forked from luck/tmp_suning_uos_patched
b5faba21a6
For level type interrupts we need to track how many threads are on flight to avoid useless interrupt storms when not all thread handlers have finished yet. Keep track of the woken threads and only unmask when there are no more threads in flight. Yes, I'm lazy and using a bitfield. But not only because I'm lazy, the main reason is that it's way simpler than using a refcount. A refcount based solution would need to keep track of various things like crashing the irq thread, spurious interrupts coming in, disables/enables, free_irq() and some more. The bitfield keeps the tracking simple and makes things just work. It's also nicely confined to the thread code pathes and does not require additional checks all over the place. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> LKML-Reference: <20110223234956.388095876@linutronix.de>
203 lines
5.1 KiB
C
203 lines
5.1 KiB
C
/*
|
|
* linux/kernel/irq/handle.c
|
|
*
|
|
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
|
|
* Copyright (C) 2005-2006, Thomas Gleixner, Russell King
|
|
*
|
|
* This file contains the core interrupt handling code.
|
|
*
|
|
* Detailed information is available in Documentation/DocBook/genericirq
|
|
*
|
|
*/
|
|
|
|
#include <linux/irq.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <trace/events/irq.h>
|
|
|
|
#include "internals.h"
|
|
|
|
/**
|
|
* handle_bad_irq - handle spurious and unhandled irqs
|
|
* @irq: the interrupt number
|
|
* @desc: description of the interrupt
|
|
*
|
|
* Handles spurious and unhandled IRQ's. It also prints a debugmessage.
|
|
*/
|
|
void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
|
|
{
|
|
print_irq_desc(irq, desc);
|
|
kstat_incr_irqs_this_cpu(irq, desc);
|
|
ack_bad_irq(irq);
|
|
}
|
|
|
|
/*
|
|
* Special, empty irq handler:
|
|
*/
|
|
irqreturn_t no_action(int cpl, void *dev_id)
|
|
{
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static void warn_no_thread(unsigned int irq, struct irqaction *action)
|
|
{
|
|
if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
|
|
return;
|
|
|
|
printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
|
|
"but no thread function available.", irq, action->name);
|
|
}
|
|
|
|
static void irq_wake_thread(struct irq_desc *desc, struct irqaction *action)
|
|
{
|
|
/*
|
|
* Wake up the handler thread for this action. In case the
|
|
* thread crashed and was killed we just pretend that we
|
|
* handled the interrupt. The hardirq handler has disabled the
|
|
* device interrupt, so no irq storm is lurking. If the
|
|
* RUNTHREAD bit is already set, nothing to do.
|
|
*/
|
|
if (test_bit(IRQTF_DIED, &action->thread_flags) ||
|
|
test_and_set_bit(IRQTF_RUNTHREAD, &action->thread_flags))
|
|
return;
|
|
|
|
/*
|
|
* It's safe to OR the mask lockless here. We have only two
|
|
* places which write to threads_oneshot: This code and the
|
|
* irq thread.
|
|
*
|
|
* This code is the hard irq context and can never run on two
|
|
* cpus in parallel. If it ever does we have more serious
|
|
* problems than this bitmask.
|
|
*
|
|
* The irq threads of this irq which clear their "running" bit
|
|
* in threads_oneshot are serialized via desc->lock against
|
|
* each other and they are serialized against this code by
|
|
* IRQS_INPROGRESS.
|
|
*
|
|
* Hard irq handler:
|
|
*
|
|
* spin_lock(desc->lock);
|
|
* desc->state |= IRQS_INPROGRESS;
|
|
* spin_unlock(desc->lock);
|
|
* set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
|
|
* desc->threads_oneshot |= mask;
|
|
* spin_lock(desc->lock);
|
|
* desc->state &= ~IRQS_INPROGRESS;
|
|
* spin_unlock(desc->lock);
|
|
*
|
|
* irq thread:
|
|
*
|
|
* again:
|
|
* spin_lock(desc->lock);
|
|
* if (desc->state & IRQS_INPROGRESS) {
|
|
* spin_unlock(desc->lock);
|
|
* while(desc->state & IRQS_INPROGRESS)
|
|
* cpu_relax();
|
|
* goto again;
|
|
* }
|
|
* if (!test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
|
|
* desc->threads_oneshot &= ~mask;
|
|
* spin_unlock(desc->lock);
|
|
*
|
|
* So either the thread waits for us to clear IRQS_INPROGRESS
|
|
* or we are waiting in the flow handler for desc->lock to be
|
|
* released before we reach this point. The thread also checks
|
|
* IRQTF_RUNTHREAD under desc->lock. If set it leaves
|
|
* threads_oneshot untouched and runs the thread another time.
|
|
*/
|
|
desc->threads_oneshot |= action->thread_mask;
|
|
wake_up_process(action->thread);
|
|
}
|
|
|
|
irqreturn_t
|
|
handle_irq_event_percpu(struct irq_desc *desc, struct irqaction *action)
|
|
{
|
|
irqreturn_t retval = IRQ_NONE;
|
|
unsigned int random = 0, irq = desc->irq_data.irq;
|
|
|
|
do {
|
|
irqreturn_t res;
|
|
|
|
trace_irq_handler_entry(irq, action);
|
|
res = action->handler(irq, action->dev_id);
|
|
trace_irq_handler_exit(irq, action, res);
|
|
|
|
if (WARN_ONCE(!irqs_disabled(),"irq %u handler %pF enabled interrupts\n",
|
|
irq, action->handler))
|
|
local_irq_disable();
|
|
|
|
switch (res) {
|
|
case IRQ_WAKE_THREAD:
|
|
/*
|
|
* Set result to handled so the spurious check
|
|
* does not trigger.
|
|
*/
|
|
res = IRQ_HANDLED;
|
|
|
|
/*
|
|
* Catch drivers which return WAKE_THREAD but
|
|
* did not set up a thread function
|
|
*/
|
|
if (unlikely(!action->thread_fn)) {
|
|
warn_no_thread(irq, action);
|
|
break;
|
|
}
|
|
|
|
irq_wake_thread(desc, action);
|
|
|
|
/* Fall through to add to randomness */
|
|
case IRQ_HANDLED:
|
|
random |= action->flags;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
retval |= res;
|
|
action = action->next;
|
|
} while (action);
|
|
|
|
if (random & IRQF_SAMPLE_RANDOM)
|
|
add_interrupt_randomness(irq);
|
|
|
|
if (!noirqdebug)
|
|
note_interrupt(irq, desc, retval);
|
|
return retval;
|
|
}
|
|
|
|
irqreturn_t handle_irq_event(struct irq_desc *desc)
|
|
{
|
|
struct irqaction *action = desc->action;
|
|
irqreturn_t ret;
|
|
|
|
irq_compat_clr_pending(desc);
|
|
desc->istate &= ~IRQS_PENDING;
|
|
irq_compat_set_progress(desc);
|
|
desc->istate |= IRQS_INPROGRESS;
|
|
raw_spin_unlock(&desc->lock);
|
|
|
|
ret = handle_irq_event_percpu(desc, action);
|
|
|
|
raw_spin_lock(&desc->lock);
|
|
desc->istate &= ~IRQS_INPROGRESS;
|
|
irq_compat_clr_progress(desc);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* handle_IRQ_event - irq action chain handler
|
|
* @irq: the interrupt number
|
|
* @action: the interrupt action chain for this irq
|
|
*
|
|
* Handles the action chain of an irq event
|
|
*/
|
|
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
|
|
{
|
|
return handle_irq_event_percpu(irq_to_desc(irq), action);
|
|
}
|