kernel_optimize_test/arch/x86/kernel/i387.c
Suresh Siddha b1a74bf821 x86, kvm: fix kvm's usage of kernel_fpu_begin/end()
Preemption is disabled between kernel_fpu_begin/end() and as such
it is not a good idea to use these routines in kvm_load/put_guest_fpu()
which can be very far apart.

kvm_load/put_guest_fpu() routines are already called with
preemption disabled and KVM already uses the preempt notifier to save
the guest fpu state using kvm_put_guest_fpu().

So introduce __kernel_fpu_begin/end() routines which don't touch
preemption and use them instead of kernel_fpu_begin/end()
for KVM's use model of saving/restoring guest FPU state.

Also with this change (and with eagerFPU model), fix the host cr0.TS vm-exit
state in the case of VMX. For eagerFPU case, host cr0.TS is always clear.
So no need to worry about it. For the traditional lazyFPU restore case,
change the cr0.TS bit for the host state during vm-exit to be always clear
and cr0.TS bit is set in the __vmx_load_host_state() when the FPU
(guest FPU or the host task's FPU) state is not active. This ensures
that the host/guest FPU state is properly saved, restored
during context-switch and with interrupts (using irq_fpu_usable()) not
stomping on the active FPU state.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1348164109.26695.338.camel@sbsiddha-desk.sc.intel.com
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-09-21 16:59:04 -07:00

595 lines
14 KiB
C

/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
#include <linux/module.h>
#include <linux/regset.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/sigcontext.h>
#include <asm/processor.h>
#include <asm/math_emu.h>
#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
#include <asm/user.h>
/*
* Were we in an interrupt that interrupted kernel mode?
*
* For now, with eagerfpu we will return interrupted kernel FPU
* state as not-idle. TBD: Ideally we can change the return value
* to something like __thread_has_fpu(current). But we need to
* be careful of doing __thread_clear_has_fpu() before saving
* the FPU etc for supporting nested uses etc. For now, take
* the simple route!
*
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
* pair does nothing at all: the thread must not have fpu (so
* that we don't try to save the FPU state), and TS must
* be set (so that the clts/stts pair does nothing that is
* visible in the interrupted kernel thread).
*/
static inline bool interrupted_kernel_fpu_idle(void)
{
if (use_eager_fpu())
return 0;
return !__thread_has_fpu(current) &&
(read_cr0() & X86_CR0_TS);
}
/*
* Were we in user mode (or vm86 mode) when we were
* interrupted?
*
* Doing kernel_fpu_begin/end() is ok if we are running
* in an interrupt context from user mode - we'll just
* save the FPU state as required.
*/
static inline bool interrupted_user_mode(void)
{
struct pt_regs *regs = get_irq_regs();
return regs && user_mode_vm(regs);
}
/*
* Can we use the FPU in kernel mode with the
* whole "kernel_fpu_begin/end()" sequence?
*
* It's always ok in process context (ie "not interrupt")
* but it is sometimes ok even from an irq.
*/
bool irq_fpu_usable(void)
{
return !in_interrupt() ||
interrupted_user_mode() ||
interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);
void __kernel_fpu_begin(void)
{
struct task_struct *me = current;
if (__thread_has_fpu(me)) {
__save_init_fpu(me);
__thread_clear_has_fpu(me);
/* We do 'stts()' in __kernel_fpu_end() */
} else if (!use_eager_fpu()) {
this_cpu_write(fpu_owner_task, NULL);
clts();
}
}
EXPORT_SYMBOL(__kernel_fpu_begin);
void __kernel_fpu_end(void)
{
if (use_eager_fpu())
math_state_restore();
else
stts();
}
EXPORT_SYMBOL(__kernel_fpu_end);
void unlazy_fpu(struct task_struct *tsk)
{
preempt_disable();
if (__thread_has_fpu(tsk)) {
__save_init_fpu(tsk);
__thread_fpu_end(tsk);
} else
tsk->fpu_counter = 0;
preempt_enable();
}
EXPORT_SYMBOL(unlazy_fpu);
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
unsigned int xstate_size;
EXPORT_SYMBOL_GPL(xstate_size);
static struct i387_fxsave_struct fx_scratch __cpuinitdata;
static void __cpuinit mxcsr_feature_mask_init(void)
{
unsigned long mask = 0;
if (cpu_has_fxsr) {
memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
asm volatile("fxsave %0" : : "m" (fx_scratch));
mask = fx_scratch.mxcsr_mask;
if (mask == 0)
mask = 0x0000ffbf;
}
mxcsr_feature_mask &= mask;
}
static void __cpuinit init_thread_xstate(void)
{
/*
* Note that xstate_size might be overwriten later during
* xsave_init().
*/
if (!HAVE_HWFP) {
/*
* Disable xsave as we do not support it if i387
* emulation is enabled.
*/
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
xstate_size = sizeof(struct i387_soft_struct);
return;
}
if (cpu_has_fxsr)
xstate_size = sizeof(struct i387_fxsave_struct);
else
xstate_size = sizeof(struct i387_fsave_struct);
}
/*
* Called at bootup to set up the initial FPU state that is later cloned
* into all processes.
*/
void __cpuinit fpu_init(void)
{
unsigned long cr0;
unsigned long cr4_mask = 0;
if (cpu_has_fxsr)
cr4_mask |= X86_CR4_OSFXSR;
if (cpu_has_xmm)
cr4_mask |= X86_CR4_OSXMMEXCPT;
if (cr4_mask)
set_in_cr4(cr4_mask);
cr0 = read_cr0();
cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
if (!HAVE_HWFP)
cr0 |= X86_CR0_EM;
write_cr0(cr0);
if (!smp_processor_id())
init_thread_xstate();
mxcsr_feature_mask_init();
xsave_init();
eager_fpu_init();
}
void fpu_finit(struct fpu *fpu)
{
if (!HAVE_HWFP) {
finit_soft_fpu(&fpu->state->soft);
return;
}
if (cpu_has_fxsr) {
fx_finit(&fpu->state->fxsave);
} else {
struct i387_fsave_struct *fp = &fpu->state->fsave;
memset(fp, 0, xstate_size);
fp->cwd = 0xffff037fu;
fp->swd = 0xffff0000u;
fp->twd = 0xffffffffu;
fp->fos = 0xffff0000u;
}
}
EXPORT_SYMBOL_GPL(fpu_finit);
/*
* The _current_ task is using the FPU for the first time
* so initialize it and set the mxcsr to its default
* value at reset if we support XMM instructions and then
* remember the current task has used the FPU.
*/
int init_fpu(struct task_struct *tsk)
{
int ret;
if (tsk_used_math(tsk)) {
if (HAVE_HWFP && tsk == current)
unlazy_fpu(tsk);
tsk->thread.fpu.last_cpu = ~0;
return 0;
}
/*
* Memory allocation at the first usage of the FPU and other state.
*/
ret = fpu_alloc(&tsk->thread.fpu);
if (ret)
return ret;
fpu_finit(&tsk->thread.fpu);
set_stopped_child_used_math(tsk);
return 0;
}
EXPORT_SYMBOL_GPL(init_fpu);
/*
* The xstateregs_active() routine is the same as the fpregs_active() routine,
* as the "regset->n" for the xstate regset will be updated based on the feature
* capabilites supported by the xsave.
*/
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
{
return tsk_used_math(target) ? regset->n : 0;
}
int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
{
return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
}
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret;
if (!cpu_has_fxsr)
return -ENODEV;
ret = init_fpu(target);
if (ret)
return ret;
sanitize_i387_state(target);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fxsave, 0, -1);
}
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
if (!cpu_has_fxsr)
return -ENODEV;
ret = init_fpu(target);
if (ret)
return ret;
sanitize_i387_state(target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fxsave, 0, -1);
/*
* mxcsr reserved bits must be masked to zero for security reasons.
*/
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
/*
* update the header bits in the xsave header, indicating the
* presence of FP and SSE state.
*/
if (cpu_has_xsave)
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
return ret;
}
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret;
if (!cpu_has_xsave)
return -ENODEV;
ret = init_fpu(target);
if (ret)
return ret;
/*
* Copy the 48bytes defined by the software first into the xstate
* memory layout in the thread struct, so that we can copy the entire
* xstateregs to the user using one user_regset_copyout().
*/
memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
/*
* Copy the xstate memory layout.
*/
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->xsave, 0, -1);
return ret;
}
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
struct xsave_hdr_struct *xsave_hdr;
if (!cpu_has_xsave)
return -ENODEV;
ret = init_fpu(target);
if (ret)
return ret;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->xsave, 0, -1);
/*
* mxcsr reserved bits must be masked to zero for security reasons.
*/
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
xsave_hdr->xstate_bv &= pcntxt_mask;
/*
* These bits must be zero.
*/
xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
return ret;
}
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
/*
* FPU tag word conversions.
*/
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
{
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
tmp = ~twd;
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
/* and move the valid bits to the lower byte. */
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
return tmp;
}
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
#define FP_EXP_TAG_VALID 0
#define FP_EXP_TAG_ZERO 1
#define FP_EXP_TAG_SPECIAL 2
#define FP_EXP_TAG_EMPTY 3
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
{
struct _fpxreg *st;
u32 tos = (fxsave->swd >> 11) & 7;
u32 twd = (unsigned long) fxsave->twd;
u32 tag;
u32 ret = 0xffff0000u;
int i;
for (i = 0; i < 8; i++, twd >>= 1) {
if (twd & 0x1) {
st = FPREG_ADDR(fxsave, (i - tos) & 7);
switch (st->exponent & 0x7fff) {
case 0x7fff:
tag = FP_EXP_TAG_SPECIAL;
break;
case 0x0000:
if (!st->significand[0] &&
!st->significand[1] &&
!st->significand[2] &&
!st->significand[3])
tag = FP_EXP_TAG_ZERO;
else
tag = FP_EXP_TAG_SPECIAL;
break;
default:
if (st->significand[3] & 0x8000)
tag = FP_EXP_TAG_VALID;
else
tag = FP_EXP_TAG_SPECIAL;
break;
}
} else {
tag = FP_EXP_TAG_EMPTY;
}
ret |= tag << (2 * i);
}
return ret;
}
/*
* FXSR floating point environment conversions.
*/
void
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
{
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
int i;
env->cwd = fxsave->cwd | 0xffff0000u;
env->swd = fxsave->swd | 0xffff0000u;
env->twd = twd_fxsr_to_i387(fxsave);
#ifdef CONFIG_X86_64
env->fip = fxsave->rip;
env->foo = fxsave->rdp;
/*
* should be actually ds/cs at fpu exception time, but
* that information is not available in 64bit mode.
*/
env->fcs = task_pt_regs(tsk)->cs;
if (tsk == current) {
savesegment(ds, env->fos);
} else {
env->fos = tsk->thread.ds;
}
env->fos |= 0xffff0000;
#else
env->fip = fxsave->fip;
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
env->foo = fxsave->foo;
env->fos = fxsave->fos;
#endif
for (i = 0; i < 8; ++i)
memcpy(&to[i], &from[i], sizeof(to[0]));
}
void convert_to_fxsr(struct task_struct *tsk,
const struct user_i387_ia32_struct *env)
{
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
int i;
fxsave->cwd = env->cwd;
fxsave->swd = env->swd;
fxsave->twd = twd_i387_to_fxsr(env->twd);
fxsave->fop = (u16) ((u32) env->fcs >> 16);
#ifdef CONFIG_X86_64
fxsave->rip = env->fip;
fxsave->rdp = env->foo;
/* cs and ds ignored */
#else
fxsave->fip = env->fip;
fxsave->fcs = (env->fcs & 0xffff);
fxsave->foo = env->foo;
fxsave->fos = env->fos;
#endif
for (i = 0; i < 8; ++i)
memcpy(&to[i], &from[i], sizeof(from[0]));
}
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct user_i387_ia32_struct env;
int ret;
ret = init_fpu(target);
if (ret)
return ret;
if (!HAVE_HWFP)
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
if (!cpu_has_fxsr) {
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fsave, 0,
-1);
}
sanitize_i387_state(target);
if (kbuf && pos == 0 && count == sizeof(env)) {
convert_from_fxsr(kbuf, target);
return 0;
}
convert_from_fxsr(&env, target);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
}
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct user_i387_ia32_struct env;
int ret;
ret = init_fpu(target);
if (ret)
return ret;
sanitize_i387_state(target);
if (!HAVE_HWFP)
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
if (!cpu_has_fxsr) {
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fsave, 0, -1);
}
if (pos > 0 || count < sizeof(env))
convert_from_fxsr(&env, target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
if (!ret)
convert_to_fxsr(target, &env);
/*
* update the header bit in the xsave header, indicating the
* presence of FP.
*/
if (cpu_has_xsave)
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
return ret;
}
/*
* FPU state for core dumps.
* This is only used for a.out dumps now.
* It is declared generically using elf_fpregset_t (which is
* struct user_i387_struct) but is in fact only used for 32-bit
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
*/
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
{
struct task_struct *tsk = current;
int fpvalid;
fpvalid = !!used_math();
if (fpvalid)
fpvalid = !fpregs_get(tsk, NULL,
0, sizeof(struct user_i387_ia32_struct),
fpu, NULL);
return fpvalid;
}
EXPORT_SYMBOL(dump_fpu);
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */