kernel_optimize_test/mm/slab.h
YueHaibing c7df08f195 mm/slab.h: remove duplicate include
Remove duplicate header which is included twice.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Link: http://lkml.kernel.org/r/20200818114323.58156-1-yuehaibing@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:18 -07:00

637 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
* Internal slab definitions
*/
#ifdef CONFIG_SLOB
/*
* Common fields provided in kmem_cache by all slab allocators
* This struct is either used directly by the allocator (SLOB)
* or the allocator must include definitions for all fields
* provided in kmem_cache_common in their definition of kmem_cache.
*
* Once we can do anonymous structs (C11 standard) we could put a
* anonymous struct definition in these allocators so that the
* separate allocations in the kmem_cache structure of SLAB and
* SLUB is no longer needed.
*/
struct kmem_cache {
unsigned int object_size;/* The original size of the object */
unsigned int size; /* The aligned/padded/added on size */
unsigned int align; /* Alignment as calculated */
slab_flags_t flags; /* Active flags on the slab */
unsigned int useroffset;/* Usercopy region offset */
unsigned int usersize; /* Usercopy region size */
const char *name; /* Slab name for sysfs */
int refcount; /* Use counter */
void (*ctor)(void *); /* Called on object slot creation */
struct list_head list; /* List of all slab caches on the system */
};
#endif /* CONFIG_SLOB */
#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif
#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/random.h>
#include <linux/sched/mm.h>
/*
* State of the slab allocator.
*
* This is used to describe the states of the allocator during bootup.
* Allocators use this to gradually bootstrap themselves. Most allocators
* have the problem that the structures used for managing slab caches are
* allocated from slab caches themselves.
*/
enum slab_state {
DOWN, /* No slab functionality yet */
PARTIAL, /* SLUB: kmem_cache_node available */
PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
UP, /* Slab caches usable but not all extras yet */
FULL /* Everything is working */
};
extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches;
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
const char *name[NR_KMALLOC_TYPES];
unsigned int size;
} kmalloc_info[];
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);
/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif
gfp_t kmalloc_fix_flags(gfp_t flags);
/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize);
extern void create_boot_cache(struct kmem_cache *, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize);
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
slab_flags_t flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *));
slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name,
void (*ctor)(void *));
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{ return NULL; }
static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name,
void (*ctor)(void *))
{
return flags;
}
#endif
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_PANIC | \
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif
#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | SLAB_ACCOUNT)
#else
#define SLAB_CACHE_FLAGS (0)
#endif
/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
SLAB_RED_ZONE | \
SLAB_POISON | \
SLAB_STORE_USER | \
SLAB_TRACE | \
SLAB_CONSISTENCY_CHECKS | \
SLAB_MEM_SPREAD | \
SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | \
SLAB_ACCOUNT)
bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void slab_kmem_cache_release(struct kmem_cache *);
struct seq_file;
struct file;
struct slabinfo {
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs;
unsigned long num_slabs;
unsigned long shared_avail;
unsigned int limit;
unsigned int batchcount;
unsigned int shared;
unsigned int objects_per_slab;
unsigned int cache_order;
};
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos);
/*
* Generic implementation of bulk operations
* These are useful for situations in which the allocator cannot
* perform optimizations. In that case segments of the object listed
* may be allocated or freed using these operations.
*/
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
static inline int cache_vmstat_idx(struct kmem_cache *s)
{
return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
}
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
extern void print_tracking(struct kmem_cache *s, void *object);
#else
static inline void print_tracking(struct kmem_cache *s, void *object)
{
}
#endif
/*
* Returns true if any of the specified slub_debug flags is enabled for the
* cache. Use only for flags parsed by setup_slub_debug() as it also enables
* the static key.
*/
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
{
#ifdef CONFIG_SLUB_DEBUG
VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
if (static_branch_unlikely(&slub_debug_enabled))
return s->flags & flags;
#endif
return false;
}
#ifdef CONFIG_MEMCG_KMEM
static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
{
/*
* page->mem_cgroup and page->obj_cgroups are sharing the same
* space. To distinguish between them in case we don't know for sure
* that the page is a slab page (e.g. page_cgroup_ino()), let's
* always set the lowest bit of obj_cgroups.
*/
return (struct obj_cgroup **)
((unsigned long)page->obj_cgroups & ~0x1UL);
}
static inline bool page_has_obj_cgroups(struct page *page)
{
return ((unsigned long)page->obj_cgroups & 0x1UL);
}
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
gfp_t gfp);
static inline void memcg_free_page_obj_cgroups(struct page *page)
{
kfree(page_obj_cgroups(page));
page->obj_cgroups = NULL;
}
static inline size_t obj_full_size(struct kmem_cache *s)
{
/*
* For each accounted object there is an extra space which is used
* to store obj_cgroup membership. Charge it too.
*/
return s->size + sizeof(struct obj_cgroup *);
}
static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
size_t objects,
gfp_t flags)
{
struct obj_cgroup *objcg;
if (memcg_kmem_bypass())
return NULL;
objcg = get_obj_cgroup_from_current();
if (!objcg)
return NULL;
if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
obj_cgroup_put(objcg);
return NULL;
}
return objcg;
}
static inline void mod_objcg_state(struct obj_cgroup *objcg,
struct pglist_data *pgdat,
int idx, int nr)
{
struct mem_cgroup *memcg;
struct lruvec *lruvec;
rcu_read_lock();
memcg = obj_cgroup_memcg(objcg);
lruvec = mem_cgroup_lruvec(memcg, pgdat);
mod_memcg_lruvec_state(lruvec, idx, nr);
rcu_read_unlock();
}
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size,
void **p)
{
struct page *page;
unsigned long off;
size_t i;
if (!objcg)
return;
flags &= ~__GFP_ACCOUNT;
for (i = 0; i < size; i++) {
if (likely(p[i])) {
page = virt_to_head_page(p[i]);
if (!page_has_obj_cgroups(page) &&
memcg_alloc_page_obj_cgroups(page, s, flags)) {
obj_cgroup_uncharge(objcg, obj_full_size(s));
continue;
}
off = obj_to_index(s, page, p[i]);
obj_cgroup_get(objcg);
page_obj_cgroups(page)[off] = objcg;
mod_objcg_state(objcg, page_pgdat(page),
cache_vmstat_idx(s), obj_full_size(s));
} else {
obj_cgroup_uncharge(objcg, obj_full_size(s));
}
}
obj_cgroup_put(objcg);
}
static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
void **p, int objects)
{
struct kmem_cache *s;
struct obj_cgroup *objcg;
struct page *page;
unsigned int off;
int i;
if (!memcg_kmem_enabled())
return;
for (i = 0; i < objects; i++) {
if (unlikely(!p[i]))
continue;
page = virt_to_head_page(p[i]);
if (!page_has_obj_cgroups(page))
continue;
if (!s_orig)
s = page->slab_cache;
else
s = s_orig;
off = obj_to_index(s, page, p[i]);
objcg = page_obj_cgroups(page)[off];
if (!objcg)
continue;
page_obj_cgroups(page)[off] = NULL;
obj_cgroup_uncharge(objcg, obj_full_size(s));
mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
-obj_full_size(s));
obj_cgroup_put(objcg);
}
}
#else /* CONFIG_MEMCG_KMEM */
static inline bool page_has_obj_cgroups(struct page *page)
{
return false;
}
static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
{
return NULL;
}
static inline int memcg_alloc_page_obj_cgroups(struct page *page,
struct kmem_cache *s, gfp_t gfp)
{
return 0;
}
static inline void memcg_free_page_obj_cgroups(struct page *page)
{
}
static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
size_t objects,
gfp_t flags)
{
return NULL;
}
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size,
void **p)
{
}
static inline void memcg_slab_free_hook(struct kmem_cache *s,
void **p, int objects)
{
}
#endif /* CONFIG_MEMCG_KMEM */
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct page *page;
page = virt_to_head_page(obj);
if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
__func__))
return NULL;
return page->slab_cache;
}
static __always_inline void account_slab_page(struct page *page, int order,
struct kmem_cache *s)
{
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
PAGE_SIZE << order);
}
static __always_inline void unaccount_slab_page(struct page *page, int order,
struct kmem_cache *s)
{
if (memcg_kmem_enabled())
memcg_free_page_obj_cgroups(page);
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
-(PAGE_SIZE << order));
}
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
struct kmem_cache *cachep;
if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
!kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
return s;
cachep = virt_to_cache(x);
if (WARN(cachep && cachep != s,
"%s: Wrong slab cache. %s but object is from %s\n",
__func__, s->name, cachep->name))
print_tracking(cachep, x);
return cachep;
}
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
return s->object_size;
#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->object_size;
# endif
if (s->flags & SLAB_KASAN)
return s->object_size;
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
#endif
}
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
struct obj_cgroup **objcgp,
size_t size, gfp_t flags)
{
flags &= gfp_allowed_mask;
fs_reclaim_acquire(flags);
fs_reclaim_release(flags);
might_sleep_if(gfpflags_allow_blocking(flags));
if (should_failslab(s, flags))
return NULL;
if (memcg_kmem_enabled() &&
((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
*objcgp = memcg_slab_pre_alloc_hook(s, size, flags);
return s;
}
static inline void slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size, void **p)
{
size_t i;
flags &= gfp_allowed_mask;
for (i = 0; i < size; i++) {
p[i] = kasan_slab_alloc(s, p[i], flags);
/* As p[i] might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, flags);
}
if (memcg_kmem_enabled())
memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
}
#ifndef CONFIG_SLOB
/*
* The slab lists for all objects.
*/
struct kmem_cache_node {
spinlock_t list_lock;
#ifdef CONFIG_SLAB
struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long total_slabs; /* length of all slab lists */
unsigned long free_slabs; /* length of free slab list only */
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
struct array_cache *shared; /* shared per node */
struct alien_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */
#endif
#ifdef CONFIG_SLUB
unsigned long nr_partial;
struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;
#endif
#endif
};
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
}
/*
* Iterator over all nodes. The body will be executed for each node that has
* a kmem_cache_node structure allocated (which is true for all online nodes)
*/
#define for_each_kmem_cache_node(__s, __node, __n) \
for (__node = 0; __node < nr_node_ids; __node++) \
if ((__n = get_node(__s, __node)))
#endif
void *slab_start(struct seq_file *m, loff_t *pos);
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
int memcg_slab_show(struct seq_file *m, void *p);
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
unsigned int count, gfp_t gfp)
{
return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
if (static_branch_unlikely(&init_on_alloc)) {
if (c->ctor)
return false;
if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
return flags & __GFP_ZERO;
return true;
}
return flags & __GFP_ZERO;
}
static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
if (static_branch_unlikely(&init_on_free))
return !(c->ctor ||
(c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
return false;
}
#endif /* MM_SLAB_H */