define QUERY_DATA_SIZE 27
#define REG_PROTOCOL_GEN_QUERY_OFFSET 20
#define REG_OFFSET_DATA_BASE 0x0000
#define REG_OFFSET_COMMAND_BASE 0x0028
#define REG_OFFSET_QUERY_BASE 0x002a
#define CAPABILITY_LEFT_BTN_MASK (0x01 << 3)
#define CAPABILITY_RIGHT_BTN_MASK (0x01 << 4)
#define CAPABILITY_MIDDLE_BTN_MASK (0x01 << 5)
#define CAPABILITY_BTN_MASK (CAPABILITY_LEFT_BTN_MASK | \
CAPABILITY_RIGHT_BTN_MASK | \
CAPABILITY_MIDDLE_BTN_MASK)
#define CYAPA_OFFSET_SOFT_RESET REG_OFFSET_COMMAND_BASE
#define REG_OFFSET_POWER_MODE (REG_OFFSET_COMMAND_BASE + 1)
#define PWR_MODE_MASK 0xfc
#define PWR_MODE_FULL_ACTIVE (0x3f << 2)
#define PWR_MODE_IDLE (0x05 << 2) /* default sleep time is 50 ms. */
#define PWR_MODE_OFF (0x00 << 2)
#define PWR_STATUS_MASK 0x0c
#define PWR_STATUS_ACTIVE (0x03 << 2)
#define PWR_STATUS_IDLE (0x02 << 2)
#define PWR_STATUS_OFF (0x00 << 2)
/*
* CYAPA trackpad device states.
* Used in register 0x00, bit1-0, DeviceStatus field.
* Other values indicate device is in an abnormal state and must be reset.
*/
#define CYAPA_DEV_NORMAL 0x03
#define CYAPA_DEV_BUSY 0x01
enum cyapa_state {
CYAPA_STATE_OP,
CYAPA_STATE_BL_IDLE,
CYAPA_STATE_BL_ACTIVE,
CYAPA_STATE_BL_BUSY,
CYAPA_STATE_NO_DEVICE,
};
struct cyapa_touch {
/*
* high bits or x/y position value
* bit 7 - 4: high 4 bits of x position value
* bit 3 - 0: high 4 bits of y position value
*/
u8 xy_hi;
u8 x_lo; /* low 8 bits of x position value. */
u8 y_lo; /* low 8 bits of y position value. */
u8 pressure;
/* id range is 1 - 15. It is incremented with every new touch. */
u8 id;
} __packed;
/* The touch.id is used as the MT slot id, thus max MT slot is 15 */
#define CYAPA_MAX_MT_SLOTS 15
struct cyapa_reg_data {
/*
* bit 0 - 1: device status
* bit 3 - 2: power mode
* bit 6 - 4: reserved
* bit 7: interrupt valid bit
*/
u8 device_status;
/*
* bit 7 - 4: number of fingers currently touching pad
* bit 3: valid data check bit
* bit 2: middle mechanism button state if exists
* bit 1: right mechanism button state if exists
* bit 0: left mechanism button state if exists
*/
u8 finger_btn;
/* CYAPA reports up to 5 touches per packet. */
struct cyapa_touch touches[5];
} __packed;
/* The main device structure */
struct cyapa {
enum cyapa_state state;
struct i2c_client *client;
struct input_dev *input;
char phys[32]; /* device physical location */
int irq;
bool irq_wake; /* irq wake is enabled */
bool smbus;
/* read from query data region. */
char product_id[16];
u8 btn_capability;
u8 gen;
int max_abs_x;
int max_abs_y;
int physical_size_x;
int physical_size_y;
};
static const u8 bl_deactivate[] = { 0x00, 0xff, 0x3b, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07 };
static const u8 bl_exit[] = { 0x00, 0xff, 0xa5, 0x00, 0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07 };
struct cyapa_cmd_len {
u8 cmd;
u8 len;
};
#define CYAPA_ADAPTER_FUNC_NONE 0
#define CYAPA_ADAPTER_FUNC_I2C 1
#define CYAPA_ADAPTER_FUNC_SMBUS 2
#define CYAPA_ADAPTER_FUNC_BOTH 3
/*
* macros for SMBus communication
*/
#define SMBUS_READ 0x01
#define SMBUS_WRITE 0x00
#define SMBUS_ENCODE_IDX(cmd, idx) ((cmd) | (((idx) & 0x03) << 1))
#define SMBUS_ENCODE_RW(cmd, rw) ((cmd) | ((rw) & 0x01))
#define SMBUS_BYTE_BLOCK_CMD_MASK 0x80
#define SMBUS_GROUP_BLOCK_CMD_MASK 0x40
/* for byte read/write command */
#define CMD_RESET 0
#define CMD_POWER_MODE 1
#define CMD_DEV_STATUS 2
#define SMBUS_BYTE_CMD(cmd) (((cmd) & 0x3f) << 1)
#define CYAPA_SMBUS_RESET SMBUS_BYTE_CMD(CMD_RESET)
#define CYAPA_SMBUS_POWER_MODE SMBUS_BYTE_CMD(CMD_POWER_MODE)
#define CYAPA_SMBUS_DEV_STATUS SMBUS_BYTE_CMD(CMD_DEV_STATUS)
/* for group registers read/write command */
#define REG_GROUP_DATA 0
#define REG_GROUP_CMD 2
#define REG_GROUP_QUERY 3
#define SMBUS_GROUP_CMD(grp) (0x80 | (((grp) & 0x07) << 3))
#define CYAPA_SMBUS_GROUP_DATA SMBUS_GROUP_CMD(REG_GROUP_DATA)
#define CYAPA_SMBUS_GROUP_CMD SMBUS_GROUP_CMD(REG_GROUP_CMD)
#define CYAPA_SMBUS_GROUP_QUERY SMBUS_GROUP_CMD(REG_GROUP_QUERY)
/* for register block read/write command */
#define CMD_BL_STATUS 0
#define CMD_BL_HEAD 1
#define CMD_BL_CMD 2
#define CMD_BL_DATA 3
#define CMD_BL_ALL 4
#define CMD_BLK_PRODUCT_ID 5
#define CMD_BLK_HEAD 6
#define SMBUS_BLOCK_CMD(cmd) (0xc0 | (((cmd) & 0x1f) << 1))
/* register block read/write command in bootloader mode */
#define CYAPA_SMBUS_BL_STATUS SMBUS_BLOCK_CMD(CMD_BL_STATUS)
#define CYAPA_SMBUS_BL_HEAD SMBUS_BLOCK_CMD(CMD_BL_HEAD)
#define CYAPA_SMBUS_BL_CMD SMBUS_BLOCK_CMD(CMD_BL_CMD)
#define CYAPA_SMBUS_BL_DATA SMBUS_BLOCK_CMD(CMD_BL_DATA)
#define CYAPA_SMBUS_BL_ALL SMBUS_BLOCK_CMD(CMD_BL_ALL)
/* register block read/write command in operational mode */
#define CYAPA_SMBUS_BLK_PRODUCT_ID SMBUS_BLOCK_CMD(CMD_BLK_PRODUCT_ID)
#define CYAPA_SMBUS_BLK_HEAD SMBUS_BLOCK_CMD(CMD_BLK_HEAD)
static const struct cyapa_cmd_len cyapa_i2c_cmds[] = {
{ CYAPA_OFFSET_SOFT_RESET, 1 },
{ REG_OFFSET_COMMAND_BASE + 1, 1 },
{ REG_OFFSET_DATA_BASE, 1 },
{ REG_OFFSET_DATA_BASE, sizeof(struct cyapa_reg_data) },
{ REG_OFFSET_COMMAND_BASE, 0 },
{ REG_OFFSET_QUERY_BASE, QUERY_DATA_SIZE },
{ BL_HEAD_OFFSET, 3 },
{ BL_HEAD_OFFSET, 16 },
{ BL_HEAD_OFFSET, 16 },
{ BL_DATA_OFFSET, 16 },
{ BL_HEAD_OFFSET, 32 },
{ REG_OFFSET_QUERY_BASE, PRODUCT_ID_SIZE },
{ REG_OFFSET_DATA_BASE, 32 }
};
static const struct cyapa_cmd_len cyapa_smbus_cmds[] = {
{ CYAPA_SMBUS_RESET, 1 },
{ CYAPA_SMBUS_POWER_MODE, 1 },
{ CYAPA_SMBUS_DEV_STATUS, 1 },
{ CYAPA_SMBUS_GROUP_DATA, sizeof(struct cyapa_reg_data) },
{ CYAPA_SMBUS_GROUP_CMD, 2 },
{ CYAPA_SMBUS_GROUP_QUERY, QUERY_DATA_SIZE },
{ CYAPA_SMBUS_BL_STATUS, 3 },
{ CYAPA_SMBUS_BL_HEAD, 16 },
{ CYAPA_SMBUS_BL_CMD, 16 },
{ CYAPA_SMBUS_BL_DATA, 16 },
{ CYAPA_SMBUS_BL_ALL, 32 },
{ CYAPA_SMBUS_BLK_PRODUCT_ID, PRODUCT_ID_SIZE },
{ CYAPA_SMBUS_BLK_HEAD, 16 },
};
static ssize_t cyapa_i2c_reg_read_block(struct cyapa *cyapa, u8 reg, size_t len,
u8 *values)
{
return i2c_smbus_read_i2c_block_data(cyapa->client, reg, len, values);
}
static ssize_t cyapa_i2c_reg_write_block(struct cyapa *cyapa, u8 reg,
size_t len, const u8 *values)
{
return i2c_smbus_write_i2c_block_data(cyapa->client, reg, len, values);
}
/*
* cyapa_smbus_read_block - perform smbus block read command
* @cyapa - private data structure of the driver
* @cmd - the properly encoded smbus command
* @len - expected length of smbus command result
* @values - buffer to store smbus command result
*
* Returns negative errno, else the number of bytes written.
*
* Note:
* In trackpad device, the memory block allocated for I2C register map
* is 256 bytes, so the max read block for I2C bus is 256 bytes.
*/
static ssize_t cyapa_smbus_read_block(struct cyapa *cyapa, u8 cmd, size_t len,
u8 *values)
{
ssize_t ret;
u8 index;
u8 smbus_cmd;
u8 *buf;
struct i2c_client *client = cyapa->client;
if (!(SMBUS_BYTE_BLOCK_CMD_MASK & cmd))
return -EINVAL;
if (SMBUS_GROUP_BLOCK_CMD_MASK & cmd) {
/* read specific block registers command. */
smbus_cmd = SMBUS_ENCODE_RW(cmd, SMBUS_READ);
ret = i2c_smbus_read_block_data(client, smbus_cmd, values);
goto out;
}
ret = 0;
for (index = 0; index * I2C_SMBUS_BLOCK_MAX < len; index++) {
smbus_cmd = SMBUS_ENCODE_IDX(cmd, index);
smbus_cmd = SMBUS_ENCODE_RW(smbus_cmd, SMBUS_READ);
buf = values + I2C_SMBUS_BLOCK_MAX * index;
ret = i2c_smbus_read_block_data(client, smbus_cmd, buf);
if (ret < 0)
goto out;
}
out:
return ret > 0 ? len : ret;
}
static s32 cyapa_read_byte(struct cyapa *cyapa, u8 cmd_idx)
{
u8 cmd;
if (cyapa->smbus) {
cmd = cyapa_smbus_cmds[cmd_idx].cmd;
cmd = SMBUS_ENCODE_RW(cmd, SMBUS_READ);
} else {
cmd = cyapa_i2c_cmds[cmd_idx].cmd;
}
return i2c_smbus_read_byte_data(cyapa->client, cmd);
}
static s32 cyapa_write_byte(struct cyapa *cyapa, u8 cmd_idx, u8 value)
{
u8 cmd;
if (cyapa->smbus) {
cmd = cyapa_smbus_cmds[cmd_idx].cmd;
cmd = SMBUS_ENCODE_RW(cmd, SMBUS_WRITE);
} else {
cmd = cyapa_i2c_cmds[cmd_idx].cmd;
}
return i2c_smbus_write_byte_data(cyapa->client, cmd, value);
}
static ssize_t cyapa_read_block(struct cyapa *cyapa, u8 cmd_idx, u8 *values)
{
u8 cmd;
size_t len;
if (cyapa->smbus) {
cmd = cyapa_smbus_cmds[cmd_idx].cmd;
len = cyapa_smbus_cmds[cmd_idx].len;
return cyapa_smbus_read_block(cyapa, cmd, len, values);
} else {
cmd = cyapa_i2c_cmds[cmd_idx].cmd;
len = cyapa_i2c_cmds[cmd_idx].len;
return cyapa_i2c_reg_read_block(cyapa, cmd, len, values);
}
}
/*
* Query device for its current operating state.
*
*/
static int cyapa_get_state(struct cyapa *cyapa)
{
int ret;
u8 status[BL_STATUS_SIZE];
cyapa->state = CYAPA_STATE_NO_DEVICE;
/*
* Get trackpad status by reading 3 registers starting from 0.
* If the device is in the bootloader, this will be BL_HEAD.
* If the device is in operation mode, this will be the DATA regs.
*
*/
ret = cyapa_i2c_reg_read_block(cyapa, BL_HEAD_OFFSET, BL_STATUS_SIZE,
status);
/*
* On smbus systems in OP mode, the i2c_reg_read will fail with
* -ETIMEDOUT. In this case, try again using the smbus equivalent
* command. This should return a BL_HEAD indicating CYAPA_STATE_OP.
*/
if (cyapa->smbus && (ret == -ETIMEDOUT || ret == -ENXIO))
ret = cyapa_read_block(cyapa, CYAPA_CMD_BL_STATUS, status);
if (ret != BL_STATUS_SIZE)
goto error;
if ((status[REG_OP_STATUS] & OP_STATUS_SRC) == OP_STATUS_SRC) {
switch (status[REG_OP_STATUS] & OP_STATUS_DEV) {
case CYAPA_DEV_NORMAL:
case CYAPA_DEV_BUSY:
cyapa->state = CYAPA_STATE_OP;
break;
default:
ret = -EAGAIN;
goto error;
}
} else {
if (status[REG_BL_STATUS] & BL_STATUS_BUSY)
cyapa->state = CYAPA_STATE_BL_BUSY;
else if (status[REG_BL_ERROR] & BL_ERROR_BOOTLOADING)
cyapa->state = CYAPA_STATE_BL_ACTIVE;
else
cyapa->state = CYAPA_STATE_BL_IDLE;
}
return 0;
error:
return (ret < 0) ? ret : -EAGAIN;
}
/*
* Poll device for its status in a loop, waiting up to timeout for a response.
*
* When the device switches state, it usually takes ~300 ms.
* However, when running a new firmware image, the device must calibrate its
* sensors, which can take as long as 2 seconds.
*
* Note: The timeout has granularity of the polling rate, which is 100 ms.
*
* Returns:
* 0 when the device eventually responds with a valid non-busy state.
* -ETIMEDOUT if device never responds (too many -EAGAIN)
* < 0 other errors
*/
static int cyapa_poll_state(struct cyapa *cyapa, unsigned int timeout)
{
int ret;
int tries = timeout / 100;
ret = cyapa_get_state(cyapa);
while ((ret || cyapa->state >= CYAPA_STATE_BL_BUSY) && tries--) {
msleep(100);
ret = cyapa_get_state(cyapa);
}
return (ret == -EAGAIN || ret == -ETIMEDOUT) ? -ETIMEDOUT : ret;
}
static int cyapa_bl_deactivate(struct cyapa *cyapa)
{
int ret;
ret = cyapa_i2c_reg_write_block(cyapa, 0, sizeof(bl_deactivate),
bl_deactivate);
if (ret < 0)
return ret;
/* wait for bootloader to switch to idle state; should take < 100ms */
msleep(100);
ret = cyapa_poll_state(cyapa, 500);
if (ret < 0)
return ret;
if (cyapa->state != CYAPA_STATE_BL_IDLE)
return -EAGAIN;
return 0;
}
/*
* Exit bootloader
*
* Send bl_exit command, then wait 50 - 100 ms to let device transition to
* operational mode. If this is the first time the device's firmware is
* running, it can take up to 2 seconds to calibrate its sensors. So, poll
* the device's new state for up to 2 seconds.
*
* Returns:
* -EIO failure while reading from device
* -EAGAIN device is stuck in bootloader, b/c it has invalid firmware
* 0 device is supported and in operational mode
*/
static int cyapa_bl_exit(struct cyapa *cyapa)
{
int ret;
ret = cyapa_i2c_reg_write_block(cyapa, 0, sizeof(bl_exit), bl_exit);
if (ret < 0)
return ret;
/*
* Wait for bootloader to exit, and operation mode to start.
* Normally, this takes at least 50 ms.
*/
usleep_range(50000, 100000);
/*
* In addition, when a device boots for the first time after being
* updated to new firmware, it must first calibrate its sensors, which
* can take up to an additional 2 seconds.
*/
ret = cyapa_poll_state(cyapa, 2000);
if (ret < 0)
return ret;
if (cyapa->state != CYAPA_STATE_OP)
return -EAGAIN;
return 0;
}
/*
* Set device power mode
*
*/
static int cyapa_set_power_mode(struct cyapa *cyapa, u8 power_mode)
{
struct device *dev = &cyapa->client->dev;
int ret;
u8 power;
if (cyapa->state != CYAPA_STATE_OP)
return 0;
ret = cyapa_read_byte(cyapa, CYAPA_CMD_POWER_MODE);
if (ret < 0)
return ret;
power = ret & ~PWR_MODE_MASK;
power |= power_mode & PWR_MODE_MASK;
ret = cyapa_write_byte(cyapa, CYAPA_CMD_POWER_MODE, power);
if (ret < 0)
dev_err(dev, "failed to set power_mode 0x%02x err = %d\n",
power_mode, ret);
return ret;
}
static int cyapa_get_query_data(struct cyapa *cyapa)
{
u8 query_data[QUERY_DATA_SIZE];
int ret;
if (cyapa->state != CYAPA_STATE_OP)
return -EBUSY;
ret = cyapa_read_block(cyapa, CYAPA_CMD_GROUP_QUERY, query_data);
if (ret < 0)
return ret;
if (ret != QUERY_DATA_SIZE)
return -EIO;
memcpy(&cyapa->product_id[0], &query_data[0], 5);
cyapa->product_id[5] = '-';
memcpy(&cyapa->product_id[6], &query_data[5], 6);
cyapa->product_id[12] = '-';
memcpy(&cyapa->product_id[13], &query_data[11], 2);
cyapa->product_id[15] = '\0';
cyapa->btn_capability = query_data[19] & CAPABILITY_BTN_MASK;
cyapa->gen = query_data[20] & 0x0f;
cyapa->max_abs_x = ((query_data[21] & 0xf0) << 4) | query_data[22];
cyapa->max_abs_y = ((query_data[21] & 0x0f) << 8) | query_data[23];
cyapa->physical_size_x =
((query_data[24] & 0xf0) << 4) | query_data[25];
cyapa->physical_size_y =
((query_data[24] & 0x0f) << 8) | query_data[26];
return 0;
}
/*
* Check if device is operational.
*
* An operational device is responding, has exited bootloader, and has
* firmware supported by this driver.
*
* Returns:
* -EBUSY no device or in bootloader
* -EIO failure while reading from device
* -EAGAIN device is still in bootloader
* if ->state = CYAPA_STATE_BL_IDLE, device has invalid firmware
* -EINVAL device is in operational mode, but not supported by this driver
* 0 device is supported
*/
static int cyapa_check_is_operational(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
static const char unique_str[] = "CYTRA";
int ret;
ret = cyapa_poll_state(cyapa, 2000);
if (ret < 0)
return ret;
switch (cyapa->state) {
case CYAPA_STATE_BL_ACTIVE:
ret = cyapa_bl_deactivate(cyapa);
if (ret)
return ret;
/* Fallthrough state */
case CYAPA_STATE_BL_IDLE:
ret = cyapa_bl_exit(cyapa);
if (ret)
return ret;
/* Fallthrough state */
case CYAPA_STATE_OP:
ret = cyapa_get_query_data(cyapa);
if (ret < 0)
return ret;
/* only support firmware protocol gen3 */
if (cyapa->gen != CYAPA_GEN3) {
dev_err(dev, "unsupported protocol version (%d)",
cyapa->gen);
return -EINVAL;
}
/* only support product ID starting with CYTRA */
if (memcmp(cyapa->product_id, unique_str,
sizeof(unique_str) - 1) != 0) {
dev_err(dev, "unsupported product ID (%s)\n",
cyapa->product_id);
return -EINVAL;
}
return 0;
default:
return -EIO;
}
return 0;
}
static irqreturn_t cyapa_irq(int irq, void *dev_id)
{
struct cyapa *cyapa = dev_id;
struct device *dev = &cyapa->client->dev;
struct input_dev *input = cyapa->input;
struct cyapa_reg_data data;
int i;
int ret;
int num_fingers;
if (device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
ret = cyapa_read_block(cyapa, CYAPA_CMD_GROUP_DATA, (u8 *)&data);
if (ret != sizeof(data))
goto out;
if ((data.device_status & OP_STATUS_SRC) != OP_STATUS_SRC ||
(data.device_status & OP_STATUS_DEV) != CYAPA_DEV_NORMAL ||
(data.finger_btn & OP_DATA_VALID) != OP_DATA_VALID) {
goto out;
}
num_fingers = (data.finger_btn >> 4) & 0x0f;
for (i = 0; i < num_fingers; i++) {
const struct cyapa_touch *touch = &data.touches[i];
/* Note: touch->id range is 1 to 15; slots are 0 to 14. */
int slot = touch->id - 1;
input_mt_slot(input, slot);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
input_report_abs(input, ABS_MT_POSITION_X,
((touch->xy_hi & 0xf0) << 4) | touch->x_lo);
input_report_abs(input, ABS_MT_POSITION_Y,
((touch->xy_hi & 0x0f) << 8) | touch->y_lo);
input_report_abs(input, ABS_MT_PRESSURE, touch->pressure);
}
input_mt_sync_frame(input);
if (cyapa->btn_capability & CAPABILITY_LEFT_BTN_MASK)
input_report_key(input, BTN_LEFT,
data.finger_btn & OP_DATA_LEFT_BTN);
if (cyapa->btn_capability & CAPABILITY_MIDDLE_BTN_MASK)
input_report_key(input, BTN_MIDDLE,
data.finger_btn & OP_DATA_MIDDLE_BTN);
if (cyapa->btn_capability & CAPABILITY_RIGHT_BTN_MASK)
input_report_key(input, BTN_RIGHT,
data.finger_btn & OP_DATA_RIGHT_BTN);
input_sync(input);
out:
return IRQ_HANDLED;
}
static u8 cyapa_check_adapter_functionality(struct i2c_client *client)
{
u8 ret = CYAPA_ADAPTER_FUNC_NONE;
if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
ret |= CYAPA_ADAPTER_FUNC_I2C;
if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_BLOCK_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK))
ret |= CYAPA_ADAPTER_FUNC_SMBUS;
return ret;
}
static int cyapa_create_input_dev(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
int ret;
struct input_dev *input;
if (!cyapa->physical_size_x || !cyapa->physical_size_y)
return -EINVAL;
input = cyapa->input = input_allocate_device();
if (!input) {
dev_err(dev, "allocate memory for input device failed\n");
return -ENOMEM;
}
input->name = CYAPA_NAME;
input->phys = cyapa->phys;
input->id.bustype = BUS_I2C;
input->id.version = 1;
input->id.product = 0; /* means any product in eventcomm. */
input->dev.parent = &cyapa->client->dev;
input_set_drvdata(input, cyapa);
__set_bit(EV_ABS, input->evbit);
/* finger position */
input_set_abs_params(input, ABS_MT_POSITION_X, 0, cyapa->max_abs_x, 0,
0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0, cyapa->max_abs_y, 0,
0);
input_set_abs_params(input, ABS_MT_PRESSURE, 0, 255, 0, 0);
input_abs_set_res(input, ABS_MT_POSITION_X,
cyapa->max_abs_x / cyapa->physical_size_x);
input_abs_set_res(input, ABS_MT_POSITION_Y,
cyapa->max_abs_y / cyapa->physical_size_y);
if (cyapa->btn_capability & CAPABILITY_LEFT_BTN_MASK)
__set_bit(BTN_LEFT, input->keybit);
if (cyapa->btn_capability & CAPABILITY_MIDDLE_BTN_MASK)
__set_bit(BTN_MIDDLE, input->keybit);
if (cyapa->btn_capability & CAPABILITY_RIGHT_BTN_MASK)
__set_bit(BTN_RIGHT, input->keybit);
if (cyapa->btn_capability == CAPABILITY_LEFT_BTN_MASK)
__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
/* handle pointer emulation and unused slots in core */
ret = input_mt_init_slots(input, CYAPA_MAX_MT_SLOTS,
INPUT_MT_POINTER | INPUT_MT_DROP_UNUSED);
if (ret) {
dev_err(dev, "allocate memory for MT slots failed, %d\n", ret);
goto err_free_device;
}
/* Register the device in input subsystem */
ret = input_register_device(input);
if (ret) {
dev_err(dev, "input device register failed, %d\n", ret);
goto err_free_device;
}
return 0;
err_free_device:
input_free_device(input);
cyapa->input = NULL;
return ret;
}
static int cyapa_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
int ret;
u8 adapter_func;
struct cyapa *cyapa;
struct device *dev = &client->dev;
adapter_func = cyapa_check_adapter_functionality(client);
if (adapter_func == CYAPA_ADAPTER_FUNC_NONE) {
dev_err(dev, "not a supported I2C/SMBus adapter\n");
return -EIO;
}
cyapa = kzalloc(sizeof(struct cyapa), GFP_KERNEL);
if (!cyapa) {
dev_err(dev, "allocate memory for cyapa failed\n");
return -ENOMEM;
}
cyapa->gen = CYAPA_GEN3;
cyapa->client = client;
i2c_set_clientdata(client, cyapa);
sprintf(cyapa->phys, "i2c-%d-%04x/input0", client->adapter->nr,
client->addr);
/* i2c isn't supported, use smbus */
if (adapter_func == CYAPA_ADAPTER_FUNC_SMBUS)
cyapa->smbus = true;
cyapa->state = CYAPA_STATE_NO_DEVICE;
ret = cyapa_check_is_operational(cyapa);
if (ret) {
dev_err(dev, "device not operational, %d\n", ret);
goto err_mem_free;
}
ret = cyapa_create_input_dev(cyapa);
if (ret) {
dev_err(dev, "create input_dev instance failed, %d\n", ret);
goto err_mem_free;
}
ret = cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
if (ret) {
dev_err(dev, "set active power failed, %d\n", ret);
goto err_unregister_device;
}
cyapa->irq = client->irq;
ret = request_threaded_irq(cyapa->irq,
NULL,
cyapa_irq,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"cyapa",
cyapa);
if (ret) {
dev_err(dev, "IRQ request failed: %d\n, ", ret);
goto err_unregister_device;
}
return 0;
err_unregister_device:
input_unregister_device(cyapa->input);
err_mem_free:
kfree(cyapa);
return ret;
}
static int cyapa_remove(struct i2c_client *client)
{
struct cyapa *cyapa = i2c_get_clientdata(client);
free_irq(cyapa->irq, cyapa);
input_unregister_device(cyapa->input);
cyapa_set_power_mode(cyapa, PWR_MODE_OFF);
kfree(cyapa);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cyapa_suspend(struct device *dev)
{
int ret;
u8 power_mode;
struct cyapa *cyapa = dev_get_drvdata(dev);
disable_irq(cyapa->irq);
/*
* Set trackpad device to idle mode if wakeup is allowed,
* otherwise turn off.
*/
power_mode = device_may_wakeup(dev) ? PWR_MODE_IDLE
: PWR_MODE_OFF;
ret = cyapa_set_power_mode(cyapa, power_mode);
if (ret < 0)
dev_err(dev, "set power mode failed, %d\n", ret);
if (device_may_wakeup(dev))
cyapa->irq_wake = (enable_irq_wake(cyapa->irq) == 0);
return 0;
}
static int cyapa_resume(struct device *dev)
{
int ret;
struct cyapa *cyapa = dev_get_drvdata(dev);
if (device_may_wakeup(dev) && cyapa->irq_wake)
disable_irq_wake(cyapa->irq);
ret = cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
if (ret)
dev_warn(dev, "resume active power failed, %d\n", ret);
enable_irq(cyapa->irq);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(cyapa_pm_ops, cyapa_suspend, cyapa_resume);
static const struct i2c_device_id cyapa_id_table[] = {
{ "cyapa", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, cyapa_id_table);
static struct i2c_driver cyapa_driver = {
.driver = {
.name = "cyapa",
.owner = THIS_MODULE,
.pm = &cyapa_pm_ops,
},
.probe = cyapa_probe,
.remove = cyapa_remove,
.id_table = cyapa_id_table,
};
module_i2c_driver(cyapa_driver);
MODULE_DESCRIPTION("Cypress APA I2C Trackpad Driver");
MODULE_AUTHOR("Dudley Du <dudl@cypress.com>");
MODULE_LICENSE("GPL");