kernel_optimize_test/drivers/mtd/ubi/eba.c
Paul Mundt 20c2df83d2 mm: Remove slab destructors from kmem_cache_create().
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.

This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-07-20 10:11:58 +09:00

1240 lines
32 KiB
C

/*
* Copyright (c) International Business Machines Corp., 2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Artem Bityutskiy (Битюцкий Артём)
*/
/*
* The UBI Eraseblock Association (EBA) unit.
*
* This unit is responsible for I/O to/from logical eraseblock.
*
* Although in this implementation the EBA table is fully kept and managed in
* RAM, which assumes poor scalability, it might be (partially) maintained on
* flash in future implementations.
*
* The EBA unit implements per-logical eraseblock locking. Before accessing a
* logical eraseblock it is locked for reading or writing. The per-logical
* eraseblock locking is implemented by means of the lock tree. The lock tree
* is an RB-tree which refers all the currently locked logical eraseblocks. The
* lock tree elements are &struct ltree_entry objects. They are indexed by
* (@vol_id, @lnum) pairs.
*
* EBA also maintains the global sequence counter which is incremented each
* time a logical eraseblock is mapped to a physical eraseblock and it is
* stored in the volume identifier header. This means that each VID header has
* a unique sequence number. The sequence number is only increased an we assume
* 64 bits is enough to never overflow.
*/
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/err.h>
#include "ubi.h"
/**
* struct ltree_entry - an entry in the lock tree.
* @rb: links RB-tree nodes
* @vol_id: volume ID of the locked logical eraseblock
* @lnum: locked logical eraseblock number
* @users: how many tasks are using this logical eraseblock or wait for it
* @mutex: read/write mutex to implement read/write access serialization to
* the (@vol_id, @lnum) logical eraseblock
*
* When a logical eraseblock is being locked - corresponding &struct ltree_entry
* object is inserted to the lock tree (@ubi->ltree).
*/
struct ltree_entry {
struct rb_node rb;
int vol_id;
int lnum;
int users;
struct rw_semaphore mutex;
};
/* Slab cache for lock-tree entries */
static struct kmem_cache *ltree_slab;
/**
* next_sqnum - get next sequence number.
* @ubi: UBI device description object
*
* This function returns next sequence number to use, which is just the current
* global sequence counter value. It also increases the global sequence
* counter.
*/
static unsigned long long next_sqnum(struct ubi_device *ubi)
{
unsigned long long sqnum;
spin_lock(&ubi->ltree_lock);
sqnum = ubi->global_sqnum++;
spin_unlock(&ubi->ltree_lock);
return sqnum;
}
/**
* ubi_get_compat - get compatibility flags of a volume.
* @ubi: UBI device description object
* @vol_id: volume ID
*
* This function returns compatibility flags for an internal volume. User
* volumes have no compatibility flags, so %0 is returned.
*/
static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
{
if (vol_id == UBI_LAYOUT_VOL_ID)
return UBI_LAYOUT_VOLUME_COMPAT;
return 0;
}
/**
* ltree_lookup - look up the lock tree.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*
* This function returns a pointer to the corresponding &struct ltree_entry
* object if the logical eraseblock is locked and %NULL if it is not.
* @ubi->ltree_lock has to be locked.
*/
static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
int lnum)
{
struct rb_node *p;
p = ubi->ltree.rb_node;
while (p) {
struct ltree_entry *le;
le = rb_entry(p, struct ltree_entry, rb);
if (vol_id < le->vol_id)
p = p->rb_left;
else if (vol_id > le->vol_id)
p = p->rb_right;
else {
if (lnum < le->lnum)
p = p->rb_left;
else if (lnum > le->lnum)
p = p->rb_right;
else
return le;
}
}
return NULL;
}
/**
* ltree_add_entry - add new entry to the lock tree.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*
* This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
* lock tree. If such entry is already there, its usage counter is increased.
* Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
* failed.
*/
static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
int lnum)
{
struct ltree_entry *le, *le1, *le_free;
le = kmem_cache_alloc(ltree_slab, GFP_KERNEL);
if (!le)
return ERR_PTR(-ENOMEM);
le->vol_id = vol_id;
le->lnum = lnum;
spin_lock(&ubi->ltree_lock);
le1 = ltree_lookup(ubi, vol_id, lnum);
if (le1) {
/*
* This logical eraseblock is already locked. The newly
* allocated lock entry is not needed.
*/
le_free = le;
le = le1;
} else {
struct rb_node **p, *parent = NULL;
/*
* No lock entry, add the newly allocated one to the
* @ubi->ltree RB-tree.
*/
le_free = NULL;
p = &ubi->ltree.rb_node;
while (*p) {
parent = *p;
le1 = rb_entry(parent, struct ltree_entry, rb);
if (vol_id < le1->vol_id)
p = &(*p)->rb_left;
else if (vol_id > le1->vol_id)
p = &(*p)->rb_right;
else {
ubi_assert(lnum != le1->lnum);
if (lnum < le1->lnum)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
}
rb_link_node(&le->rb, parent, p);
rb_insert_color(&le->rb, &ubi->ltree);
}
le->users += 1;
spin_unlock(&ubi->ltree_lock);
if (le_free)
kmem_cache_free(ltree_slab, le_free);
return le;
}
/**
* leb_read_lock - lock logical eraseblock for reading.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*
* This function locks a logical eraseblock for reading. Returns zero in case
* of success and a negative error code in case of failure.
*/
static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
{
struct ltree_entry *le;
le = ltree_add_entry(ubi, vol_id, lnum);
if (IS_ERR(le))
return PTR_ERR(le);
down_read(&le->mutex);
return 0;
}
/**
* leb_read_unlock - unlock logical eraseblock.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*/
static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
{
int free = 0;
struct ltree_entry *le;
spin_lock(&ubi->ltree_lock);
le = ltree_lookup(ubi, vol_id, lnum);
le->users -= 1;
ubi_assert(le->users >= 0);
if (le->users == 0) {
rb_erase(&le->rb, &ubi->ltree);
free = 1;
}
spin_unlock(&ubi->ltree_lock);
up_read(&le->mutex);
if (free)
kmem_cache_free(ltree_slab, le);
}
/**
* leb_write_lock - lock logical eraseblock for writing.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*
* This function locks a logical eraseblock for writing. Returns zero in case
* of success and a negative error code in case of failure.
*/
static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
{
struct ltree_entry *le;
le = ltree_add_entry(ubi, vol_id, lnum);
if (IS_ERR(le))
return PTR_ERR(le);
down_write(&le->mutex);
return 0;
}
/**
* leb_write_unlock - unlock logical eraseblock.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*/
static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
{
int free;
struct ltree_entry *le;
spin_lock(&ubi->ltree_lock);
le = ltree_lookup(ubi, vol_id, lnum);
le->users -= 1;
ubi_assert(le->users >= 0);
if (le->users == 0) {
rb_erase(&le->rb, &ubi->ltree);
free = 1;
} else
free = 0;
spin_unlock(&ubi->ltree_lock);
up_write(&le->mutex);
if (free)
kmem_cache_free(ltree_slab, le);
}
/**
* ubi_eba_unmap_leb - un-map logical eraseblock.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
*
* This function un-maps logical eraseblock @lnum and schedules corresponding
* physical eraseblock for erasure. Returns zero in case of success and a
* negative error code in case of failure.
*/
int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum)
{
int idx = vol_id2idx(ubi, vol_id), err, pnum;
struct ubi_volume *vol = ubi->volumes[idx];
if (ubi->ro_mode)
return -EROFS;
err = leb_write_lock(ubi, vol_id, lnum);
if (err)
return err;
pnum = vol->eba_tbl[lnum];
if (pnum < 0)
/* This logical eraseblock is already unmapped */
goto out_unlock;
dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
err = ubi_wl_put_peb(ubi, pnum, 0);
out_unlock:
leb_write_unlock(ubi, vol_id, lnum);
return err;
}
/**
* ubi_eba_read_leb - read data.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
* @buf: buffer to store the read data
* @offset: offset from where to read
* @len: how many bytes to read
* @check: data CRC check flag
*
* If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
* bytes. The @check flag only makes sense for static volumes and forces
* eraseblock data CRC checking.
*
* In case of success this function returns zero. In case of a static volume,
* if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
* returned for any volume type if an ECC error was detected by the MTD device
* driver. Other negative error cored may be returned in case of other errors.
*/
int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf,
int offset, int len, int check)
{
int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id);
struct ubi_vid_hdr *vid_hdr;
struct ubi_volume *vol = ubi->volumes[idx];
uint32_t uninitialized_var(crc);
err = leb_read_lock(ubi, vol_id, lnum);
if (err)
return err;
pnum = vol->eba_tbl[lnum];
if (pnum < 0) {
/*
* The logical eraseblock is not mapped, fill the whole buffer
* with 0xFF bytes. The exception is static volumes for which
* it is an error to read unmapped logical eraseblocks.
*/
dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
len, offset, vol_id, lnum);
leb_read_unlock(ubi, vol_id, lnum);
ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
memset(buf, 0xFF, len);
return 0;
}
dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
len, offset, vol_id, lnum, pnum);
if (vol->vol_type == UBI_DYNAMIC_VOLUME)
check = 0;
retry:
if (check) {
vid_hdr = ubi_zalloc_vid_hdr(ubi);
if (!vid_hdr) {
err = -ENOMEM;
goto out_unlock;
}
err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
if (err && err != UBI_IO_BITFLIPS) {
if (err > 0) {
/*
* The header is either absent or corrupted.
* The former case means there is a bug -
* switch to read-only mode just in case.
* The latter case means a real corruption - we
* may try to recover data. FIXME: but this is
* not implemented.
*/
if (err == UBI_IO_BAD_VID_HDR) {
ubi_warn("bad VID header at PEB %d, LEB"
"%d:%d", pnum, vol_id, lnum);
err = -EBADMSG;
} else
ubi_ro_mode(ubi);
}
goto out_free;
} else if (err == UBI_IO_BITFLIPS)
scrub = 1;
ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
crc = be32_to_cpu(vid_hdr->data_crc);
ubi_free_vid_hdr(ubi, vid_hdr);
}
err = ubi_io_read_data(ubi, buf, pnum, offset, len);
if (err) {
if (err == UBI_IO_BITFLIPS) {
scrub = 1;
err = 0;
} else if (err == -EBADMSG) {
if (vol->vol_type == UBI_DYNAMIC_VOLUME)
goto out_unlock;
scrub = 1;
if (!check) {
ubi_msg("force data checking");
check = 1;
goto retry;
}
} else
goto out_unlock;
}
if (check) {
uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
if (crc1 != crc) {
ubi_warn("CRC error: calculated %#08x, must be %#08x",
crc1, crc);
err = -EBADMSG;
goto out_unlock;
}
}
if (scrub)
err = ubi_wl_scrub_peb(ubi, pnum);
leb_read_unlock(ubi, vol_id, lnum);
return err;
out_free:
ubi_free_vid_hdr(ubi, vid_hdr);
out_unlock:
leb_read_unlock(ubi, vol_id, lnum);
return err;
}
/**
* recover_peb - recover from write failure.
* @ubi: UBI device description object
* @pnum: the physical eraseblock to recover
* @vol_id: volume ID
* @lnum: logical eraseblock number
* @buf: data which was not written because of the write failure
* @offset: offset of the failed write
* @len: how many bytes should have been written
*
* This function is called in case of a write failure and moves all good data
* from the potentially bad physical eraseblock to a good physical eraseblock.
* This function also writes the data which was not written due to the failure.
* Returns new physical eraseblock number in case of success, and a negative
* error code in case of failure.
*/
static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
const void *buf, int offset, int len)
{
int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
struct ubi_volume *vol = ubi->volumes[idx];
struct ubi_vid_hdr *vid_hdr;
unsigned char *new_buf;
vid_hdr = ubi_zalloc_vid_hdr(ubi);
if (!vid_hdr) {
return -ENOMEM;
}
retry:
new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
if (new_pnum < 0) {
ubi_free_vid_hdr(ubi, vid_hdr);
return new_pnum;
}
ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
if (err && err != UBI_IO_BITFLIPS) {
if (err > 0)
err = -EIO;
goto out_put;
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
if (err)
goto write_error;
data_size = offset + len;
new_buf = vmalloc(data_size);
if (!new_buf) {
err = -ENOMEM;
goto out_put;
}
memset(new_buf + offset, 0xFF, len);
/* Read everything before the area where the write failure happened */
if (offset > 0) {
err = ubi_io_read_data(ubi, new_buf, pnum, 0, offset);
if (err && err != UBI_IO_BITFLIPS) {
vfree(new_buf);
goto out_put;
}
}
memcpy(new_buf + offset, buf, len);
err = ubi_io_write_data(ubi, new_buf, new_pnum, 0, data_size);
if (err) {
vfree(new_buf);
goto write_error;
}
vfree(new_buf);
ubi_free_vid_hdr(ubi, vid_hdr);
vol->eba_tbl[lnum] = new_pnum;
ubi_wl_put_peb(ubi, pnum, 1);
ubi_msg("data was successfully recovered");
return 0;
out_put:
ubi_wl_put_peb(ubi, new_pnum, 1);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
write_error:
/*
* Bad luck? This physical eraseblock is bad too? Crud. Let's try to
* get another one.
*/
ubi_warn("failed to write to PEB %d", new_pnum);
ubi_wl_put_peb(ubi, new_pnum, 1);
if (++tries > UBI_IO_RETRIES) {
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
ubi_msg("try again");
goto retry;
}
/**
* ubi_eba_write_leb - write data to dynamic volume.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
* @buf: the data to write
* @offset: offset within the logical eraseblock where to write
* @len: how many bytes to write
* @dtype: data type
*
* This function writes data to logical eraseblock @lnum of a dynamic volume
* @vol_id. Returns zero in case of success and a negative error code in case
* of failure. In case of error, it is possible that something was still
* written to the flash media, but may be some garbage.
*/
int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum,
const void *buf, int offset, int len, int dtype)
{
int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0;
struct ubi_volume *vol = ubi->volumes[idx];
struct ubi_vid_hdr *vid_hdr;
if (ubi->ro_mode)
return -EROFS;
err = leb_write_lock(ubi, vol_id, lnum);
if (err)
return err;
pnum = vol->eba_tbl[lnum];
if (pnum >= 0) {
dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
len, offset, vol_id, lnum, pnum);
err = ubi_io_write_data(ubi, buf, pnum, offset, len);
if (err) {
ubi_warn("failed to write data to PEB %d", pnum);
if (err == -EIO && ubi->bad_allowed)
err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len);
if (err)
ubi_ro_mode(ubi);
}
leb_write_unlock(ubi, vol_id, lnum);
return err;
}
/*
* The logical eraseblock is not mapped. We have to get a free physical
* eraseblock and write the volume identifier header there first.
*/
vid_hdr = ubi_zalloc_vid_hdr(ubi);
if (!vid_hdr) {
leb_write_unlock(ubi, vol_id, lnum);
return -ENOMEM;
}
vid_hdr->vol_type = UBI_VID_DYNAMIC;
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
vid_hdr->vol_id = cpu_to_be32(vol_id);
vid_hdr->lnum = cpu_to_be32(lnum);
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
retry:
pnum = ubi_wl_get_peb(ubi, dtype);
if (pnum < 0) {
ubi_free_vid_hdr(ubi, vid_hdr);
leb_write_unlock(ubi, vol_id, lnum);
return pnum;
}
dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
len, offset, vol_id, lnum, pnum);
err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
if (err) {
ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
vol_id, lnum, pnum);
goto write_error;
}
err = ubi_io_write_data(ubi, buf, pnum, offset, len);
if (err) {
ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, "
"PEB %d", len, offset, vol_id, lnum, pnum);
goto write_error;
}
vol->eba_tbl[lnum] = pnum;
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return 0;
write_error:
if (err != -EIO || !ubi->bad_allowed) {
ubi_ro_mode(ubi);
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
/*
* Fortunately, this is the first write operation to this physical
* eraseblock, so just put it and request a new one. We assume that if
* this physical eraseblock went bad, the erase code will handle that.
*/
err = ubi_wl_put_peb(ubi, pnum, 1);
if (err || ++tries > UBI_IO_RETRIES) {
ubi_ro_mode(ubi);
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
ubi_msg("try another PEB");
goto retry;
}
/**
* ubi_eba_write_leb_st - write data to static volume.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
* @buf: data to write
* @len: how many bytes to write
* @dtype: data type
* @used_ebs: how many logical eraseblocks will this volume contain
*
* This function writes data to logical eraseblock @lnum of static volume
* @vol_id. The @used_ebs argument should contain total number of logical
* eraseblock in this static volume.
*
* When writing to the last logical eraseblock, the @len argument doesn't have
* to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
* to the real data size, although the @buf buffer has to contain the
* alignment. In all other cases, @len has to be aligned.
*
* It is prohibited to write more then once to logical eraseblocks of static
* volumes. This function returns zero in case of success and a negative error
* code in case of failure.
*/
int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum,
const void *buf, int len, int dtype, int used_ebs)
{
int err, pnum, tries = 0, data_size = len;
int idx = vol_id2idx(ubi, vol_id);
struct ubi_volume *vol = ubi->volumes[idx];
struct ubi_vid_hdr *vid_hdr;
uint32_t crc;
if (ubi->ro_mode)
return -EROFS;
if (lnum == used_ebs - 1)
/* If this is the last LEB @len may be unaligned */
len = ALIGN(data_size, ubi->min_io_size);
else
ubi_assert(len % ubi->min_io_size == 0);
vid_hdr = ubi_zalloc_vid_hdr(ubi);
if (!vid_hdr)
return -ENOMEM;
err = leb_write_lock(ubi, vol_id, lnum);
if (err) {
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
vid_hdr->vol_id = cpu_to_be32(vol_id);
vid_hdr->lnum = cpu_to_be32(lnum);
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
crc = crc32(UBI_CRC32_INIT, buf, data_size);
vid_hdr->vol_type = UBI_VID_STATIC;
vid_hdr->data_size = cpu_to_be32(data_size);
vid_hdr->used_ebs = cpu_to_be32(used_ebs);
vid_hdr->data_crc = cpu_to_be32(crc);
retry:
pnum = ubi_wl_get_peb(ubi, dtype);
if (pnum < 0) {
ubi_free_vid_hdr(ubi, vid_hdr);
leb_write_unlock(ubi, vol_id, lnum);
return pnum;
}
dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
len, vol_id, lnum, pnum, used_ebs);
err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
if (err) {
ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
vol_id, lnum, pnum);
goto write_error;
}
err = ubi_io_write_data(ubi, buf, pnum, 0, len);
if (err) {
ubi_warn("failed to write %d bytes of data to PEB %d",
len, pnum);
goto write_error;
}
ubi_assert(vol->eba_tbl[lnum] < 0);
vol->eba_tbl[lnum] = pnum;
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return 0;
write_error:
if (err != -EIO || !ubi->bad_allowed) {
/*
* This flash device does not admit of bad eraseblocks or
* something nasty and unexpected happened. Switch to read-only
* mode just in case.
*/
ubi_ro_mode(ubi);
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
err = ubi_wl_put_peb(ubi, pnum, 1);
if (err || ++tries > UBI_IO_RETRIES) {
ubi_ro_mode(ubi);
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
ubi_msg("try another PEB");
goto retry;
}
/*
* ubi_eba_atomic_leb_change - change logical eraseblock atomically.
* @ubi: UBI device description object
* @vol_id: volume ID
* @lnum: logical eraseblock number
* @buf: data to write
* @len: how many bytes to write
* @dtype: data type
*
* This function changes the contents of a logical eraseblock atomically. @buf
* has to contain new logical eraseblock data, and @len - the length of the
* data, which has to be aligned. This function guarantees that in case of an
* unclean reboot the old contents is preserved. Returns zero in case of
* success and a negative error code in case of failure.
*/
int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum,
const void *buf, int len, int dtype)
{
int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id);
struct ubi_volume *vol = ubi->volumes[idx];
struct ubi_vid_hdr *vid_hdr;
uint32_t crc;
if (ubi->ro_mode)
return -EROFS;
vid_hdr = ubi_zalloc_vid_hdr(ubi);
if (!vid_hdr)
return -ENOMEM;
err = leb_write_lock(ubi, vol_id, lnum);
if (err) {
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
vid_hdr->vol_id = cpu_to_be32(vol_id);
vid_hdr->lnum = cpu_to_be32(lnum);
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
crc = crc32(UBI_CRC32_INIT, buf, len);
vid_hdr->vol_type = UBI_VID_DYNAMIC;
vid_hdr->data_size = cpu_to_be32(len);
vid_hdr->copy_flag = 1;
vid_hdr->data_crc = cpu_to_be32(crc);
retry:
pnum = ubi_wl_get_peb(ubi, dtype);
if (pnum < 0) {
ubi_free_vid_hdr(ubi, vid_hdr);
leb_write_unlock(ubi, vol_id, lnum);
return pnum;
}
dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
vol_id, lnum, vol->eba_tbl[lnum], pnum);
err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
if (err) {
ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
vol_id, lnum, pnum);
goto write_error;
}
err = ubi_io_write_data(ubi, buf, pnum, 0, len);
if (err) {
ubi_warn("failed to write %d bytes of data to PEB %d",
len, pnum);
goto write_error;
}
if (vol->eba_tbl[lnum] >= 0) {
err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
if (err) {
ubi_free_vid_hdr(ubi, vid_hdr);
leb_write_unlock(ubi, vol_id, lnum);
return err;
}
}
vol->eba_tbl[lnum] = pnum;
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return 0;
write_error:
if (err != -EIO || !ubi->bad_allowed) {
/*
* This flash device does not admit of bad eraseblocks or
* something nasty and unexpected happened. Switch to read-only
* mode just in case.
*/
ubi_ro_mode(ubi);
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
err = ubi_wl_put_peb(ubi, pnum, 1);
if (err || ++tries > UBI_IO_RETRIES) {
ubi_ro_mode(ubi);
leb_write_unlock(ubi, vol_id, lnum);
ubi_free_vid_hdr(ubi, vid_hdr);
return err;
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
ubi_msg("try another PEB");
goto retry;
}
/**
* ltree_entry_ctor - lock tree entries slab cache constructor.
* @obj: the lock-tree entry to construct
* @cache: the lock tree entry slab cache
* @flags: constructor flags
*/
static void ltree_entry_ctor(void *obj, struct kmem_cache *cache,
unsigned long flags)
{
struct ltree_entry *le = obj;
le->users = 0;
init_rwsem(&le->mutex);
}
/**
* ubi_eba_copy_leb - copy logical eraseblock.
* @ubi: UBI device description object
* @from: physical eraseblock number from where to copy
* @to: physical eraseblock number where to copy
* @vid_hdr: VID header of the @from physical eraseblock
*
* This function copies logical eraseblock from physical eraseblock @from to
* physical eraseblock @to. The @vid_hdr buffer may be changed by this
* function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation
* was canceled because bit-flips were detected at the target PEB, and a
* negative error code in case of failure.
*/
int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
struct ubi_vid_hdr *vid_hdr)
{
int err, vol_id, lnum, data_size, aldata_size, pnum, idx;
struct ubi_volume *vol;
uint32_t crc;
void *buf, *buf1 = NULL;
vol_id = be32_to_cpu(vid_hdr->vol_id);
lnum = be32_to_cpu(vid_hdr->lnum);
dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
if (vid_hdr->vol_type == UBI_VID_STATIC) {
data_size = be32_to_cpu(vid_hdr->data_size);
aldata_size = ALIGN(data_size, ubi->min_io_size);
} else
data_size = aldata_size =
ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
buf = vmalloc(aldata_size);
if (!buf)
return -ENOMEM;
/*
* We do not want anybody to write to this logical eraseblock while we
* are moving it, so we lock it.
*/
err = leb_write_lock(ubi, vol_id, lnum);
if (err) {
vfree(buf);
return err;
}
/*
* But the logical eraseblock might have been put by this time.
* Cancel if it is true.
*/
idx = vol_id2idx(ubi, vol_id);
/*
* We may race with volume deletion/re-size, so we have to hold
* @ubi->volumes_lock.
*/
spin_lock(&ubi->volumes_lock);
vol = ubi->volumes[idx];
if (!vol) {
dbg_eba("volume %d was removed meanwhile", vol_id);
spin_unlock(&ubi->volumes_lock);
goto out_unlock;
}
pnum = vol->eba_tbl[lnum];
if (pnum != from) {
dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
"PEB %d, cancel", vol_id, lnum, from, pnum);
spin_unlock(&ubi->volumes_lock);
goto out_unlock;
}
spin_unlock(&ubi->volumes_lock);
/* OK, now the LEB is locked and we can safely start moving it */
dbg_eba("read %d bytes of data", aldata_size);
err = ubi_io_read_data(ubi, buf, from, 0, aldata_size);
if (err && err != UBI_IO_BITFLIPS) {
ubi_warn("error %d while reading data from PEB %d",
err, from);
goto out_unlock;
}
/*
* Now we have got to calculate how much data we have to to copy. In
* case of a static volume it is fairly easy - the VID header contains
* the data size. In case of a dynamic volume it is more difficult - we
* have to read the contents, cut 0xFF bytes from the end and copy only
* the first part. We must do this to avoid writing 0xFF bytes as it
* may have some side-effects. And not only this. It is important not
* to include those 0xFFs to CRC because later the they may be filled
* by data.
*/
if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
aldata_size = data_size =
ubi_calc_data_len(ubi, buf, data_size);
cond_resched();
crc = crc32(UBI_CRC32_INIT, buf, data_size);
cond_resched();
/*
* It may turn out to me that the whole @from physical eraseblock
* contains only 0xFF bytes. Then we have to only write the VID header
* and do not write any data. This also means we should not set
* @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
*/
if (data_size > 0) {
vid_hdr->copy_flag = 1;
vid_hdr->data_size = cpu_to_be32(data_size);
vid_hdr->data_crc = cpu_to_be32(crc);
}
vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
if (err)
goto out_unlock;
cond_resched();
/* Read the VID header back and check if it was written correctly */
err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
if (err) {
if (err != UBI_IO_BITFLIPS)
ubi_warn("cannot read VID header back from PEB %d", to);
goto out_unlock;
}
if (data_size > 0) {
err = ubi_io_write_data(ubi, buf, to, 0, aldata_size);
if (err)
goto out_unlock;
/*
* We've written the data and are going to read it back to make
* sure it was written correctly.
*/
buf1 = vmalloc(aldata_size);
if (!buf1) {
err = -ENOMEM;
goto out_unlock;
}
cond_resched();
err = ubi_io_read_data(ubi, buf1, to, 0, aldata_size);
if (err) {
if (err != UBI_IO_BITFLIPS)
ubi_warn("cannot read data back from PEB %d",
to);
goto out_unlock;
}
cond_resched();
if (memcmp(buf, buf1, aldata_size)) {
ubi_warn("read data back from PEB %d - it is different",
to);
goto out_unlock;
}
}
ubi_assert(vol->eba_tbl[lnum] == from);
vol->eba_tbl[lnum] = to;
leb_write_unlock(ubi, vol_id, lnum);
vfree(buf);
vfree(buf1);
return 0;
out_unlock:
leb_write_unlock(ubi, vol_id, lnum);
vfree(buf);
vfree(buf1);
return err;
}
/**
* ubi_eba_init_scan - initialize the EBA unit using scanning information.
* @ubi: UBI device description object
* @si: scanning information
*
* This function returns zero in case of success and a negative error code in
* case of failure.
*/
int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
{
int i, j, err, num_volumes;
struct ubi_scan_volume *sv;
struct ubi_volume *vol;
struct ubi_scan_leb *seb;
struct rb_node *rb;
dbg_eba("initialize EBA unit");
spin_lock_init(&ubi->ltree_lock);
ubi->ltree = RB_ROOT;
if (ubi_devices_cnt == 0) {
ltree_slab = kmem_cache_create("ubi_ltree_slab",
sizeof(struct ltree_entry), 0,
0, &ltree_entry_ctor);
if (!ltree_slab)
return -ENOMEM;
}
ubi->global_sqnum = si->max_sqnum + 1;
num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
for (i = 0; i < num_volumes; i++) {
vol = ubi->volumes[i];
if (!vol)
continue;
cond_resched();
vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
GFP_KERNEL);
if (!vol->eba_tbl) {
err = -ENOMEM;
goto out_free;
}
for (j = 0; j < vol->reserved_pebs; j++)
vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
if (!sv)
continue;
ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
if (seb->lnum >= vol->reserved_pebs)
/*
* This may happen in case of an unclean reboot
* during re-size.
*/
ubi_scan_move_to_list(sv, seb, &si->erase);
vol->eba_tbl[seb->lnum] = seb->pnum;
}
}
if (ubi->bad_allowed) {
ubi_calculate_reserved(ubi);
if (ubi->avail_pebs < ubi->beb_rsvd_level) {
/* No enough free physical eraseblocks */
ubi->beb_rsvd_pebs = ubi->avail_pebs;
ubi_warn("cannot reserve enough PEBs for bad PEB "
"handling, reserved %d, need %d",
ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
} else
ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
ubi->avail_pebs -= ubi->beb_rsvd_pebs;
ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
}
dbg_eba("EBA unit is initialized");
return 0;
out_free:
for (i = 0; i < num_volumes; i++) {
if (!ubi->volumes[i])
continue;
kfree(ubi->volumes[i]->eba_tbl);
}
if (ubi_devices_cnt == 0)
kmem_cache_destroy(ltree_slab);
return err;
}
/**
* ubi_eba_close - close EBA unit.
* @ubi: UBI device description object
*/
void ubi_eba_close(const struct ubi_device *ubi)
{
int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
dbg_eba("close EBA unit");
for (i = 0; i < num_volumes; i++) {
if (!ubi->volumes[i])
continue;
kfree(ubi->volumes[i]->eba_tbl);
}
if (ubi_devices_cnt == 1)
kmem_cache_destroy(ltree_slab);
}