kernel_optimize_test/arch/mips/mm/uasm-micromips.c
Jiong Wang ee94b90c8a mips: bpf: implement jitting of BPF_ALU | BPF_ARSH | BPF_X
Jitting of BPF_K is supported already, but not BPF_X. This patch complete
the support for the latter on both MIPS and microMIPS.

Cc: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Acked-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-07 13:30:48 -08:00

233 lines
8.5 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* A small micro-assembler. It is intentionally kept simple, does only
* support a subset of instructions, and does not try to hide pipeline
* effects like branch delay slots.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#include <asm/uasm.h>
#define RS_MASK 0x1f
#define RS_SH 16
#define RT_MASK 0x1f
#define RT_SH 21
#define SCIMM_MASK 0x3ff
#define SCIMM_SH 16
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RT_SH \
| (c) << RS_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
#include "uasm.c"
static const struct insn insn_table_MM[insn_invalid] = {
[insn_addu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
[insn_addiu] = {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_and] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
[insn_andi] = {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_beq] = {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beql] = {0, 0},
[insn_bgez] = {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
[insn_bgezl] = {0, 0},
[insn_bltz] = {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
[insn_bltzl] = {0, 0},
[insn_bne] = {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
[insn_cache] = {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
[insn_cfc1] = {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
[insn_cfcmsa] = {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
[insn_ctc1] = {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
[insn_ctcmsa] = {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
[insn_daddu] = {0, 0},
[insn_daddiu] = {0, 0},
[insn_di] = {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
[insn_divu] = {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
[insn_dmfc0] = {0, 0},
[insn_dmtc0] = {0, 0},
[insn_dsll] = {0, 0},
[insn_dsll32] = {0, 0},
[insn_dsra] = {0, 0},
[insn_dsrl] = {0, 0},
[insn_dsrl32] = {0, 0},
[insn_drotr] = {0, 0},
[insn_drotr32] = {0, 0},
[insn_dsubu] = {0, 0},
[insn_eret] = {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
[insn_ins] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
[insn_ext] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
[insn_j] = {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
[insn_jal] = {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
[insn_jalr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
[insn_jr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
[insn_lb] = {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_ld] = {0, 0},
[insn_lh] = {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_ll] = {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
[insn_lld] = {0, 0},
[insn_lui] = {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
[insn_lw] = {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_mfc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
[insn_mfhi] = {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
[insn_mflo] = {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
[insn_mtc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
[insn_mthi] = {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
[insn_mtlo] = {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
[insn_mul] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
[insn_or] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
[insn_ori] = {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_pref] = {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
[insn_rfe] = {0, 0},
[insn_sc] = {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
[insn_scd] = {0, 0},
[insn_sd] = {0, 0},
[insn_sll] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
[insn_sllv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
[insn_slt] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
[insn_sltiu] = {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_sltu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
[insn_sra] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
[insn_srav] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD},
[insn_srl] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
[insn_srlv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
[insn_rotr] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
[insn_subu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
[insn_sw] = {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_sync] = {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
[insn_tlbp] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
[insn_tlbr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
[insn_tlbwi] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
[insn_tlbwr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
[insn_wait] = {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
[insn_wsbh] = {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
[insn_xor] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
[insn_xori] = {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_dins] = {0, 0},
[insn_dinsm] = {0, 0},
[insn_syscall] = {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
[insn_bbit0] = {0, 0},
[insn_bbit1] = {0, 0},
[insn_lwx] = {0, 0},
[insn_ldx] = {0, 0},
};
#undef M
static inline u32 build_bimm(s32 arg)
{
WARN(arg > 0xffff || arg < -0x10000,
KERN_WARNING "Micro-assembler field overflow\n");
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
}
static inline u32 build_jimm(u32 arg)
{
WARN(arg & ~((JIMM_MASK << 2) | 1),
KERN_WARNING "Micro-assembler field overflow\n");
return (arg >> 1) & JIMM_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void build_insn(u32 **buf, enum opcode opc, ...)
{
const struct insn *ip;
va_list ap;
u32 op;
if (opc < 0 || opc >= insn_invalid ||
(opc == insn_daddiu && r4k_daddiu_bug()) ||
(insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
panic("Unsupported Micro-assembler instruction %d", opc);
ip = &insn_table_MM[opc];
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS) {
if (opc == insn_mfc0 || opc == insn_mtc0 ||
opc == insn_cfc1 || opc == insn_ctc1)
op |= build_rt(va_arg(ap, u32));
else
op |= build_rs(va_arg(ap, u32));
}
if (ip->fields & RT) {
if (opc == insn_mfc0 || opc == insn_mtc0 ||
opc == insn_cfc1 || opc == insn_ctc1)
op |= build_rs(va_arg(ap, u32));
else
op |= build_rt(va_arg(ap, u32));
}
if (ip->fields & RD)
op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE)
op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM)
op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM)
op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM)
op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM)
op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC)
op |= build_func(va_arg(ap, u32));
if (ip->fields & SET)
op |= build_set(va_arg(ap, u32));
if (ip->fields & SCIMM)
op |= build_scimm(va_arg(ap, u32));
va_end(ap);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
**buf = ((op & 0xffff) << 16) | (op >> 16);
#else
**buf = op;
#endif
(*buf)++;
}
static inline void
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
#ifdef CONFIG_CPU_LITTLE_ENDIAN
*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
#else
*rel->addr |= build_bimm(laddr - (raddr + 4));
#endif
break;
default:
panic("Unsupported Micro-assembler relocation %d",
rel->type);
}
}