kernel_optimize_test/include/linux/mm.h
Baoquan He 98b57685c2 mm: memmap defer init doesn't work as expected
commit dc2da7b45ffe954a0090f5d0310ed7b0b37d2bd2 upstream.

VMware observed a performance regression during memmap init on their
platform, and bisected to commit 73a6e474cb ("mm: memmap_init:
iterate over memblock regions rather that check each PFN") causing it.

Before the commit:

  [0.033176] Normal zone: 1445888 pages used for memmap
  [0.033176] Normal zone: 89391104 pages, LIFO batch:63
  [0.035851] ACPI: PM-Timer IO Port: 0x448

With commit

  [0.026874] Normal zone: 1445888 pages used for memmap
  [0.026875] Normal zone: 89391104 pages, LIFO batch:63
  [2.028450] ACPI: PM-Timer IO Port: 0x448

The root cause is the current memmap defer init doesn't work as expected.

Before, memmap_init_zone() was used to do memmap init of one whole zone,
to initialize all low zones of one numa node, but defer memmap init of
the last zone in that numa node.  However, since commit 73a6e474cb,
function memmap_init() is adapted to iterater over memblock regions
inside one zone, then call memmap_init_zone() to do memmap init for each
region.

E.g, on VMware's system, the memory layout is as below, there are two
memory regions in node 2.  The current code will mistakenly initialize the
whole 1st region [mem 0xab00000000-0xfcffffffff], then do memmap defer to
iniatialize only one memmory section on the 2nd region [mem
0x10000000000-0x1033fffffff].  In fact, we only expect to see that there's
only one memory section's memmap initialized.  That's why more time is
costed at the time.

[    0.008842] ACPI: SRAT: Node 0 PXM 0 [mem 0x00000000-0x0009ffff]
[    0.008842] ACPI: SRAT: Node 0 PXM 0 [mem 0x00100000-0xbfffffff]
[    0.008843] ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0x55ffffffff]
[    0.008844] ACPI: SRAT: Node 1 PXM 1 [mem 0x5600000000-0xaaffffffff]
[    0.008844] ACPI: SRAT: Node 2 PXM 2 [mem 0xab00000000-0xfcffffffff]
[    0.008845] ACPI: SRAT: Node 2 PXM 2 [mem 0x10000000000-0x1033fffffff]

Now, let's add a parameter 'zone_end_pfn' to memmap_init_zone() to pass
down the real zone end pfn so that defer_init() can use it to judge
whether defer need be taken in zone wide.

Link: https://lkml.kernel.org/r/20201223080811.16211-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20201223080811.16211-2-bhe@redhat.com
Fixes: commit 73a6e474cb ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: Rahul Gopakumar <gopakumarr@vmware.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-06 14:56:50 +01:00

3168 lines
99 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MM_H
#define _LINUX_MM_H
#include <linux/errno.h>
#ifdef __KERNEL__
#include <linux/mmdebug.h>
#include <linux/gfp.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/atomic.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/mmap_lock.h>
#include <linux/range.h>
#include <linux/pfn.h>
#include <linux/percpu-refcount.h>
#include <linux/bit_spinlock.h>
#include <linux/shrinker.h>
#include <linux/resource.h>
#include <linux/page_ext.h>
#include <linux/err.h>
#include <linux/page-flags.h>
#include <linux/page_ref.h>
#include <linux/memremap.h>
#include <linux/overflow.h>
#include <linux/sizes.h>
#include <linux/sched.h>
#include <linux/pgtable.h>
struct mempolicy;
struct anon_vma;
struct anon_vma_chain;
struct file_ra_state;
struct user_struct;
struct writeback_control;
struct bdi_writeback;
struct pt_regs;
extern int sysctl_page_lock_unfairness;
void init_mm_internals(void);
#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
static inline void set_max_mapnr(unsigned long limit)
{
max_mapnr = limit;
}
#else
static inline void set_max_mapnr(unsigned long limit) { }
#endif
extern atomic_long_t _totalram_pages;
static inline unsigned long totalram_pages(void)
{
return (unsigned long)atomic_long_read(&_totalram_pages);
}
static inline void totalram_pages_inc(void)
{
atomic_long_inc(&_totalram_pages);
}
static inline void totalram_pages_dec(void)
{
atomic_long_dec(&_totalram_pages);
}
static inline void totalram_pages_add(long count)
{
atomic_long_add(count, &_totalram_pages);
}
extern void * high_memory;
extern int page_cluster;
#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
extern const int mmap_rnd_bits_min;
extern const int mmap_rnd_bits_max;
extern int mmap_rnd_bits __read_mostly;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
extern const int mmap_rnd_compat_bits_min;
extern const int mmap_rnd_compat_bits_max;
extern int mmap_rnd_compat_bits __read_mostly;
#endif
#include <asm/page.h>
#include <asm/processor.h>
/*
* Architectures that support memory tagging (assigning tags to memory regions,
* embedding these tags into addresses that point to these memory regions, and
* checking that the memory and the pointer tags match on memory accesses)
* redefine this macro to strip tags from pointers.
* It's defined as noop for arcitectures that don't support memory tagging.
*/
#ifndef untagged_addr
#define untagged_addr(addr) (addr)
#endif
#ifndef __pa_symbol
#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
#endif
#ifndef page_to_virt
#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
#endif
#ifndef lm_alias
#define lm_alias(x) __va(__pa_symbol(x))
#endif
/*
* To prevent common memory management code establishing
* a zero page mapping on a read fault.
* This macro should be defined within <asm/pgtable.h>.
* s390 does this to prevent multiplexing of hardware bits
* related to the physical page in case of virtualization.
*/
#ifndef mm_forbids_zeropage
#define mm_forbids_zeropage(X) (0)
#endif
/*
* On some architectures it is expensive to call memset() for small sizes.
* If an architecture decides to implement their own version of
* mm_zero_struct_page they should wrap the defines below in a #ifndef and
* define their own version of this macro in <asm/pgtable.h>
*/
#if BITS_PER_LONG == 64
/* This function must be updated when the size of struct page grows above 80
* or reduces below 56. The idea that compiler optimizes out switch()
* statement, and only leaves move/store instructions. Also the compiler can
* combine write statments if they are both assignments and can be reordered,
* this can result in several of the writes here being dropped.
*/
#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
static inline void __mm_zero_struct_page(struct page *page)
{
unsigned long *_pp = (void *)page;
/* Check that struct page is either 56, 64, 72, or 80 bytes */
BUILD_BUG_ON(sizeof(struct page) & 7);
BUILD_BUG_ON(sizeof(struct page) < 56);
BUILD_BUG_ON(sizeof(struct page) > 80);
switch (sizeof(struct page)) {
case 80:
_pp[9] = 0;
fallthrough;
case 72:
_pp[8] = 0;
fallthrough;
case 64:
_pp[7] = 0;
fallthrough;
case 56:
_pp[6] = 0;
_pp[5] = 0;
_pp[4] = 0;
_pp[3] = 0;
_pp[2] = 0;
_pp[1] = 0;
_pp[0] = 0;
}
}
#else
#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
#endif
/*
* Default maximum number of active map areas, this limits the number of vmas
* per mm struct. Users can overwrite this number by sysctl but there is a
* problem.
*
* When a program's coredump is generated as ELF format, a section is created
* per a vma. In ELF, the number of sections is represented in unsigned short.
* This means the number of sections should be smaller than 65535 at coredump.
* Because the kernel adds some informative sections to a image of program at
* generating coredump, we need some margin. The number of extra sections is
* 1-3 now and depends on arch. We use "5" as safe margin, here.
*
* ELF extended numbering allows more than 65535 sections, so 16-bit bound is
* not a hard limit any more. Although some userspace tools can be surprised by
* that.
*/
#define MAPCOUNT_ELF_CORE_MARGIN (5)
#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
extern int sysctl_max_map_count;
extern unsigned long sysctl_user_reserve_kbytes;
extern unsigned long sysctl_admin_reserve_kbytes;
extern int sysctl_overcommit_memory;
extern int sysctl_overcommit_ratio;
extern unsigned long sysctl_overcommit_kbytes;
int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
/*
* Linux kernel virtual memory manager primitives.
* The idea being to have a "virtual" mm in the same way
* we have a virtual fs - giving a cleaner interface to the
* mm details, and allowing different kinds of memory mappings
* (from shared memory to executable loading to arbitrary
* mmap() functions).
*/
struct vm_area_struct *vm_area_alloc(struct mm_struct *);
struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
void vm_area_free(struct vm_area_struct *);
#ifndef CONFIG_MMU
extern struct rb_root nommu_region_tree;
extern struct rw_semaphore nommu_region_sem;
extern unsigned int kobjsize(const void *objp);
#endif
/*
* vm_flags in vm_area_struct, see mm_types.h.
* When changing, update also include/trace/events/mmflags.h
*/
#define VM_NONE 0x00000000
#define VM_READ 0x00000001 /* currently active flags */
#define VM_WRITE 0x00000002
#define VM_EXEC 0x00000004
#define VM_SHARED 0x00000008
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
#define VM_MAYWRITE 0x00000020
#define VM_MAYEXEC 0x00000040
#define VM_MAYSHARE 0x00000080
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
#define VM_LOCKED 0x00002000
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
/* Used by sys_madvise() */
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
#define VM_SYNC 0x00800000 /* Synchronous page faults */
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
#ifdef CONFIG_MEM_SOFT_DIRTY
# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
#else
# define VM_SOFTDIRTY 0
#endif
#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
#ifdef CONFIG_ARCH_HAS_PKEYS
# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
#ifdef CONFIG_PPC
# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
#else
# define VM_PKEY_BIT4 0
#endif
#endif /* CONFIG_ARCH_HAS_PKEYS */
#if defined(CONFIG_X86)
# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
#elif defined(CONFIG_PPC)
# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_IA64)
# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_SPARC64)
# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
# define VM_ARCH_CLEAR VM_SPARC_ADI
#elif defined(CONFIG_ARM64)
# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
# define VM_ARCH_CLEAR VM_ARM64_BTI
#elif !defined(CONFIG_MMU)
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
#endif
#if defined(CONFIG_ARM64_MTE)
# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
#else
# define VM_MTE VM_NONE
# define VM_MTE_ALLOWED VM_NONE
#endif
#ifndef VM_GROWSUP
# define VM_GROWSUP VM_NONE
#endif
/* Bits set in the VMA until the stack is in its final location */
#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
/* Common data flag combinations */
#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
VM_MAYWRITE | VM_MAYEXEC)
#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
#endif
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif
#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK VM_GROWSUP
#else
#define VM_STACK VM_GROWSDOWN
#endif
#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
/* VMA basic access permission flags */
#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
/*
* Special vmas that are non-mergable, non-mlock()able.
*/
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
/* This mask prevents VMA from being scanned with khugepaged */
#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
/* This mask defines which mm->def_flags a process can inherit its parent */
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
/* This mask is used to clear all the VMA flags used by mlock */
#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
/* Arch-specific flags to clear when updating VM flags on protection change */
#ifndef VM_ARCH_CLEAR
# define VM_ARCH_CLEAR VM_NONE
#endif
#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
/*
* mapping from the currently active vm_flags protection bits (the
* low four bits) to a page protection mask..
*/
extern pgprot_t protection_map[16];
/**
* Fault flag definitions.
*
* @FAULT_FLAG_WRITE: Fault was a write fault.
* @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
* @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
* @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
* @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
* @FAULT_FLAG_TRIED: The fault has been tried once.
* @FAULT_FLAG_USER: The fault originated in userspace.
* @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
* @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
* @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
*
* About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
* whether we would allow page faults to retry by specifying these two
* fault flags correctly. Currently there can be three legal combinations:
*
* (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
* this is the first try
*
* (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
* we've already tried at least once
*
* (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
*
* The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
* be used. Note that page faults can be allowed to retry for multiple times,
* in which case we'll have an initial fault with flags (a) then later on
* continuous faults with flags (b). We should always try to detect pending
* signals before a retry to make sure the continuous page faults can still be
* interrupted if necessary.
*/
#define FAULT_FLAG_WRITE 0x01
#define FAULT_FLAG_MKWRITE 0x02
#define FAULT_FLAG_ALLOW_RETRY 0x04
#define FAULT_FLAG_RETRY_NOWAIT 0x08
#define FAULT_FLAG_KILLABLE 0x10
#define FAULT_FLAG_TRIED 0x20
#define FAULT_FLAG_USER 0x40
#define FAULT_FLAG_REMOTE 0x80
#define FAULT_FLAG_INSTRUCTION 0x100
#define FAULT_FLAG_INTERRUPTIBLE 0x200
/*
* The default fault flags that should be used by most of the
* arch-specific page fault handlers.
*/
#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
FAULT_FLAG_KILLABLE | \
FAULT_FLAG_INTERRUPTIBLE)
/**
* fault_flag_allow_retry_first - check ALLOW_RETRY the first time
*
* This is mostly used for places where we want to try to avoid taking
* the mmap_lock for too long a time when waiting for another condition
* to change, in which case we can try to be polite to release the
* mmap_lock in the first round to avoid potential starvation of other
* processes that would also want the mmap_lock.
*
* Return: true if the page fault allows retry and this is the first
* attempt of the fault handling; false otherwise.
*/
static inline bool fault_flag_allow_retry_first(unsigned int flags)
{
return (flags & FAULT_FLAG_ALLOW_RETRY) &&
(!(flags & FAULT_FLAG_TRIED));
}
#define FAULT_FLAG_TRACE \
{ FAULT_FLAG_WRITE, "WRITE" }, \
{ FAULT_FLAG_MKWRITE, "MKWRITE" }, \
{ FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
{ FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
{ FAULT_FLAG_KILLABLE, "KILLABLE" }, \
{ FAULT_FLAG_TRIED, "TRIED" }, \
{ FAULT_FLAG_USER, "USER" }, \
{ FAULT_FLAG_REMOTE, "REMOTE" }, \
{ FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
{ FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
/*
* vm_fault is filled by the pagefault handler and passed to the vma's
* ->fault function. The vma's ->fault is responsible for returning a bitmask
* of VM_FAULT_xxx flags that give details about how the fault was handled.
*
* MM layer fills up gfp_mask for page allocations but fault handler might
* alter it if its implementation requires a different allocation context.
*
* pgoff should be used in favour of virtual_address, if possible.
*/
struct vm_fault {
struct vm_area_struct *vma; /* Target VMA */
unsigned int flags; /* FAULT_FLAG_xxx flags */
gfp_t gfp_mask; /* gfp mask to be used for allocations */
pgoff_t pgoff; /* Logical page offset based on vma */
unsigned long address; /* Faulting virtual address */
pmd_t *pmd; /* Pointer to pmd entry matching
* the 'address' */
pud_t *pud; /* Pointer to pud entry matching
* the 'address'
*/
pte_t orig_pte; /* Value of PTE at the time of fault */
struct page *cow_page; /* Page handler may use for COW fault */
struct page *page; /* ->fault handlers should return a
* page here, unless VM_FAULT_NOPAGE
* is set (which is also implied by
* VM_FAULT_ERROR).
*/
/* These three entries are valid only while holding ptl lock */
pte_t *pte; /* Pointer to pte entry matching
* the 'address'. NULL if the page
* table hasn't been allocated.
*/
spinlock_t *ptl; /* Page table lock.
* Protects pte page table if 'pte'
* is not NULL, otherwise pmd.
*/
pgtable_t prealloc_pte; /* Pre-allocated pte page table.
* vm_ops->map_pages() calls
* alloc_set_pte() from atomic context.
* do_fault_around() pre-allocates
* page table to avoid allocation from
* atomic context.
*/
};
/* page entry size for vm->huge_fault() */
enum page_entry_size {
PE_SIZE_PTE = 0,
PE_SIZE_PMD,
PE_SIZE_PUD,
};
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*split)(struct vm_area_struct * area, unsigned long addr);
int (*mremap)(struct vm_area_struct * area);
vm_fault_t (*fault)(struct vm_fault *vmf);
vm_fault_t (*huge_fault)(struct vm_fault *vmf,
enum page_entry_size pe_size);
void (*map_pages)(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff);
unsigned long (*pagesize)(struct vm_area_struct * area);
/* notification that a previously read-only page is about to become
* writable, if an error is returned it will cause a SIGBUS */
vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
/* called by access_process_vm when get_user_pages() fails, typically
* for use by special VMAs that can switch between memory and hardware
*/
int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
/* Called by the /proc/PID/maps code to ask the vma whether it
* has a special name. Returning non-NULL will also cause this
* vma to be dumped unconditionally. */
const char *(*name)(struct vm_area_struct *vma);
#ifdef CONFIG_NUMA
/*
* set_policy() op must add a reference to any non-NULL @new mempolicy
* to hold the policy upon return. Caller should pass NULL @new to
* remove a policy and fall back to surrounding context--i.e. do not
* install a MPOL_DEFAULT policy, nor the task or system default
* mempolicy.
*/
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
/*
* get_policy() op must add reference [mpol_get()] to any policy at
* (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
* in mm/mempolicy.c will do this automatically.
* get_policy() must NOT add a ref if the policy at (vma,addr) is not
* marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
* If no [shared/vma] mempolicy exists at the addr, get_policy() op
* must return NULL--i.e., do not "fallback" to task or system default
* policy.
*/
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
unsigned long addr);
#endif
/*
* Called by vm_normal_page() for special PTEs to find the
* page for @addr. This is useful if the default behavior
* (using pte_page()) would not find the correct page.
*/
struct page *(*find_special_page)(struct vm_area_struct *vma,
unsigned long addr);
};
static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
{
static const struct vm_operations_struct dummy_vm_ops = {};
memset(vma, 0, sizeof(*vma));
vma->vm_mm = mm;
vma->vm_ops = &dummy_vm_ops;
INIT_LIST_HEAD(&vma->anon_vma_chain);
}
static inline void vma_set_anonymous(struct vm_area_struct *vma)
{
vma->vm_ops = NULL;
}
static inline bool vma_is_anonymous(struct vm_area_struct *vma)
{
return !vma->vm_ops;
}
static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
{
int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
if (!maybe_stack)
return false;
if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
VM_STACK_INCOMPLETE_SETUP)
return true;
return false;
}
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
if (!current->mm)
return true;
if (current->mm != vma->vm_mm)
return true;
return false;
}
static inline bool vma_is_accessible(struct vm_area_struct *vma)
{
return vma->vm_flags & VM_ACCESS_FLAGS;
}
#ifdef CONFIG_SHMEM
/*
* The vma_is_shmem is not inline because it is used only by slow
* paths in userfault.
*/
bool vma_is_shmem(struct vm_area_struct *vma);
#else
static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
#endif
int vma_is_stack_for_current(struct vm_area_struct *vma);
/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
struct mmu_gather;
struct inode;
#include <linux/huge_mm.h>
/*
* Methods to modify the page usage count.
*
* What counts for a page usage:
* - cache mapping (page->mapping)
* - private data (page->private)
* - page mapped in a task's page tables, each mapping
* is counted separately
*
* Also, many kernel routines increase the page count before a critical
* routine so they can be sure the page doesn't go away from under them.
*/
/*
* Drop a ref, return true if the refcount fell to zero (the page has no users)
*/
static inline int put_page_testzero(struct page *page)
{
VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
return page_ref_dec_and_test(page);
}
/*
* Try to grab a ref unless the page has a refcount of zero, return false if
* that is the case.
* This can be called when MMU is off so it must not access
* any of the virtual mappings.
*/
static inline int get_page_unless_zero(struct page *page)
{
return page_ref_add_unless(page, 1, 0);
}
extern int page_is_ram(unsigned long pfn);
enum {
REGION_INTERSECTS,
REGION_DISJOINT,
REGION_MIXED,
};
int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
unsigned long desc);
/* Support for virtually mapped pages */
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);
/*
* Determine if an address is within the vmalloc range
*
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
* is no special casing required.
*/
#ifndef is_ioremap_addr
#define is_ioremap_addr(x) is_vmalloc_addr(x)
#endif
#ifdef CONFIG_MMU
extern bool is_vmalloc_addr(const void *x);
extern int is_vmalloc_or_module_addr(const void *x);
#else
static inline bool is_vmalloc_addr(const void *x)
{
return false;
}
static inline int is_vmalloc_or_module_addr(const void *x)
{
return 0;
}
#endif
extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
static inline void *kvmalloc(size_t size, gfp_t flags)
{
return kvmalloc_node(size, flags, NUMA_NO_NODE);
}
static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
{
return kvmalloc_node(size, flags | __GFP_ZERO, node);
}
static inline void *kvzalloc(size_t size, gfp_t flags)
{
return kvmalloc(size, flags | __GFP_ZERO);
}
static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
{
size_t bytes;
if (unlikely(check_mul_overflow(n, size, &bytes)))
return NULL;
return kvmalloc(bytes, flags);
}
static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
{
return kvmalloc_array(n, size, flags | __GFP_ZERO);
}
extern void kvfree(const void *addr);
extern void kvfree_sensitive(const void *addr, size_t len);
static inline int head_compound_mapcount(struct page *head)
{
return atomic_read(compound_mapcount_ptr(head)) + 1;
}
/*
* Mapcount of compound page as a whole, does not include mapped sub-pages.
*
* Must be called only for compound pages or any their tail sub-pages.
*/
static inline int compound_mapcount(struct page *page)
{
VM_BUG_ON_PAGE(!PageCompound(page), page);
page = compound_head(page);
return head_compound_mapcount(page);
}
/*
* The atomic page->_mapcount, starts from -1: so that transitions
* both from it and to it can be tracked, using atomic_inc_and_test
* and atomic_add_negative(-1).
*/
static inline void page_mapcount_reset(struct page *page)
{
atomic_set(&(page)->_mapcount, -1);
}
int __page_mapcount(struct page *page);
/*
* Mapcount of 0-order page; when compound sub-page, includes
* compound_mapcount().
*
* Result is undefined for pages which cannot be mapped into userspace.
* For example SLAB or special types of pages. See function page_has_type().
* They use this place in struct page differently.
*/
static inline int page_mapcount(struct page *page)
{
if (unlikely(PageCompound(page)))
return __page_mapcount(page);
return atomic_read(&page->_mapcount) + 1;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int total_mapcount(struct page *page);
int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
#else
static inline int total_mapcount(struct page *page)
{
return page_mapcount(page);
}
static inline int page_trans_huge_mapcount(struct page *page,
int *total_mapcount)
{
int mapcount = page_mapcount(page);
if (total_mapcount)
*total_mapcount = mapcount;
return mapcount;
}
#endif
static inline struct page *virt_to_head_page(const void *x)
{
struct page *page = virt_to_page(x);
return compound_head(page);
}
void __put_page(struct page *page);
void put_pages_list(struct list_head *pages);
void split_page(struct page *page, unsigned int order);
/*
* Compound pages have a destructor function. Provide a
* prototype for that function and accessor functions.
* These are _only_ valid on the head of a compound page.
*/
typedef void compound_page_dtor(struct page *);
/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
enum compound_dtor_id {
NULL_COMPOUND_DTOR,
COMPOUND_PAGE_DTOR,
#ifdef CONFIG_HUGETLB_PAGE
HUGETLB_PAGE_DTOR,
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
TRANSHUGE_PAGE_DTOR,
#endif
NR_COMPOUND_DTORS,
};
extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
static inline void set_compound_page_dtor(struct page *page,
enum compound_dtor_id compound_dtor)
{
VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
page[1].compound_dtor = compound_dtor;
}
static inline void destroy_compound_page(struct page *page)
{
VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
compound_page_dtors[page[1].compound_dtor](page);
}
static inline unsigned int compound_order(struct page *page)
{
if (!PageHead(page))
return 0;
return page[1].compound_order;
}
static inline bool hpage_pincount_available(struct page *page)
{
/*
* Can the page->hpage_pinned_refcount field be used? That field is in
* the 3rd page of the compound page, so the smallest (2-page) compound
* pages cannot support it.
*/
page = compound_head(page);
return PageCompound(page) && compound_order(page) > 1;
}
static inline int head_compound_pincount(struct page *head)
{
return atomic_read(compound_pincount_ptr(head));
}
static inline int compound_pincount(struct page *page)
{
VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
page = compound_head(page);
return head_compound_pincount(page);
}
static inline void set_compound_order(struct page *page, unsigned int order)
{
page[1].compound_order = order;
page[1].compound_nr = 1U << order;
}
/* Returns the number of pages in this potentially compound page. */
static inline unsigned long compound_nr(struct page *page)
{
if (!PageHead(page))
return 1;
return page[1].compound_nr;
}
/* Returns the number of bytes in this potentially compound page. */
static inline unsigned long page_size(struct page *page)
{
return PAGE_SIZE << compound_order(page);
}
/* Returns the number of bits needed for the number of bytes in a page */
static inline unsigned int page_shift(struct page *page)
{
return PAGE_SHIFT + compound_order(page);
}
void free_compound_page(struct page *page);
#ifdef CONFIG_MMU
/*
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
* servicing faults for write access. In the normal case, do always want
* pte_mkwrite. But get_user_pages can cause write faults for mappings
* that do not have writing enabled, when used by access_process_vm.
*/
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pte = pte_mkwrite(pte);
return pte;
}
vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
vm_fault_t finish_fault(struct vm_fault *vmf);
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
#endif
/*
* Multiple processes may "see" the same page. E.g. for untouched
* mappings of /dev/null, all processes see the same page full of
* zeroes, and text pages of executables and shared libraries have
* only one copy in memory, at most, normally.
*
* For the non-reserved pages, page_count(page) denotes a reference count.
* page_count() == 0 means the page is free. page->lru is then used for
* freelist management in the buddy allocator.
* page_count() > 0 means the page has been allocated.
*
* Pages are allocated by the slab allocator in order to provide memory
* to kmalloc and kmem_cache_alloc. In this case, the management of the
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
* unless a particular usage is carefully commented. (the responsibility of
* freeing the kmalloc memory is the caller's, of course).
*
* A page may be used by anyone else who does a __get_free_page().
* In this case, page_count still tracks the references, and should only
* be used through the normal accessor functions. The top bits of page->flags
* and page->virtual store page management information, but all other fields
* are unused and could be used privately, carefully. The management of this
* page is the responsibility of the one who allocated it, and those who have
* subsequently been given references to it.
*
* The other pages (we may call them "pagecache pages") are completely
* managed by the Linux memory manager: I/O, buffers, swapping etc.
* The following discussion applies only to them.
*
* A pagecache page contains an opaque `private' member, which belongs to the
* page's address_space. Usually, this is the address of a circular list of
* the page's disk buffers. PG_private must be set to tell the VM to call
* into the filesystem to release these pages.
*
* A page may belong to an inode's memory mapping. In this case, page->mapping
* is the pointer to the inode, and page->index is the file offset of the page,
* in units of PAGE_SIZE.
*
* If pagecache pages are not associated with an inode, they are said to be
* anonymous pages. These may become associated with the swapcache, and in that
* case PG_swapcache is set, and page->private is an offset into the swapcache.
*
* In either case (swapcache or inode backed), the pagecache itself holds one
* reference to the page. Setting PG_private should also increment the
* refcount. The each user mapping also has a reference to the page.
*
* The pagecache pages are stored in a per-mapping radix tree, which is
* rooted at mapping->i_pages, and indexed by offset.
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
* lists, we instead now tag pages as dirty/writeback in the radix tree.
*
* All pagecache pages may be subject to I/O:
* - inode pages may need to be read from disk,
* - inode pages which have been modified and are MAP_SHARED may need
* to be written back to the inode on disk,
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
* modified may need to be swapped out to swap space and (later) to be read
* back into memory.
*/
/*
* The zone field is never updated after free_area_init_core()
* sets it, so none of the operations on it need to be atomic.
*/
/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
/*
* Define the bit shifts to access each section. For non-existent
* sections we define the shift as 0; that plus a 0 mask ensures
* the compiler will optimise away reference to them.
*/
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
#ifdef NODE_NOT_IN_PAGE_FLAGS
#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
SECTIONS_PGOFF : ZONES_PGOFF)
#else
#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
NODES_PGOFF : ZONES_PGOFF)
#endif
#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
static inline enum zone_type page_zonenum(const struct page *page)
{
ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}
#ifdef CONFIG_ZONE_DEVICE
static inline bool is_zone_device_page(const struct page *page)
{
return page_zonenum(page) == ZONE_DEVICE;
}
extern void memmap_init_zone_device(struct zone *, unsigned long,
unsigned long, struct dev_pagemap *);
#else
static inline bool is_zone_device_page(const struct page *page)
{
return false;
}
#endif
#ifdef CONFIG_DEV_PAGEMAP_OPS
void free_devmap_managed_page(struct page *page);
DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
static inline bool page_is_devmap_managed(struct page *page)
{
if (!static_branch_unlikely(&devmap_managed_key))
return false;
if (!is_zone_device_page(page))
return false;
switch (page->pgmap->type) {
case MEMORY_DEVICE_PRIVATE:
case MEMORY_DEVICE_FS_DAX:
return true;
default:
break;
}
return false;
}
void put_devmap_managed_page(struct page *page);
#else /* CONFIG_DEV_PAGEMAP_OPS */
static inline bool page_is_devmap_managed(struct page *page)
{
return false;
}
static inline void put_devmap_managed_page(struct page *page)
{
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */
static inline bool is_device_private_page(const struct page *page)
{
return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
is_zone_device_page(page) &&
page->pgmap->type == MEMORY_DEVICE_PRIVATE;
}
static inline bool is_pci_p2pdma_page(const struct page *page)
{
return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
IS_ENABLED(CONFIG_PCI_P2PDMA) &&
is_zone_device_page(page) &&
page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
}
/* 127: arbitrary random number, small enough to assemble well */
#define page_ref_zero_or_close_to_overflow(page) \
((unsigned int) page_ref_count(page) + 127u <= 127u)
static inline void get_page(struct page *page)
{
page = compound_head(page);
/*
* Getting a normal page or the head of a compound page
* requires to already have an elevated page->_refcount.
*/
VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
page_ref_inc(page);
}
bool __must_check try_grab_page(struct page *page, unsigned int flags);
static inline __must_check bool try_get_page(struct page *page)
{
page = compound_head(page);
if (WARN_ON_ONCE(page_ref_count(page) <= 0))
return false;
page_ref_inc(page);
return true;
}
static inline void put_page(struct page *page)
{
page = compound_head(page);
/*
* For devmap managed pages we need to catch refcount transition from
* 2 to 1, when refcount reach one it means the page is free and we
* need to inform the device driver through callback. See
* include/linux/memremap.h and HMM for details.
*/
if (page_is_devmap_managed(page)) {
put_devmap_managed_page(page);
return;
}
if (put_page_testzero(page))
__put_page(page);
}
/*
* GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
* the page's refcount so that two separate items are tracked: the original page
* reference count, and also a new count of how many pin_user_pages() calls were
* made against the page. ("gup-pinned" is another term for the latter).
*
* With this scheme, pin_user_pages() becomes special: such pages are marked as
* distinct from normal pages. As such, the unpin_user_page() call (and its
* variants) must be used in order to release gup-pinned pages.
*
* Choice of value:
*
* By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
* counts with respect to pin_user_pages() and unpin_user_page() becomes
* simpler, due to the fact that adding an even power of two to the page
* refcount has the effect of using only the upper N bits, for the code that
* counts up using the bias value. This means that the lower bits are left for
* the exclusive use of the original code that increments and decrements by one
* (or at least, by much smaller values than the bias value).
*
* Of course, once the lower bits overflow into the upper bits (and this is
* OK, because subtraction recovers the original values), then visual inspection
* no longer suffices to directly view the separate counts. However, for normal
* applications that don't have huge page reference counts, this won't be an
* issue.
*
* Locking: the lockless algorithm described in page_cache_get_speculative()
* and page_cache_gup_pin_speculative() provides safe operation for
* get_user_pages and page_mkclean and other calls that race to set up page
* table entries.
*/
#define GUP_PIN_COUNTING_BIAS (1U << 10)
void unpin_user_page(struct page *page);
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty);
void unpin_user_pages(struct page **pages, unsigned long npages);
/**
* page_maybe_dma_pinned() - report if a page is pinned for DMA.
*
* This function checks if a page has been pinned via a call to
* pin_user_pages*().
*
* For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
* because it means "definitely not pinned for DMA", but true means "probably
* pinned for DMA, but possibly a false positive due to having at least
* GUP_PIN_COUNTING_BIAS worth of normal page references".
*
* False positives are OK, because: a) it's unlikely for a page to get that many
* refcounts, and b) all the callers of this routine are expected to be able to
* deal gracefully with a false positive.
*
* For huge pages, the result will be exactly correct. That's because we have
* more tracking data available: the 3rd struct page in the compound page is
* used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
* scheme).
*
* For more information, please see Documentation/core-api/pin_user_pages.rst.
*
* @page: pointer to page to be queried.
* @Return: True, if it is likely that the page has been "dma-pinned".
* False, if the page is definitely not dma-pinned.
*/
static inline bool page_maybe_dma_pinned(struct page *page)
{
if (hpage_pincount_available(page))
return compound_pincount(page) > 0;
/*
* page_ref_count() is signed. If that refcount overflows, then
* page_ref_count() returns a negative value, and callers will avoid
* further incrementing the refcount.
*
* Here, for that overflow case, use the signed bit to count a little
* bit higher via unsigned math, and thus still get an accurate result.
*/
return ((unsigned int)page_ref_count(compound_head(page))) >=
GUP_PIN_COUNTING_BIAS;
}
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif
/*
* The identification function is mainly used by the buddy allocator for
* determining if two pages could be buddies. We are not really identifying
* the zone since we could be using the section number id if we do not have
* node id available in page flags.
* We only guarantee that it will return the same value for two combinable
* pages in a zone.
*/
static inline int page_zone_id(struct page *page)
{
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}
#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(const struct page *page);
#else
static inline int page_to_nid(const struct page *page)
{
struct page *p = (struct page *)page;
return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif
#ifdef CONFIG_NUMA_BALANCING
static inline int cpu_pid_to_cpupid(int cpu, int pid)
{
return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
}
static inline int cpupid_to_pid(int cpupid)
{
return cpupid & LAST__PID_MASK;
}
static inline int cpupid_to_cpu(int cpupid)
{
return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
}
static inline int cpupid_to_nid(int cpupid)
{
return cpu_to_node(cpupid_to_cpu(cpupid));
}
static inline bool cpupid_pid_unset(int cpupid)
{
return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
}
static inline bool cpupid_cpu_unset(int cpupid)
{
return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
}
static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
{
return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
}
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
}
static inline int page_cpupid_last(struct page *page)
{
return page->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
{
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
}
#else
static inline int page_cpupid_last(struct page *page)
{
return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
}
extern int page_cpupid_xchg_last(struct page *page, int cpupid);
static inline void page_cpupid_reset_last(struct page *page)
{
page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
}
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
#else /* !CONFIG_NUMA_BALANCING */
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
return page_to_nid(page); /* XXX */
}
static inline int page_cpupid_last(struct page *page)
{
return page_to_nid(page); /* XXX */
}
static inline int cpupid_to_nid(int cpupid)
{
return -1;
}
static inline int cpupid_to_pid(int cpupid)
{
return -1;
}
static inline int cpupid_to_cpu(int cpupid)
{
return -1;
}
static inline int cpu_pid_to_cpupid(int nid, int pid)
{
return -1;
}
static inline bool cpupid_pid_unset(int cpupid)
{
return true;
}
static inline void page_cpupid_reset_last(struct page *page)
{
}
static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
{
return false;
}
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_KASAN_SW_TAGS
static inline u8 page_kasan_tag(const struct page *page)
{
return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
}
static inline void page_kasan_tag_set(struct page *page, u8 tag)
{
page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
}
static inline void page_kasan_tag_reset(struct page *page)
{
page_kasan_tag_set(page, 0xff);
}
#else
static inline u8 page_kasan_tag(const struct page *page)
{
return 0xff;
}
static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
static inline void page_kasan_tag_reset(struct page *page) { }
#endif
static inline struct zone *page_zone(const struct page *page)
{
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}
static inline pg_data_t *page_pgdat(const struct page *page)
{
return NODE_DATA(page_to_nid(page));
}
#ifdef SECTION_IN_PAGE_FLAGS
static inline void set_page_section(struct page *page, unsigned long section)
{
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}
static inline unsigned long page_to_section(const struct page *page)
{
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
#endif
static inline void set_page_zone(struct page *page, enum zone_type zone)
{
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}
static inline void set_page_node(struct page *page, unsigned long node)
{
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}
static inline void set_page_links(struct page *page, enum zone_type zone,
unsigned long node, unsigned long pfn)
{
set_page_zone(page, zone);
set_page_node(page, node);
#ifdef SECTION_IN_PAGE_FLAGS
set_page_section(page, pfn_to_section_nr(pfn));
#endif
}
#ifdef CONFIG_MEMCG
static inline struct mem_cgroup *page_memcg(struct page *page)
{
return page->mem_cgroup;
}
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return READ_ONCE(page->mem_cgroup);
}
#else
static inline struct mem_cgroup *page_memcg(struct page *page)
{
return NULL;
}
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return NULL;
}
#endif
/*
* Some inline functions in vmstat.h depend on page_zone()
*/
#include <linux/vmstat.h>
static __always_inline void *lowmem_page_address(const struct page *page)
{
return page_to_virt(page);
}
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif
#if defined(WANT_PAGE_VIRTUAL)
static inline void *page_address(const struct page *page)
{
return page->virtual;
}
static inline void set_page_address(struct page *page, void *address)
{
page->virtual = address;
}
#define page_address_init() do { } while(0)
#endif
#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(const struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address) do { } while(0)
#define page_address_init() do { } while(0)
#endif
extern void *page_rmapping(struct page *page);
extern struct anon_vma *page_anon_vma(struct page *page);
extern struct address_space *page_mapping(struct page *page);
extern struct address_space *__page_file_mapping(struct page *);
static inline
struct address_space *page_file_mapping(struct page *page)
{
if (unlikely(PageSwapCache(page)))
return __page_file_mapping(page);
return page->mapping;
}
extern pgoff_t __page_file_index(struct page *page);
/*
* Return the pagecache index of the passed page. Regular pagecache pages
* use ->index whereas swapcache pages use swp_offset(->private)
*/
static inline pgoff_t page_index(struct page *page)
{
if (unlikely(PageSwapCache(page)))
return __page_file_index(page);
return page->index;
}
bool page_mapped(struct page *page);
struct address_space *page_mapping(struct page *page);
struct address_space *page_mapping_file(struct page *page);
/*
* Return true only if the page has been allocated with
* ALLOC_NO_WATERMARKS and the low watermark was not
* met implying that the system is under some pressure.
*/
static inline bool page_is_pfmemalloc(struct page *page)
{
/*
* Page index cannot be this large so this must be
* a pfmemalloc page.
*/
return page->index == -1UL;
}
/*
* Only to be called by the page allocator on a freshly allocated
* page.
*/
static inline void set_page_pfmemalloc(struct page *page)
{
page->index = -1UL;
}
static inline void clear_page_pfmemalloc(struct page *page)
{
page->index = 0;
}
/*
* Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
*/
extern void pagefault_out_of_memory(void);
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
/*
* Flags passed to show_mem() and show_free_areas() to suppress output in
* various contexts.
*/
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
#ifdef CONFIG_MMU
extern bool can_do_mlock(void);
#else
static inline bool can_do_mlock(void) { return false; }
#endif
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);
/*
* Parameter block passed down to zap_pte_range in exceptional cases.
*/
struct zap_details {
struct address_space *check_mapping; /* Check page->mapping if set */
pgoff_t first_index; /* Lowest page->index to unmap */
pgoff_t last_index; /* Highest page->index to unmap */
};
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd);
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size);
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size);
void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
unsigned long start, unsigned long end);
struct mmu_notifier_range;
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
struct mmu_notifier_range *range,
pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn);
int follow_phys(struct vm_area_struct *vma, unsigned long address,
unsigned int flags, unsigned long *prot, resource_size_t *phys);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
extern void truncate_pagecache(struct inode *inode, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
int truncate_inode_page(struct address_space *mapping, struct page *page);
int generic_error_remove_page(struct address_space *mapping, struct page *page);
int invalidate_inode_page(struct page *page);
#ifdef CONFIG_MMU
extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct pt_regs *regs);
extern int fixup_user_fault(struct mm_struct *mm,
unsigned long address, unsigned int fault_flags,
bool *unlocked);
void unmap_mapping_pages(struct address_space *mapping,
pgoff_t start, pgoff_t nr, bool even_cows);
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows);
#else
static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct pt_regs *regs)
{
/* should never happen if there's no MMU */
BUG();
return VM_FAULT_SIGBUS;
}
static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
unsigned int fault_flags, bool *unlocked)
{
/* should never happen if there's no MMU */
BUG();
return -EFAULT;
}
static inline void unmap_mapping_pages(struct address_space *mapping,
pgoff_t start, pgoff_t nr, bool even_cows) { }
static inline void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows) { }
#endif
static inline void unmap_shared_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen)
{
unmap_mapping_range(mapping, holebegin, holelen, 0);
}
extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
unsigned long addr, void *buf, int len, unsigned int gup_flags);
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked);
long pin_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked);
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas);
long pin_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas);
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages, int *locked);
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages, int *locked);
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
int pin_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
struct task_struct *task, bool bypass_rlim);
/* Container for pinned pfns / pages */
struct frame_vector {
unsigned int nr_allocated; /* Number of frames we have space for */
unsigned int nr_frames; /* Number of frames stored in ptrs array */
bool got_ref; /* Did we pin pages by getting page ref? */
bool is_pfns; /* Does array contain pages or pfns? */
void *ptrs[]; /* Array of pinned pfns / pages. Use
* pfns_vector_pages() or pfns_vector_pfns()
* for access */
};
struct frame_vector *frame_vector_create(unsigned int nr_frames);
void frame_vector_destroy(struct frame_vector *vec);
int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
unsigned int gup_flags, struct frame_vector *vec);
void put_vaddr_frames(struct frame_vector *vec);
int frame_vector_to_pages(struct frame_vector *vec);
void frame_vector_to_pfns(struct frame_vector *vec);
static inline unsigned int frame_vector_count(struct frame_vector *vec)
{
return vec->nr_frames;
}
static inline struct page **frame_vector_pages(struct frame_vector *vec)
{
if (vec->is_pfns) {
int err = frame_vector_to_pages(vec);
if (err)
return ERR_PTR(err);
}
return (struct page **)(vec->ptrs);
}
static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
{
if (!vec->is_pfns)
frame_vector_to_pfns(vec);
return (unsigned long *)(vec->ptrs);
}
struct kvec;
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
struct page **pages);
int get_kernel_page(unsigned long start, int write, struct page **pages);
struct page *get_dump_page(unsigned long addr);
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned int offset,
unsigned int length);
void __set_page_dirty(struct page *, struct address_space *, int warn);
int __set_page_dirty_nobuffers(struct page *page);
int __set_page_dirty_no_writeback(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
struct page *page);
void account_page_dirtied(struct page *page, struct address_space *mapping);
void account_page_cleaned(struct page *page, struct address_space *mapping,
struct bdi_writeback *wb);
int set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
void __cancel_dirty_page(struct page *page);
static inline void cancel_dirty_page(struct page *page)
{
/* Avoid atomic ops, locking, etc. when not actually needed. */
if (PageDirty(page))
__cancel_dirty_page(page);
}
int clear_page_dirty_for_io(struct page *page);
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
extern unsigned long move_page_tables(struct vm_area_struct *vma,
unsigned long old_addr, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long len,
bool need_rmap_locks);
/*
* Flags used by change_protection(). For now we make it a bitmap so
* that we can pass in multiple flags just like parameters. However
* for now all the callers are only use one of the flags at the same
* time.
*/
/* Whether we should allow dirty bit accounting */
#define MM_CP_DIRTY_ACCT (1UL << 0)
/* Whether this protection change is for NUMA hints */
#define MM_CP_PROT_NUMA (1UL << 1)
/* Whether this change is for write protecting */
#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
MM_CP_UFFD_WP_RESOLVE)
extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgprot_t newprot,
unsigned long cp_flags);
extern int mprotect_fixup(struct vm_area_struct *vma,
struct vm_area_struct **pprev, unsigned long start,
unsigned long end, unsigned long newflags);
/*
* doesn't attempt to fault and will return short.
*/
int get_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
static inline bool get_user_page_fast_only(unsigned long addr,
unsigned int gup_flags, struct page **pagep)
{
return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
}
/*
* per-process(per-mm_struct) statistics.
*/
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
long val = atomic_long_read(&mm->rss_stat.count[member]);
#ifdef SPLIT_RSS_COUNTING
/*
* counter is updated in asynchronous manner and may go to minus.
* But it's never be expected number for users.
*/
if (val < 0)
val = 0;
#endif
return (unsigned long)val;
}
void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
mm_trace_rss_stat(mm, member, count);
}
static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
mm_trace_rss_stat(mm, member, count);
}
static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
mm_trace_rss_stat(mm, member, count);
}
/* Optimized variant when page is already known not to be PageAnon */
static inline int mm_counter_file(struct page *page)
{
if (PageSwapBacked(page))
return MM_SHMEMPAGES;
return MM_FILEPAGES;
}
static inline int mm_counter(struct page *page)
{
if (PageAnon(page))
return MM_ANONPAGES;
return mm_counter_file(page);
}
static inline unsigned long get_mm_rss(struct mm_struct *mm)
{
return get_mm_counter(mm, MM_FILEPAGES) +
get_mm_counter(mm, MM_ANONPAGES) +
get_mm_counter(mm, MM_SHMEMPAGES);
}
static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
return max(mm->hiwater_rss, get_mm_rss(mm));
}
static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
return max(mm->hiwater_vm, mm->total_vm);
}
static inline void update_hiwater_rss(struct mm_struct *mm)
{
unsigned long _rss = get_mm_rss(mm);
if ((mm)->hiwater_rss < _rss)
(mm)->hiwater_rss = _rss;
}
static inline void update_hiwater_vm(struct mm_struct *mm)
{
if (mm->hiwater_vm < mm->total_vm)
mm->hiwater_vm = mm->total_vm;
}
static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
{
mm->hiwater_rss = get_mm_rss(mm);
}
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
struct mm_struct *mm)
{
unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
if (*maxrss < hiwater_rss)
*maxrss = hiwater_rss;
}
#if defined(SPLIT_RSS_COUNTING)
void sync_mm_rss(struct mm_struct *mm);
#else
static inline void sync_mm_rss(struct mm_struct *mm)
{
}
#endif
#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
static inline int pte_special(pte_t pte)
{
return 0;
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return pte;
}
#endif
#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t pte)
{
return 0;
}
#endif
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl)
{
pte_t *ptep;
__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
return ptep;
}
#ifdef __PAGETABLE_P4D_FOLDED
static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
unsigned long address)
{
return 0;
}
#else
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif
#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
unsigned long address)
{
return 0;
}
static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
#else
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
static inline void mm_inc_nr_puds(struct mm_struct *mm)
{
if (mm_pud_folded(mm))
return;
atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
}
static inline void mm_dec_nr_puds(struct mm_struct *mm)
{
if (mm_pud_folded(mm))
return;
atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
}
#endif
#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
unsigned long address)
{
return 0;
}
static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
#else
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
static inline void mm_inc_nr_pmds(struct mm_struct *mm)
{
if (mm_pmd_folded(mm))
return;
atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
}
static inline void mm_dec_nr_pmds(struct mm_struct *mm)
{
if (mm_pmd_folded(mm))
return;
atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
}
#endif
#ifdef CONFIG_MMU
static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
{
atomic_long_set(&mm->pgtables_bytes, 0);
}
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
{
return atomic_long_read(&mm->pgtables_bytes);
}
static inline void mm_inc_nr_ptes(struct mm_struct *mm)
{
atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
}
static inline void mm_dec_nr_ptes(struct mm_struct *mm)
{
atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
}
#else
static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
{
return 0;
}
static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
#endif
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
int __pte_alloc_kernel(pmd_t *pmd);
#if defined(CONFIG_MMU)
static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
unsigned long address)
{
return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
NULL : p4d_offset(pgd, address);
}
static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
unsigned long address)
{
return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
NULL : pud_offset(p4d, address);
}
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU */
#if USE_SPLIT_PTE_PTLOCKS
#if ALLOC_SPLIT_PTLOCKS
void __init ptlock_cache_init(void);
extern bool ptlock_alloc(struct page *page);
extern void ptlock_free(struct page *page);
static inline spinlock_t *ptlock_ptr(struct page *page)
{
return page->ptl;
}
#else /* ALLOC_SPLIT_PTLOCKS */
static inline void ptlock_cache_init(void)
{
}
static inline bool ptlock_alloc(struct page *page)
{
return true;
}
static inline void ptlock_free(struct page *page)
{
}
static inline spinlock_t *ptlock_ptr(struct page *page)
{
return &page->ptl;
}
#endif /* ALLOC_SPLIT_PTLOCKS */
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return ptlock_ptr(pmd_page(*pmd));
}
static inline bool ptlock_init(struct page *page)
{
/*
* prep_new_page() initialize page->private (and therefore page->ptl)
* with 0. Make sure nobody took it in use in between.
*
* It can happen if arch try to use slab for page table allocation:
* slab code uses page->slab_cache, which share storage with page->ptl.
*/
VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
if (!ptlock_alloc(page))
return false;
spin_lock_init(ptlock_ptr(page));
return true;
}
#else /* !USE_SPLIT_PTE_PTLOCKS */
/*
* We use mm->page_table_lock to guard all pagetable pages of the mm.
*/
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
static inline void ptlock_cache_init(void) {}
static inline bool ptlock_init(struct page *page) { return true; }
static inline void ptlock_free(struct page *page) {}
#endif /* USE_SPLIT_PTE_PTLOCKS */
static inline void pgtable_init(void)
{
ptlock_cache_init();
pgtable_cache_init();
}
static inline bool pgtable_pte_page_ctor(struct page *page)
{
if (!ptlock_init(page))
return false;
__SetPageTable(page);
inc_zone_page_state(page, NR_PAGETABLE);
return true;
}
static inline void pgtable_pte_page_dtor(struct page *page)
{
ptlock_free(page);
__ClearPageTable(page);
dec_zone_page_state(page, NR_PAGETABLE);
}
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
({ \
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
pte_t *__pte = pte_offset_map(pmd, address); \
*(ptlp) = __ptl; \
spin_lock(__ptl); \
__pte; \
})
#define pte_unmap_unlock(pte, ptl) do { \
spin_unlock(ptl); \
pte_unmap(pte); \
} while (0)
#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
#define pte_alloc_map(mm, pmd, address) \
(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
(pte_alloc(mm, pmd) ? \
NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
#define pte_alloc_kernel(pmd, address) \
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
NULL: pte_offset_kernel(pmd, address))
#if USE_SPLIT_PMD_PTLOCKS
static struct page *pmd_to_page(pmd_t *pmd)
{
unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
return virt_to_page((void *)((unsigned long) pmd & mask));
}
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return ptlock_ptr(pmd_to_page(pmd));
}
static inline bool pmd_ptlock_init(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
page->pmd_huge_pte = NULL;
#endif
return ptlock_init(page);
}
static inline void pmd_ptlock_free(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
#endif
ptlock_free(page);
}
#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
#else
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
static inline bool pmd_ptlock_init(struct page *page) { return true; }
static inline void pmd_ptlock_free(struct page *page) {}
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
#endif
static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
{
spinlock_t *ptl = pmd_lockptr(mm, pmd);
spin_lock(ptl);
return ptl;
}
static inline bool pgtable_pmd_page_ctor(struct page *page)
{
if (!pmd_ptlock_init(page))
return false;
__SetPageTable(page);
inc_zone_page_state(page, NR_PAGETABLE);
return true;
}
static inline void pgtable_pmd_page_dtor(struct page *page)
{
pmd_ptlock_free(page);
__ClearPageTable(page);
dec_zone_page_state(page, NR_PAGETABLE);
}
/*
* No scalability reason to split PUD locks yet, but follow the same pattern
* as the PMD locks to make it easier if we decide to. The VM should not be
* considered ready to switch to split PUD locks yet; there may be places
* which need to be converted from page_table_lock.
*/
static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
{
return &mm->page_table_lock;
}
static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
{
spinlock_t *ptl = pud_lockptr(mm, pud);
spin_lock(ptl);
return ptl;
}
extern void __init pagecache_init(void);
extern void __init free_area_init_memoryless_node(int nid);
extern void free_initmem(void);
/*
* Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
* into the buddy system. The freed pages will be poisoned with pattern
* "poison" if it's within range [0, UCHAR_MAX].
* Return pages freed into the buddy system.
*/
extern unsigned long free_reserved_area(void *start, void *end,
int poison, const char *s);
#ifdef CONFIG_HIGHMEM
/*
* Free a highmem page into the buddy system, adjusting totalhigh_pages
* and totalram_pages.
*/
extern void free_highmem_page(struct page *page);
#endif
extern void adjust_managed_page_count(struct page *page, long count);
extern void mem_init_print_info(const char *str);
extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
/* Free the reserved page into the buddy system, so it gets managed. */
static inline void __free_reserved_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
}
static inline void free_reserved_page(struct page *page)
{
__free_reserved_page(page);
adjust_managed_page_count(page, 1);
}
static inline void mark_page_reserved(struct page *page)
{
SetPageReserved(page);
adjust_managed_page_count(page, -1);
}
/*
* Default method to free all the __init memory into the buddy system.
* The freed pages will be poisoned with pattern "poison" if it's within
* range [0, UCHAR_MAX].
* Return pages freed into the buddy system.
*/
static inline unsigned long free_initmem_default(int poison)
{
extern char __init_begin[], __init_end[];
return free_reserved_area(&__init_begin, &__init_end,
poison, "unused kernel");
}
static inline unsigned long get_num_physpages(void)
{
int nid;
unsigned long phys_pages = 0;
for_each_online_node(nid)
phys_pages += node_present_pages(nid);
return phys_pages;
}
/*
* Using memblock node mappings, an architecture may initialise its
* zones, allocate the backing mem_map and account for memory holes in an
* architecture independent manner.
*
* An architecture is expected to register range of page frames backed by
* physical memory with memblock_add[_node]() before calling
* free_area_init() passing in the PFN each zone ends at. At a basic
* usage, an architecture is expected to do something like
*
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
* max_highmem_pfn};
* for_each_valid_physical_page_range()
* memblock_add_node(base, size, nid)
* free_area_init(max_zone_pfns);
*/
void free_area_init(unsigned long *max_zone_pfn);
unsigned long node_map_pfn_alignment(void);
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
unsigned long end_pfn);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
#ifndef CONFIG_NEED_MULTIPLE_NODES
static inline int early_pfn_to_nid(unsigned long pfn)
{
return 0;
}
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
/* there is a per-arch backend function. */
extern int __meminit __early_pfn_to_nid(unsigned long pfn,
struct mminit_pfnnid_cache *state);
#endif
extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long,
unsigned long, unsigned long, enum meminit_context,
struct vmem_altmap *, int migratetype);
extern void setup_per_zone_wmarks(void);
extern int __meminit init_per_zone_wmark_min(void);
extern void mem_init(void);
extern void __init mmap_init(void);
extern void show_mem(unsigned int flags, nodemask_t *nodemask);
extern long si_mem_available(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
extern unsigned long arch_reserved_kernel_pages(void);
#endif
extern __printf(3, 4)
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
extern void setup_per_cpu_pageset(void);
/* page_alloc.c */
extern int min_free_kbytes;
extern int watermark_boost_factor;
extern int watermark_scale_factor;
extern bool arch_has_descending_max_zone_pfns(void);
/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
/* interval_tree.c */
void vma_interval_tree_insert(struct vm_area_struct *node,
struct rb_root_cached *root);
void vma_interval_tree_insert_after(struct vm_area_struct *node,
struct vm_area_struct *prev,
struct rb_root_cached *root);
void vma_interval_tree_remove(struct vm_area_struct *node,
struct rb_root_cached *root);
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
unsigned long start, unsigned long last);
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
unsigned long start, unsigned long last);
#define vma_interval_tree_foreach(vma, root, start, last) \
for (vma = vma_interval_tree_iter_first(root, start, last); \
vma; vma = vma_interval_tree_iter_next(vma, start, last))
void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
struct rb_root_cached *root);
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
struct rb_root_cached *root);
struct anon_vma_chain *
anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
unsigned long start, unsigned long last);
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
struct anon_vma_chain *node, unsigned long start, unsigned long last);
#ifdef CONFIG_DEBUG_VM_RB
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
#endif
#define anon_vma_interval_tree_foreach(avc, root, start, last) \
for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
struct vm_area_struct *expand);
static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
return __vma_adjust(vma, start, end, pgoff, insert, NULL);
}
extern struct vm_area_struct *vma_merge(struct mm_struct *,
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
struct mempolicy *, struct vm_userfaultfd_ctx);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
unsigned long addr, int new_below);
extern int split_vma(struct mm_struct *, struct vm_area_struct *,
unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);
static inline int check_data_rlimit(unsigned long rlim,
unsigned long new,
unsigned long start,
unsigned long end_data,
unsigned long start_data)
{
if (rlim < RLIM_INFINITY) {
if (((new - start) + (end_data - start_data)) > rlim)
return -ENOSPC;
}
return 0;
}
extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);
extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);
extern struct file *get_task_exe_file(struct task_struct *task);
extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
const struct vm_special_mapping *sm);
extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags,
const struct vm_special_mapping *spec);
/* This is an obsolete alternative to _install_special_mapping. */
extern int install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags, struct page **pages);
unsigned long randomize_stack_top(unsigned long stack_top);
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
extern unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
struct list_head *uf);
extern unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot, unsigned long flags,
unsigned long pgoff, unsigned long *populate, struct list_head *uf);
extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
struct list_head *uf, bool downgrade);
extern int do_munmap(struct mm_struct *, unsigned long, size_t,
struct list_head *uf);
extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
#ifdef CONFIG_MMU
extern int __mm_populate(unsigned long addr, unsigned long len,
int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
/* Ignore errors */
(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif
/* These take the mm semaphore themselves */
extern int __must_check vm_brk(unsigned long, unsigned long);
extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
unsigned long, unsigned long,
unsigned long, unsigned long);
struct vm_unmapped_area_info {
#define VM_UNMAPPED_AREA_TOPDOWN 1
unsigned long flags;
unsigned long length;
unsigned long low_limit;
unsigned long high_limit;
unsigned long align_mask;
unsigned long align_offset;
};
extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
/* truncate.c */
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
loff_t lstart, loff_t lend);
extern void truncate_inode_pages_final(struct address_space *);
/* generic vm_area_ops exported for stackable file systems */
extern vm_fault_t filemap_fault(struct vm_fault *vmf);
extern void filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff);
extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
/* mm/page-writeback.c */
int __must_check write_one_page(struct page *page);
void task_dirty_inc(struct task_struct *tsk);
extern unsigned long stack_guard_gap;
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
extern int expand_downwards(struct vm_area_struct *vma,
unsigned long address);
#if VM_GROWSUP
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
#else
#define expand_upwards(vma, address) (0)
#endif
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev);
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
NULL if none. Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
struct vm_area_struct * vma = find_vma(mm,start_addr);
if (vma && end_addr <= vma->vm_start)
vma = NULL;
return vma;
}
static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
{
unsigned long vm_start = vma->vm_start;
if (vma->vm_flags & VM_GROWSDOWN) {
vm_start -= stack_guard_gap;
if (vm_start > vma->vm_start)
vm_start = 0;
}
return vm_start;
}
static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
{
unsigned long vm_end = vma->vm_end;
if (vma->vm_flags & VM_GROWSUP) {
vm_end += stack_guard_gap;
if (vm_end < vma->vm_end)
vm_end = -PAGE_SIZE;
}
return vm_end;
}
static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}
/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
unsigned long vm_start, unsigned long vm_end)
{
struct vm_area_struct *vma = find_vma(mm, vm_start);
if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
vma = NULL;
return vma;
}
static inline bool range_in_vma(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
return (vma && vma->vm_start <= start && end <= vma->vm_end);
}
#ifdef CONFIG_MMU
pgprot_t vm_get_page_prot(unsigned long vm_flags);
void vma_set_page_prot(struct vm_area_struct *vma);
#else
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
return __pgprot(0);
}
static inline void vma_set_page_prot(struct vm_area_struct *vma)
{
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
}
#endif
#ifdef CONFIG_NUMA_BALANCING
unsigned long change_prot_numa(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
#endif
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
struct page **pages, unsigned long *num);
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
unsigned long num);
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
unsigned long num);
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn);
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, pgprot_t pgprot);
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn);
vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn, pgprot_t pgprot);
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
unsigned long addr, pfn_t pfn);
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
unsigned long addr, struct page *page)
{
int err = vm_insert_page(vma, addr, page);
if (err == -ENOMEM)
return VM_FAULT_OOM;
if (err < 0 && err != -EBUSY)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
#ifndef io_remap_pfn_range
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
unsigned long addr, unsigned long pfn,
unsigned long size, pgprot_t prot)
{
return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
}
#endif
static inline vm_fault_t vmf_error(int err)
{
if (err == -ENOMEM)
return VM_FAULT_OOM;
return VM_FAULT_SIGBUS;
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags);
#define FOLL_WRITE 0x01 /* check pte is writable */
#define FOLL_TOUCH 0x02 /* mark page accessed */
#define FOLL_GET 0x04 /* do get_page on page */
#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
* and return without waiting upon it */
#define FOLL_POPULATE 0x40 /* fault in page */
#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
#define FOLL_MLOCK 0x1000 /* lock present pages */
#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
#define FOLL_COW 0x4000 /* internal GUP flag */
#define FOLL_ANON 0x8000 /* don't do file mappings */
#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
/*
* FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
* other. Here is what they mean, and how to use them:
*
* FOLL_LONGTERM indicates that the page will be held for an indefinite time
* period _often_ under userspace control. This is in contrast to
* iov_iter_get_pages(), whose usages are transient.
*
* FIXME: For pages which are part of a filesystem, mappings are subject to the
* lifetime enforced by the filesystem and we need guarantees that longterm
* users like RDMA and V4L2 only establish mappings which coordinate usage with
* the filesystem. Ideas for this coordination include revoking the longterm
* pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
* added after the problem with filesystems was found FS DAX VMAs are
* specifically failed. Filesystem pages are still subject to bugs and use of
* FOLL_LONGTERM should be avoided on those pages.
*
* FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
* Currently only get_user_pages() and get_user_pages_fast() support this flag
* and calls to get_user_pages_[un]locked are specifically not allowed. This
* is due to an incompatibility with the FS DAX check and
* FAULT_FLAG_ALLOW_RETRY.
*
* In the CMA case: long term pins in a CMA region would unnecessarily fragment
* that region. And so, CMA attempts to migrate the page before pinning, when
* FOLL_LONGTERM is specified.
*
* FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
* but an additional pin counting system) will be invoked. This is intended for
* anything that gets a page reference and then touches page data (for example,
* Direct IO). This lets the filesystem know that some non-file-system entity is
* potentially changing the pages' data. In contrast to FOLL_GET (whose pages
* are released via put_page()), FOLL_PIN pages must be released, ultimately, by
* a call to unpin_user_page().
*
* FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
* and separate refcounting mechanisms, however, and that means that each has
* its own acquire and release mechanisms:
*
* FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
*
* FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
*
* FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
* (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
* calls applied to them, and that's perfectly OK. This is a constraint on the
* callers, not on the pages.)
*
* FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
* directly by the caller. That's in order to help avoid mismatches when
* releasing pages: get_user_pages*() pages must be released via put_page(),
* while pin_user_pages*() pages must be released via unpin_user_page().
*
* Please see Documentation/core-api/pin_user_pages.rst for more information.
*/
static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
{
if (vm_fault & VM_FAULT_OOM)
return -ENOMEM;
if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
return -EFAULT;
return 0;
}
typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
unsigned long size, pte_fn_t fn, void *data);
extern int apply_to_existing_page_range(struct mm_struct *mm,
unsigned long address, unsigned long size,
pte_fn_t fn, void *data);
#ifdef CONFIG_PAGE_POISONING
extern bool page_poisoning_enabled(void);
extern void kernel_poison_pages(struct page *page, int numpages, int enable);
#else
static inline bool page_poisoning_enabled(void) { return false; }
static inline void kernel_poison_pages(struct page *page, int numpages,
int enable) { }
#endif
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DECLARE_STATIC_KEY_TRUE(init_on_alloc);
#else
DECLARE_STATIC_KEY_FALSE(init_on_alloc);
#endif
static inline bool want_init_on_alloc(gfp_t flags)
{
if (static_branch_unlikely(&init_on_alloc) &&
!page_poisoning_enabled())
return true;
return flags & __GFP_ZERO;
}
#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DECLARE_STATIC_KEY_TRUE(init_on_free);
#else
DECLARE_STATIC_KEY_FALSE(init_on_free);
#endif
static inline bool want_init_on_free(void)
{
return static_branch_unlikely(&init_on_free) &&
!page_poisoning_enabled();
}
#ifdef CONFIG_DEBUG_PAGEALLOC
extern void init_debug_pagealloc(void);
#else
static inline void init_debug_pagealloc(void) {}
#endif
extern bool _debug_pagealloc_enabled_early;
DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
static inline bool debug_pagealloc_enabled(void)
{
return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
_debug_pagealloc_enabled_early;
}
/*
* For use in fast paths after init_debug_pagealloc() has run, or when a
* false negative result is not harmful when called too early.
*/
static inline bool debug_pagealloc_enabled_static(void)
{
if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
return false;
return static_branch_unlikely(&_debug_pagealloc_enabled);
}
#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
extern void __kernel_map_pages(struct page *page, int numpages, int enable);
/*
* When called in DEBUG_PAGEALLOC context, the call should most likely be
* guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
*/
static inline void
kernel_map_pages(struct page *page, int numpages, int enable)
{
__kernel_map_pages(page, numpages, enable);
}
#ifdef CONFIG_HIBERNATION
extern bool kernel_page_present(struct page *page);
#endif /* CONFIG_HIBERNATION */
#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}
#ifdef CONFIG_HIBERNATION
static inline bool kernel_page_present(struct page *page) { return true; }
#endif /* CONFIG_HIBERNATION */
#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
#ifdef __HAVE_ARCH_GATE_AREA
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
extern int in_gate_area_no_mm(unsigned long addr);
extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
#else
static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
{
return NULL;
}
static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
{
return 0;
}
#endif /* __HAVE_ARCH_GATE_AREA */
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
#ifdef CONFIG_SYSCTL
extern int sysctl_drop_caches;
int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
#endif
void drop_slab(void);
void drop_slab_node(int nid);
#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif
const char * arch_vma_name(struct vm_area_struct *vma);
#ifdef CONFIG_MMU
void print_vma_addr(char *prefix, unsigned long rip);
#else
static inline void print_vma_addr(char *prefix, unsigned long rip)
{
}
#endif
void *sparse_buffer_alloc(unsigned long size);
struct page * __populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
struct vmem_altmap *altmap);
void *vmemmap_alloc_block(unsigned long size, int node);
struct vmem_altmap;
void *vmemmap_alloc_block_buf(unsigned long size, int node,
struct vmem_altmap *altmap);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
int node, struct vmem_altmap *altmap);
int vmemmap_populate(unsigned long start, unsigned long end, int node,
struct vmem_altmap *altmap);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(unsigned long start, unsigned long end,
struct vmem_altmap *altmap);
#endif
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
unsigned long nr_pages);
enum mf_flags {
MF_COUNT_INCREASED = 1 << 0,
MF_ACTION_REQUIRED = 1 << 1,
MF_MUST_KILL = 1 << 2,
MF_SOFT_OFFLINE = 1 << 3,
};
extern int memory_failure(unsigned long pfn, int flags);
extern void memory_failure_queue(unsigned long pfn, int flags);
extern void memory_failure_queue_kick(int cpu);
extern int unpoison_memory(unsigned long pfn);
extern int sysctl_memory_failure_early_kill;
extern int sysctl_memory_failure_recovery;
extern void shake_page(struct page *p, int access);
extern atomic_long_t num_poisoned_pages __read_mostly;
extern int soft_offline_page(unsigned long pfn, int flags);
/*
* Error handlers for various types of pages.
*/
enum mf_result {
MF_IGNORED, /* Error: cannot be handled */
MF_FAILED, /* Error: handling failed */
MF_DELAYED, /* Will be handled later */
MF_RECOVERED, /* Successfully recovered */
};
enum mf_action_page_type {
MF_MSG_KERNEL,
MF_MSG_KERNEL_HIGH_ORDER,
MF_MSG_SLAB,
MF_MSG_DIFFERENT_COMPOUND,
MF_MSG_POISONED_HUGE,
MF_MSG_HUGE,
MF_MSG_FREE_HUGE,
MF_MSG_NON_PMD_HUGE,
MF_MSG_UNMAP_FAILED,
MF_MSG_DIRTY_SWAPCACHE,
MF_MSG_CLEAN_SWAPCACHE,
MF_MSG_DIRTY_MLOCKED_LRU,
MF_MSG_CLEAN_MLOCKED_LRU,
MF_MSG_DIRTY_UNEVICTABLE_LRU,
MF_MSG_CLEAN_UNEVICTABLE_LRU,
MF_MSG_DIRTY_LRU,
MF_MSG_CLEAN_LRU,
MF_MSG_TRUNCATED_LRU,
MF_MSG_BUDDY,
MF_MSG_BUDDY_2ND,
MF_MSG_DAX,
MF_MSG_UNSPLIT_THP,
MF_MSG_UNKNOWN,
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
extern void clear_huge_page(struct page *page,
unsigned long addr_hint,
unsigned int pages_per_huge_page);
extern void copy_user_huge_page(struct page *dst, struct page *src,
unsigned long addr_hint,
struct vm_area_struct *vma,
unsigned int pages_per_huge_page);
extern long copy_huge_page_from_user(struct page *dst_page,
const void __user *usr_src,
unsigned int pages_per_huge_page,
bool allow_pagefault);
/**
* vma_is_special_huge - Are transhuge page-table entries considered special?
* @vma: Pointer to the struct vm_area_struct to consider
*
* Whether transhuge page-table entries are considered "special" following
* the definition in vm_normal_page().
*
* Return: true if transhuge page-table entries should be considered special,
* false otherwise.
*/
static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
{
return vma_is_dax(vma) || (vma->vm_file &&
(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
#ifdef CONFIG_DEBUG_PAGEALLOC
extern unsigned int _debug_guardpage_minorder;
DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
static inline unsigned int debug_guardpage_minorder(void)
{
return _debug_guardpage_minorder;
}
static inline bool debug_guardpage_enabled(void)
{
return static_branch_unlikely(&_debug_guardpage_enabled);
}
static inline bool page_is_guard(struct page *page)
{
if (!debug_guardpage_enabled())
return false;
return PageGuard(page);
}
#else
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
static inline bool debug_guardpage_enabled(void) { return false; }
static inline bool page_is_guard(struct page *page) { return false; }
#endif /* CONFIG_DEBUG_PAGEALLOC */
#if MAX_NUMNODES > 1
void __init setup_nr_node_ids(void);
#else
static inline void setup_nr_node_ids(void) {}
#endif
extern int memcmp_pages(struct page *page1, struct page *page2);
static inline int pages_identical(struct page *page1, struct page *page2)
{
return !memcmp_pages(page1, page2);
}
#ifdef CONFIG_MAPPING_DIRTY_HELPERS
unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
pgoff_t first_index, pgoff_t nr,
pgoff_t bitmap_pgoff,
unsigned long *bitmap,
pgoff_t *start,
pgoff_t *end);
unsigned long wp_shared_mapping_range(struct address_space *mapping,
pgoff_t first_index, pgoff_t nr);
#endif
extern int sysctl_nr_trim_pages;
#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */