kernel_optimize_test/block/partitions/ldm.c
Christoph Hellwig a497ee34a4 block: switch all files cleared marked as GPLv2 or later to SPDX tags
All these files have some form of the usual GPLv2 or later boilerplate.
Switch them to use SPDX tags instead.

Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 16:11:59 -06:00

1499 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/**
* ldm - Support for Windows Logical Disk Manager (Dynamic Disks)
*
* Copyright (C) 2001,2002 Richard Russon <ldm@flatcap.org>
* Copyright (c) 2001-2012 Anton Altaparmakov
* Copyright (C) 2001,2002 Jakob Kemi <jakob.kemi@telia.com>
*
* Documentation is available at http://www.linux-ntfs.org/doku.php?id=downloads
*/
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/stringify.h>
#include <linux/kernel.h>
#include <linux/uuid.h>
#include "ldm.h"
#include "check.h"
#include "msdos.h"
/**
* ldm_debug/info/error/crit - Output an error message
* @f: A printf format string containing the message
* @...: Variables to substitute into @f
*
* ldm_debug() writes a DEBUG level message to the syslog but only if the
* driver was compiled with debug enabled. Otherwise, the call turns into a NOP.
*/
#ifndef CONFIG_LDM_DEBUG
#define ldm_debug(...) do {} while (0)
#else
#define ldm_debug(f, a...) _ldm_printk (KERN_DEBUG, __func__, f, ##a)
#endif
#define ldm_crit(f, a...) _ldm_printk (KERN_CRIT, __func__, f, ##a)
#define ldm_error(f, a...) _ldm_printk (KERN_ERR, __func__, f, ##a)
#define ldm_info(f, a...) _ldm_printk (KERN_INFO, __func__, f, ##a)
static __printf(3, 4)
void _ldm_printk(const char *level, const char *function, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start (args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk("%s%s(): %pV\n", level, function, &vaf);
va_end(args);
}
/**
* ldm_parse_privhead - Read the LDM Database PRIVHEAD structure
* @data: Raw database PRIVHEAD structure loaded from the device
* @ph: In-memory privhead structure in which to return parsed information
*
* This parses the LDM database PRIVHEAD structure supplied in @data and
* sets up the in-memory privhead structure @ph with the obtained information.
*
* Return: 'true' @ph contains the PRIVHEAD data
* 'false' @ph contents are undefined
*/
static bool ldm_parse_privhead(const u8 *data, struct privhead *ph)
{
bool is_vista = false;
BUG_ON(!data || !ph);
if (MAGIC_PRIVHEAD != get_unaligned_be64(data)) {
ldm_error("Cannot find PRIVHEAD structure. LDM database is"
" corrupt. Aborting.");
return false;
}
ph->ver_major = get_unaligned_be16(data + 0x000C);
ph->ver_minor = get_unaligned_be16(data + 0x000E);
ph->logical_disk_start = get_unaligned_be64(data + 0x011B);
ph->logical_disk_size = get_unaligned_be64(data + 0x0123);
ph->config_start = get_unaligned_be64(data + 0x012B);
ph->config_size = get_unaligned_be64(data + 0x0133);
/* Version 2.11 is Win2k/XP and version 2.12 is Vista. */
if (ph->ver_major == 2 && ph->ver_minor == 12)
is_vista = true;
if (!is_vista && (ph->ver_major != 2 || ph->ver_minor != 11)) {
ldm_error("Expected PRIVHEAD version 2.11 or 2.12, got %d.%d."
" Aborting.", ph->ver_major, ph->ver_minor);
return false;
}
ldm_debug("PRIVHEAD version %d.%d (Windows %s).", ph->ver_major,
ph->ver_minor, is_vista ? "Vista" : "2000/XP");
if (ph->config_size != LDM_DB_SIZE) { /* 1 MiB in sectors. */
/* Warn the user and continue, carefully. */
ldm_info("Database is normally %u bytes, it claims to "
"be %llu bytes.", LDM_DB_SIZE,
(unsigned long long)ph->config_size);
}
if ((ph->logical_disk_size == 0) || (ph->logical_disk_start +
ph->logical_disk_size > ph->config_start)) {
ldm_error("PRIVHEAD disk size doesn't match real disk size");
return false;
}
if (uuid_parse(data + 0x0030, &ph->disk_id)) {
ldm_error("PRIVHEAD contains an invalid GUID.");
return false;
}
ldm_debug("Parsed PRIVHEAD successfully.");
return true;
}
/**
* ldm_parse_tocblock - Read the LDM Database TOCBLOCK structure
* @data: Raw database TOCBLOCK structure loaded from the device
* @toc: In-memory toc structure in which to return parsed information
*
* This parses the LDM Database TOCBLOCK (table of contents) structure supplied
* in @data and sets up the in-memory tocblock structure @toc with the obtained
* information.
*
* N.B. The *_start and *_size values returned in @toc are not range-checked.
*
* Return: 'true' @toc contains the TOCBLOCK data
* 'false' @toc contents are undefined
*/
static bool ldm_parse_tocblock (const u8 *data, struct tocblock *toc)
{
BUG_ON (!data || !toc);
if (MAGIC_TOCBLOCK != get_unaligned_be64(data)) {
ldm_crit ("Cannot find TOCBLOCK, database may be corrupt.");
return false;
}
strncpy (toc->bitmap1_name, data + 0x24, sizeof (toc->bitmap1_name));
toc->bitmap1_name[sizeof (toc->bitmap1_name) - 1] = 0;
toc->bitmap1_start = get_unaligned_be64(data + 0x2E);
toc->bitmap1_size = get_unaligned_be64(data + 0x36);
if (strncmp (toc->bitmap1_name, TOC_BITMAP1,
sizeof (toc->bitmap1_name)) != 0) {
ldm_crit ("TOCBLOCK's first bitmap is '%s', should be '%s'.",
TOC_BITMAP1, toc->bitmap1_name);
return false;
}
strncpy (toc->bitmap2_name, data + 0x46, sizeof (toc->bitmap2_name));
toc->bitmap2_name[sizeof (toc->bitmap2_name) - 1] = 0;
toc->bitmap2_start = get_unaligned_be64(data + 0x50);
toc->bitmap2_size = get_unaligned_be64(data + 0x58);
if (strncmp (toc->bitmap2_name, TOC_BITMAP2,
sizeof (toc->bitmap2_name)) != 0) {
ldm_crit ("TOCBLOCK's second bitmap is '%s', should be '%s'.",
TOC_BITMAP2, toc->bitmap2_name);
return false;
}
ldm_debug ("Parsed TOCBLOCK successfully.");
return true;
}
/**
* ldm_parse_vmdb - Read the LDM Database VMDB structure
* @data: Raw database VMDB structure loaded from the device
* @vm: In-memory vmdb structure in which to return parsed information
*
* This parses the LDM Database VMDB structure supplied in @data and sets up
* the in-memory vmdb structure @vm with the obtained information.
*
* N.B. The *_start, *_size and *_seq values will be range-checked later.
*
* Return: 'true' @vm contains VMDB info
* 'false' @vm contents are undefined
*/
static bool ldm_parse_vmdb (const u8 *data, struct vmdb *vm)
{
BUG_ON (!data || !vm);
if (MAGIC_VMDB != get_unaligned_be32(data)) {
ldm_crit ("Cannot find the VMDB, database may be corrupt.");
return false;
}
vm->ver_major = get_unaligned_be16(data + 0x12);
vm->ver_minor = get_unaligned_be16(data + 0x14);
if ((vm->ver_major != 4) || (vm->ver_minor != 10)) {
ldm_error ("Expected VMDB version %d.%d, got %d.%d. "
"Aborting.", 4, 10, vm->ver_major, vm->ver_minor);
return false;
}
vm->vblk_size = get_unaligned_be32(data + 0x08);
if (vm->vblk_size == 0) {
ldm_error ("Illegal VBLK size");
return false;
}
vm->vblk_offset = get_unaligned_be32(data + 0x0C);
vm->last_vblk_seq = get_unaligned_be32(data + 0x04);
ldm_debug ("Parsed VMDB successfully.");
return true;
}
/**
* ldm_compare_privheads - Compare two privhead objects
* @ph1: First privhead
* @ph2: Second privhead
*
* This compares the two privhead structures @ph1 and @ph2.
*
* Return: 'true' Identical
* 'false' Different
*/
static bool ldm_compare_privheads (const struct privhead *ph1,
const struct privhead *ph2)
{
BUG_ON (!ph1 || !ph2);
return ((ph1->ver_major == ph2->ver_major) &&
(ph1->ver_minor == ph2->ver_minor) &&
(ph1->logical_disk_start == ph2->logical_disk_start) &&
(ph1->logical_disk_size == ph2->logical_disk_size) &&
(ph1->config_start == ph2->config_start) &&
(ph1->config_size == ph2->config_size) &&
uuid_equal(&ph1->disk_id, &ph2->disk_id));
}
/**
* ldm_compare_tocblocks - Compare two tocblock objects
* @toc1: First toc
* @toc2: Second toc
*
* This compares the two tocblock structures @toc1 and @toc2.
*
* Return: 'true' Identical
* 'false' Different
*/
static bool ldm_compare_tocblocks (const struct tocblock *toc1,
const struct tocblock *toc2)
{
BUG_ON (!toc1 || !toc2);
return ((toc1->bitmap1_start == toc2->bitmap1_start) &&
(toc1->bitmap1_size == toc2->bitmap1_size) &&
(toc1->bitmap2_start == toc2->bitmap2_start) &&
(toc1->bitmap2_size == toc2->bitmap2_size) &&
!strncmp (toc1->bitmap1_name, toc2->bitmap1_name,
sizeof (toc1->bitmap1_name)) &&
!strncmp (toc1->bitmap2_name, toc2->bitmap2_name,
sizeof (toc1->bitmap2_name)));
}
/**
* ldm_validate_privheads - Compare the primary privhead with its backups
* @state: Partition check state including device holding the LDM Database
* @ph1: Memory struct to fill with ph contents
*
* Read and compare all three privheads from disk.
*
* The privheads on disk show the size and location of the main disk area and
* the configuration area (the database). The values are range-checked against
* @hd, which contains the real size of the disk.
*
* Return: 'true' Success
* 'false' Error
*/
static bool ldm_validate_privheads(struct parsed_partitions *state,
struct privhead *ph1)
{
static const int off[3] = { OFF_PRIV1, OFF_PRIV2, OFF_PRIV3 };
struct privhead *ph[3] = { ph1 };
Sector sect;
u8 *data;
bool result = false;
long num_sects;
int i;
BUG_ON (!state || !ph1);
ph[1] = kmalloc (sizeof (*ph[1]), GFP_KERNEL);
ph[2] = kmalloc (sizeof (*ph[2]), GFP_KERNEL);
if (!ph[1] || !ph[2]) {
ldm_crit ("Out of memory.");
goto out;
}
/* off[1 & 2] are relative to ph[0]->config_start */
ph[0]->config_start = 0;
/* Read and parse privheads */
for (i = 0; i < 3; i++) {
data = read_part_sector(state, ph[0]->config_start + off[i],
&sect);
if (!data) {
ldm_crit ("Disk read failed.");
goto out;
}
result = ldm_parse_privhead (data, ph[i]);
put_dev_sector (sect);
if (!result) {
ldm_error ("Cannot find PRIVHEAD %d.", i+1); /* Log again */
if (i < 2)
goto out; /* Already logged */
else
break; /* FIXME ignore for now, 3rd PH can fail on odd-sized disks */
}
}
num_sects = state->bdev->bd_inode->i_size >> 9;
if ((ph[0]->config_start > num_sects) ||
((ph[0]->config_start + ph[0]->config_size) > num_sects)) {
ldm_crit ("Database extends beyond the end of the disk.");
goto out;
}
if ((ph[0]->logical_disk_start > ph[0]->config_start) ||
((ph[0]->logical_disk_start + ph[0]->logical_disk_size)
> ph[0]->config_start)) {
ldm_crit ("Disk and database overlap.");
goto out;
}
if (!ldm_compare_privheads (ph[0], ph[1])) {
ldm_crit ("Primary and backup PRIVHEADs don't match.");
goto out;
}
/* FIXME ignore this for now
if (!ldm_compare_privheads (ph[0], ph[2])) {
ldm_crit ("Primary and backup PRIVHEADs don't match.");
goto out;
}*/
ldm_debug ("Validated PRIVHEADs successfully.");
result = true;
out:
kfree (ph[1]);
kfree (ph[2]);
return result;
}
/**
* ldm_validate_tocblocks - Validate the table of contents and its backups
* @state: Partition check state including device holding the LDM Database
* @base: Offset, into @state->bdev, of the database
* @ldb: Cache of the database structures
*
* Find and compare the four tables of contents of the LDM Database stored on
* @state->bdev and return the parsed information into @toc1.
*
* The offsets and sizes of the configs are range-checked against a privhead.
*
* Return: 'true' @toc1 contains validated TOCBLOCK info
* 'false' @toc1 contents are undefined
*/
static bool ldm_validate_tocblocks(struct parsed_partitions *state,
unsigned long base, struct ldmdb *ldb)
{
static const int off[4] = { OFF_TOCB1, OFF_TOCB2, OFF_TOCB3, OFF_TOCB4};
struct tocblock *tb[4];
struct privhead *ph;
Sector sect;
u8 *data;
int i, nr_tbs;
bool result = false;
BUG_ON(!state || !ldb);
ph = &ldb->ph;
tb[0] = &ldb->toc;
tb[1] = kmalloc_array(3, sizeof(*tb[1]), GFP_KERNEL);
if (!tb[1]) {
ldm_crit("Out of memory.");
goto err;
}
tb[2] = (struct tocblock*)((u8*)tb[1] + sizeof(*tb[1]));
tb[3] = (struct tocblock*)((u8*)tb[2] + sizeof(*tb[2]));
/*
* Try to read and parse all four TOCBLOCKs.
*
* Windows Vista LDM v2.12 does not always have all four TOCBLOCKs so
* skip any that fail as long as we get at least one valid TOCBLOCK.
*/
for (nr_tbs = i = 0; i < 4; i++) {
data = read_part_sector(state, base + off[i], &sect);
if (!data) {
ldm_error("Disk read failed for TOCBLOCK %d.", i);
continue;
}
if (ldm_parse_tocblock(data, tb[nr_tbs]))
nr_tbs++;
put_dev_sector(sect);
}
if (!nr_tbs) {
ldm_crit("Failed to find a valid TOCBLOCK.");
goto err;
}
/* Range check the TOCBLOCK against a privhead. */
if (((tb[0]->bitmap1_start + tb[0]->bitmap1_size) > ph->config_size) ||
((tb[0]->bitmap2_start + tb[0]->bitmap2_size) >
ph->config_size)) {
ldm_crit("The bitmaps are out of range. Giving up.");
goto err;
}
/* Compare all loaded TOCBLOCKs. */
for (i = 1; i < nr_tbs; i++) {
if (!ldm_compare_tocblocks(tb[0], tb[i])) {
ldm_crit("TOCBLOCKs 0 and %d do not match.", i);
goto err;
}
}
ldm_debug("Validated %d TOCBLOCKs successfully.", nr_tbs);
result = true;
err:
kfree(tb[1]);
return result;
}
/**
* ldm_validate_vmdb - Read the VMDB and validate it
* @state: Partition check state including device holding the LDM Database
* @base: Offset, into @bdev, of the database
* @ldb: Cache of the database structures
*
* Find the vmdb of the LDM Database stored on @bdev and return the parsed
* information in @ldb.
*
* Return: 'true' @ldb contains validated VBDB info
* 'false' @ldb contents are undefined
*/
static bool ldm_validate_vmdb(struct parsed_partitions *state,
unsigned long base, struct ldmdb *ldb)
{
Sector sect;
u8 *data;
bool result = false;
struct vmdb *vm;
struct tocblock *toc;
BUG_ON (!state || !ldb);
vm = &ldb->vm;
toc = &ldb->toc;
data = read_part_sector(state, base + OFF_VMDB, &sect);
if (!data) {
ldm_crit ("Disk read failed.");
return false;
}
if (!ldm_parse_vmdb (data, vm))
goto out; /* Already logged */
/* Are there uncommitted transactions? */
if (get_unaligned_be16(data + 0x10) != 0x01) {
ldm_crit ("Database is not in a consistent state. Aborting.");
goto out;
}
if (vm->vblk_offset != 512)
ldm_info ("VBLKs start at offset 0x%04x.", vm->vblk_offset);
/*
* The last_vblkd_seq can be before the end of the vmdb, just make sure
* it is not out of bounds.
*/
if ((vm->vblk_size * vm->last_vblk_seq) > (toc->bitmap1_size << 9)) {
ldm_crit ("VMDB exceeds allowed size specified by TOCBLOCK. "
"Database is corrupt. Aborting.");
goto out;
}
result = true;
out:
put_dev_sector (sect);
return result;
}
/**
* ldm_validate_partition_table - Determine whether bdev might be a dynamic disk
* @state: Partition check state including device holding the LDM Database
*
* This function provides a weak test to decide whether the device is a dynamic
* disk or not. It looks for an MS-DOS-style partition table containing at
* least one partition of type 0x42 (formerly SFS, now used by Windows for
* dynamic disks).
*
* N.B. The only possible error can come from the read_part_sector and that is
* only likely to happen if the underlying device is strange. If that IS
* the case we should return zero to let someone else try.
*
* Return: 'true' @state->bdev is a dynamic disk
* 'false' @state->bdev is not a dynamic disk, or an error occurred
*/
static bool ldm_validate_partition_table(struct parsed_partitions *state)
{
Sector sect;
u8 *data;
struct partition *p;
int i;
bool result = false;
BUG_ON(!state);
data = read_part_sector(state, 0, &sect);
if (!data) {
ldm_info ("Disk read failed.");
return false;
}
if (*(__le16*) (data + 0x01FE) != cpu_to_le16 (MSDOS_LABEL_MAGIC))
goto out;
p = (struct partition*)(data + 0x01BE);
for (i = 0; i < 4; i++, p++)
if (SYS_IND (p) == LDM_PARTITION) {
result = true;
break;
}
if (result)
ldm_debug ("Found W2K dynamic disk partition type.");
out:
put_dev_sector (sect);
return result;
}
/**
* ldm_get_disk_objid - Search a linked list of vblk's for a given Disk Id
* @ldb: Cache of the database structures
*
* The LDM Database contains a list of all partitions on all dynamic disks.
* The primary PRIVHEAD, at the beginning of the physical disk, tells us
* the GUID of this disk. This function searches for the GUID in a linked
* list of vblk's.
*
* Return: Pointer, A matching vblk was found
* NULL, No match, or an error
*/
static struct vblk * ldm_get_disk_objid (const struct ldmdb *ldb)
{
struct list_head *item;
BUG_ON (!ldb);
list_for_each (item, &ldb->v_disk) {
struct vblk *v = list_entry (item, struct vblk, list);
if (uuid_equal(&v->vblk.disk.disk_id, &ldb->ph.disk_id))
return v;
}
return NULL;
}
/**
* ldm_create_data_partitions - Create data partitions for this device
* @pp: List of the partitions parsed so far
* @ldb: Cache of the database structures
*
* The database contains ALL the partitions for ALL disk groups, so we need to
* filter out this specific disk. Using the disk's object id, we can find all
* the partitions in the database that belong to this disk.
*
* Add each partition in our database, to the parsed_partitions structure.
*
* N.B. This function creates the partitions in the order it finds partition
* objects in the linked list.
*
* Return: 'true' Partition created
* 'false' Error, probably a range checking problem
*/
static bool ldm_create_data_partitions (struct parsed_partitions *pp,
const struct ldmdb *ldb)
{
struct list_head *item;
struct vblk *vb;
struct vblk *disk;
struct vblk_part *part;
int part_num = 1;
BUG_ON (!pp || !ldb);
disk = ldm_get_disk_objid (ldb);
if (!disk) {
ldm_crit ("Can't find the ID of this disk in the database.");
return false;
}
strlcat(pp->pp_buf, " [LDM]", PAGE_SIZE);
/* Create the data partitions */
list_for_each (item, &ldb->v_part) {
vb = list_entry (item, struct vblk, list);
part = &vb->vblk.part;
if (part->disk_id != disk->obj_id)
continue;
put_partition (pp, part_num, ldb->ph.logical_disk_start +
part->start, part->size);
part_num++;
}
strlcat(pp->pp_buf, "\n", PAGE_SIZE);
return true;
}
/**
* ldm_relative - Calculate the next relative offset
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @base: Size of the previous fixed width fields
* @offset: Cumulative size of the previous variable-width fields
*
* Because many of the VBLK fields are variable-width, it's necessary
* to calculate each offset based on the previous one and the length
* of the field it pointed to.
*
* Return: -1 Error, the calculated offset exceeded the size of the buffer
* n OK, a range-checked offset into buffer
*/
static int ldm_relative(const u8 *buffer, int buflen, int base, int offset)
{
base += offset;
if (!buffer || offset < 0 || base > buflen) {
if (!buffer)
ldm_error("!buffer");
if (offset < 0)
ldm_error("offset (%d) < 0", offset);
if (base > buflen)
ldm_error("base (%d) > buflen (%d)", base, buflen);
return -1;
}
if (base + buffer[base] >= buflen) {
ldm_error("base (%d) + buffer[base] (%d) >= buflen (%d)", base,
buffer[base], buflen);
return -1;
}
return buffer[base] + offset + 1;
}
/**
* ldm_get_vnum - Convert a variable-width, big endian number, into cpu order
* @block: Pointer to the variable-width number to convert
*
* Large numbers in the LDM Database are often stored in a packed format. Each
* number is prefixed by a one byte width marker. All numbers in the database
* are stored in big-endian byte order. This function reads one of these
* numbers and returns the result
*
* N.B. This function DOES NOT perform any range checking, though the most
* it will read is eight bytes.
*
* Return: n A number
* 0 Zero, or an error occurred
*/
static u64 ldm_get_vnum (const u8 *block)
{
u64 tmp = 0;
u8 length;
BUG_ON (!block);
length = *block++;
if (length && length <= 8)
while (length--)
tmp = (tmp << 8) | *block++;
else
ldm_error ("Illegal length %d.", length);
return tmp;
}
/**
* ldm_get_vstr - Read a length-prefixed string into a buffer
* @block: Pointer to the length marker
* @buffer: Location to copy string to
* @buflen: Size of the output buffer
*
* Many of the strings in the LDM Database are not NULL terminated. Instead
* they are prefixed by a one byte length marker. This function copies one of
* these strings into a buffer.
*
* N.B. This function DOES NOT perform any range checking on the input.
* If the buffer is too small, the output will be truncated.
*
* Return: 0, Error and @buffer contents are undefined
* n, String length in characters (excluding NULL)
* buflen-1, String was truncated.
*/
static int ldm_get_vstr (const u8 *block, u8 *buffer, int buflen)
{
int length;
BUG_ON (!block || !buffer);
length = block[0];
if (length >= buflen) {
ldm_error ("Truncating string %d -> %d.", length, buflen);
length = buflen - 1;
}
memcpy (buffer, block + 1, length);
buffer[length] = 0;
return length;
}
/**
* ldm_parse_cmp3 - Read a raw VBLK Component object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Component object (version 3) into a vblk structure.
*
* Return: 'true' @vb contains a Component VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_cmp3 (const u8 *buffer, int buflen, struct vblk *vb)
{
int r_objid, r_name, r_vstate, r_child, r_parent, r_stripe, r_cols, len;
struct vblk_comp *comp;
BUG_ON (!buffer || !vb);
r_objid = ldm_relative (buffer, buflen, 0x18, 0);
r_name = ldm_relative (buffer, buflen, 0x18, r_objid);
r_vstate = ldm_relative (buffer, buflen, 0x18, r_name);
r_child = ldm_relative (buffer, buflen, 0x1D, r_vstate);
r_parent = ldm_relative (buffer, buflen, 0x2D, r_child);
if (buffer[0x12] & VBLK_FLAG_COMP_STRIPE) {
r_stripe = ldm_relative (buffer, buflen, 0x2E, r_parent);
r_cols = ldm_relative (buffer, buflen, 0x2E, r_stripe);
len = r_cols;
} else {
r_stripe = 0;
r_cols = 0;
len = r_parent;
}
if (len < 0)
return false;
len += VBLK_SIZE_CMP3;
if (len != get_unaligned_be32(buffer + 0x14))
return false;
comp = &vb->vblk.comp;
ldm_get_vstr (buffer + 0x18 + r_name, comp->state,
sizeof (comp->state));
comp->type = buffer[0x18 + r_vstate];
comp->children = ldm_get_vnum (buffer + 0x1D + r_vstate);
comp->parent_id = ldm_get_vnum (buffer + 0x2D + r_child);
comp->chunksize = r_stripe ? ldm_get_vnum (buffer+r_parent+0x2E) : 0;
return true;
}
/**
* ldm_parse_dgr3 - Read a raw VBLK Disk Group object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Disk Group object (version 3) into a vblk structure.
*
* Return: 'true' @vb contains a Disk Group VBLK
* 'false' @vb contents are not defined
*/
static int ldm_parse_dgr3 (const u8 *buffer, int buflen, struct vblk *vb)
{
int r_objid, r_name, r_diskid, r_id1, r_id2, len;
struct vblk_dgrp *dgrp;
BUG_ON (!buffer || !vb);
r_objid = ldm_relative (buffer, buflen, 0x18, 0);
r_name = ldm_relative (buffer, buflen, 0x18, r_objid);
r_diskid = ldm_relative (buffer, buflen, 0x18, r_name);
if (buffer[0x12] & VBLK_FLAG_DGR3_IDS) {
r_id1 = ldm_relative (buffer, buflen, 0x24, r_diskid);
r_id2 = ldm_relative (buffer, buflen, 0x24, r_id1);
len = r_id2;
} else {
r_id1 = 0;
r_id2 = 0;
len = r_diskid;
}
if (len < 0)
return false;
len += VBLK_SIZE_DGR3;
if (len != get_unaligned_be32(buffer + 0x14))
return false;
dgrp = &vb->vblk.dgrp;
ldm_get_vstr (buffer + 0x18 + r_name, dgrp->disk_id,
sizeof (dgrp->disk_id));
return true;
}
/**
* ldm_parse_dgr4 - Read a raw VBLK Disk Group object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Disk Group object (version 4) into a vblk structure.
*
* Return: 'true' @vb contains a Disk Group VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_dgr4 (const u8 *buffer, int buflen, struct vblk *vb)
{
char buf[64];
int r_objid, r_name, r_id1, r_id2, len;
BUG_ON (!buffer || !vb);
r_objid = ldm_relative (buffer, buflen, 0x18, 0);
r_name = ldm_relative (buffer, buflen, 0x18, r_objid);
if (buffer[0x12] & VBLK_FLAG_DGR4_IDS) {
r_id1 = ldm_relative (buffer, buflen, 0x44, r_name);
r_id2 = ldm_relative (buffer, buflen, 0x44, r_id1);
len = r_id2;
} else {
r_id1 = 0;
r_id2 = 0;
len = r_name;
}
if (len < 0)
return false;
len += VBLK_SIZE_DGR4;
if (len != get_unaligned_be32(buffer + 0x14))
return false;
ldm_get_vstr (buffer + 0x18 + r_objid, buf, sizeof (buf));
return true;
}
/**
* ldm_parse_dsk3 - Read a raw VBLK Disk object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Disk object (version 3) into a vblk structure.
*
* Return: 'true' @vb contains a Disk VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_dsk3 (const u8 *buffer, int buflen, struct vblk *vb)
{
int r_objid, r_name, r_diskid, r_altname, len;
struct vblk_disk *disk;
BUG_ON (!buffer || !vb);
r_objid = ldm_relative (buffer, buflen, 0x18, 0);
r_name = ldm_relative (buffer, buflen, 0x18, r_objid);
r_diskid = ldm_relative (buffer, buflen, 0x18, r_name);
r_altname = ldm_relative (buffer, buflen, 0x18, r_diskid);
len = r_altname;
if (len < 0)
return false;
len += VBLK_SIZE_DSK3;
if (len != get_unaligned_be32(buffer + 0x14))
return false;
disk = &vb->vblk.disk;
ldm_get_vstr (buffer + 0x18 + r_diskid, disk->alt_name,
sizeof (disk->alt_name));
if (uuid_parse(buffer + 0x19 + r_name, &disk->disk_id))
return false;
return true;
}
/**
* ldm_parse_dsk4 - Read a raw VBLK Disk object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Disk object (version 4) into a vblk structure.
*
* Return: 'true' @vb contains a Disk VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_dsk4 (const u8 *buffer, int buflen, struct vblk *vb)
{
int r_objid, r_name, len;
struct vblk_disk *disk;
BUG_ON (!buffer || !vb);
r_objid = ldm_relative (buffer, buflen, 0x18, 0);
r_name = ldm_relative (buffer, buflen, 0x18, r_objid);
len = r_name;
if (len < 0)
return false;
len += VBLK_SIZE_DSK4;
if (len != get_unaligned_be32(buffer + 0x14))
return false;
disk = &vb->vblk.disk;
uuid_copy(&disk->disk_id, (uuid_t *)(buffer + 0x18 + r_name));
return true;
}
/**
* ldm_parse_prt3 - Read a raw VBLK Partition object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Partition object (version 3) into a vblk structure.
*
* Return: 'true' @vb contains a Partition VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_prt3(const u8 *buffer, int buflen, struct vblk *vb)
{
int r_objid, r_name, r_size, r_parent, r_diskid, r_index, len;
struct vblk_part *part;
BUG_ON(!buffer || !vb);
r_objid = ldm_relative(buffer, buflen, 0x18, 0);
if (r_objid < 0) {
ldm_error("r_objid %d < 0", r_objid);
return false;
}
r_name = ldm_relative(buffer, buflen, 0x18, r_objid);
if (r_name < 0) {
ldm_error("r_name %d < 0", r_name);
return false;
}
r_size = ldm_relative(buffer, buflen, 0x34, r_name);
if (r_size < 0) {
ldm_error("r_size %d < 0", r_size);
return false;
}
r_parent = ldm_relative(buffer, buflen, 0x34, r_size);
if (r_parent < 0) {
ldm_error("r_parent %d < 0", r_parent);
return false;
}
r_diskid = ldm_relative(buffer, buflen, 0x34, r_parent);
if (r_diskid < 0) {
ldm_error("r_diskid %d < 0", r_diskid);
return false;
}
if (buffer[0x12] & VBLK_FLAG_PART_INDEX) {
r_index = ldm_relative(buffer, buflen, 0x34, r_diskid);
if (r_index < 0) {
ldm_error("r_index %d < 0", r_index);
return false;
}
len = r_index;
} else {
r_index = 0;
len = r_diskid;
}
if (len < 0) {
ldm_error("len %d < 0", len);
return false;
}
len += VBLK_SIZE_PRT3;
if (len > get_unaligned_be32(buffer + 0x14)) {
ldm_error("len %d > BE32(buffer + 0x14) %d", len,
get_unaligned_be32(buffer + 0x14));
return false;
}
part = &vb->vblk.part;
part->start = get_unaligned_be64(buffer + 0x24 + r_name);
part->volume_offset = get_unaligned_be64(buffer + 0x2C + r_name);
part->size = ldm_get_vnum(buffer + 0x34 + r_name);
part->parent_id = ldm_get_vnum(buffer + 0x34 + r_size);
part->disk_id = ldm_get_vnum(buffer + 0x34 + r_parent);
if (vb->flags & VBLK_FLAG_PART_INDEX)
part->partnum = buffer[0x35 + r_diskid];
else
part->partnum = 0;
return true;
}
/**
* ldm_parse_vol5 - Read a raw VBLK Volume object into a vblk structure
* @buffer: Block of data being worked on
* @buflen: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK Volume object (version 5) into a vblk structure.
*
* Return: 'true' @vb contains a Volume VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_vol5(const u8 *buffer, int buflen, struct vblk *vb)
{
int r_objid, r_name, r_vtype, r_disable_drive_letter, r_child, r_size;
int r_id1, r_id2, r_size2, r_drive, len;
struct vblk_volu *volu;
BUG_ON(!buffer || !vb);
r_objid = ldm_relative(buffer, buflen, 0x18, 0);
if (r_objid < 0) {
ldm_error("r_objid %d < 0", r_objid);
return false;
}
r_name = ldm_relative(buffer, buflen, 0x18, r_objid);
if (r_name < 0) {
ldm_error("r_name %d < 0", r_name);
return false;
}
r_vtype = ldm_relative(buffer, buflen, 0x18, r_name);
if (r_vtype < 0) {
ldm_error("r_vtype %d < 0", r_vtype);
return false;
}
r_disable_drive_letter = ldm_relative(buffer, buflen, 0x18, r_vtype);
if (r_disable_drive_letter < 0) {
ldm_error("r_disable_drive_letter %d < 0",
r_disable_drive_letter);
return false;
}
r_child = ldm_relative(buffer, buflen, 0x2D, r_disable_drive_letter);
if (r_child < 0) {
ldm_error("r_child %d < 0", r_child);
return false;
}
r_size = ldm_relative(buffer, buflen, 0x3D, r_child);
if (r_size < 0) {
ldm_error("r_size %d < 0", r_size);
return false;
}
if (buffer[0x12] & VBLK_FLAG_VOLU_ID1) {
r_id1 = ldm_relative(buffer, buflen, 0x52, r_size);
if (r_id1 < 0) {
ldm_error("r_id1 %d < 0", r_id1);
return false;
}
} else
r_id1 = r_size;
if (buffer[0x12] & VBLK_FLAG_VOLU_ID2) {
r_id2 = ldm_relative(buffer, buflen, 0x52, r_id1);
if (r_id2 < 0) {
ldm_error("r_id2 %d < 0", r_id2);
return false;
}
} else
r_id2 = r_id1;
if (buffer[0x12] & VBLK_FLAG_VOLU_SIZE) {
r_size2 = ldm_relative(buffer, buflen, 0x52, r_id2);
if (r_size2 < 0) {
ldm_error("r_size2 %d < 0", r_size2);
return false;
}
} else
r_size2 = r_id2;
if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) {
r_drive = ldm_relative(buffer, buflen, 0x52, r_size2);
if (r_drive < 0) {
ldm_error("r_drive %d < 0", r_drive);
return false;
}
} else
r_drive = r_size2;
len = r_drive;
if (len < 0) {
ldm_error("len %d < 0", len);
return false;
}
len += VBLK_SIZE_VOL5;
if (len > get_unaligned_be32(buffer + 0x14)) {
ldm_error("len %d > BE32(buffer + 0x14) %d", len,
get_unaligned_be32(buffer + 0x14));
return false;
}
volu = &vb->vblk.volu;
ldm_get_vstr(buffer + 0x18 + r_name, volu->volume_type,
sizeof(volu->volume_type));
memcpy(volu->volume_state, buffer + 0x18 + r_disable_drive_letter,
sizeof(volu->volume_state));
volu->size = ldm_get_vnum(buffer + 0x3D + r_child);
volu->partition_type = buffer[0x41 + r_size];
memcpy(volu->guid, buffer + 0x42 + r_size, sizeof(volu->guid));
if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) {
ldm_get_vstr(buffer + 0x52 + r_size, volu->drive_hint,
sizeof(volu->drive_hint));
}
return true;
}
/**
* ldm_parse_vblk - Read a raw VBLK object into a vblk structure
* @buf: Block of data being worked on
* @len: Size of the block of data
* @vb: In-memory vblk in which to return information
*
* Read a raw VBLK object into a vblk structure. This function just reads the
* information common to all VBLK types, then delegates the rest of the work to
* helper functions: ldm_parse_*.
*
* Return: 'true' @vb contains a VBLK
* 'false' @vb contents are not defined
*/
static bool ldm_parse_vblk (const u8 *buf, int len, struct vblk *vb)
{
bool result = false;
int r_objid;
BUG_ON (!buf || !vb);
r_objid = ldm_relative (buf, len, 0x18, 0);
if (r_objid < 0) {
ldm_error ("VBLK header is corrupt.");
return false;
}
vb->flags = buf[0x12];
vb->type = buf[0x13];
vb->obj_id = ldm_get_vnum (buf + 0x18);
ldm_get_vstr (buf+0x18+r_objid, vb->name, sizeof (vb->name));
switch (vb->type) {
case VBLK_CMP3: result = ldm_parse_cmp3 (buf, len, vb); break;
case VBLK_DSK3: result = ldm_parse_dsk3 (buf, len, vb); break;
case VBLK_DSK4: result = ldm_parse_dsk4 (buf, len, vb); break;
case VBLK_DGR3: result = ldm_parse_dgr3 (buf, len, vb); break;
case VBLK_DGR4: result = ldm_parse_dgr4 (buf, len, vb); break;
case VBLK_PRT3: result = ldm_parse_prt3 (buf, len, vb); break;
case VBLK_VOL5: result = ldm_parse_vol5 (buf, len, vb); break;
}
if (result)
ldm_debug ("Parsed VBLK 0x%llx (type: 0x%02x) ok.",
(unsigned long long) vb->obj_id, vb->type);
else
ldm_error ("Failed to parse VBLK 0x%llx (type: 0x%02x).",
(unsigned long long) vb->obj_id, vb->type);
return result;
}
/**
* ldm_ldmdb_add - Adds a raw VBLK entry to the ldmdb database
* @data: Raw VBLK to add to the database
* @len: Size of the raw VBLK
* @ldb: Cache of the database structures
*
* The VBLKs are sorted into categories. Partitions are also sorted by offset.
*
* N.B. This function does not check the validity of the VBLKs.
*
* Return: 'true' The VBLK was added
* 'false' An error occurred
*/
static bool ldm_ldmdb_add (u8 *data, int len, struct ldmdb *ldb)
{
struct vblk *vb;
struct list_head *item;
BUG_ON (!data || !ldb);
vb = kmalloc (sizeof (*vb), GFP_KERNEL);
if (!vb) {
ldm_crit ("Out of memory.");
return false;
}
if (!ldm_parse_vblk (data, len, vb)) {
kfree(vb);
return false; /* Already logged */
}
/* Put vblk into the correct list. */
switch (vb->type) {
case VBLK_DGR3:
case VBLK_DGR4:
list_add (&vb->list, &ldb->v_dgrp);
break;
case VBLK_DSK3:
case VBLK_DSK4:
list_add (&vb->list, &ldb->v_disk);
break;
case VBLK_VOL5:
list_add (&vb->list, &ldb->v_volu);
break;
case VBLK_CMP3:
list_add (&vb->list, &ldb->v_comp);
break;
case VBLK_PRT3:
/* Sort by the partition's start sector. */
list_for_each (item, &ldb->v_part) {
struct vblk *v = list_entry (item, struct vblk, list);
if ((v->vblk.part.disk_id == vb->vblk.part.disk_id) &&
(v->vblk.part.start > vb->vblk.part.start)) {
list_add_tail (&vb->list, &v->list);
return true;
}
}
list_add_tail (&vb->list, &ldb->v_part);
break;
}
return true;
}
/**
* ldm_frag_add - Add a VBLK fragment to a list
* @data: Raw fragment to be added to the list
* @size: Size of the raw fragment
* @frags: Linked list of VBLK fragments
*
* Fragmented VBLKs may not be consecutive in the database, so they are placed
* in a list so they can be pieced together later.
*
* Return: 'true' Success, the VBLK was added to the list
* 'false' Error, a problem occurred
*/
static bool ldm_frag_add (const u8 *data, int size, struct list_head *frags)
{
struct frag *f;
struct list_head *item;
int rec, num, group;
BUG_ON (!data || !frags);
if (size < 2 * VBLK_SIZE_HEAD) {
ldm_error("Value of size is to small.");
return false;
}
group = get_unaligned_be32(data + 0x08);
rec = get_unaligned_be16(data + 0x0C);
num = get_unaligned_be16(data + 0x0E);
if ((num < 1) || (num > 4)) {
ldm_error ("A VBLK claims to have %d parts.", num);
return false;
}
if (rec >= num) {
ldm_error("REC value (%d) exceeds NUM value (%d)", rec, num);
return false;
}
list_for_each (item, frags) {
f = list_entry (item, struct frag, list);
if (f->group == group)
goto found;
}
f = kmalloc (sizeof (*f) + size*num, GFP_KERNEL);
if (!f) {
ldm_crit ("Out of memory.");
return false;
}
f->group = group;
f->num = num;
f->rec = rec;
f->map = 0xFF << num;
list_add_tail (&f->list, frags);
found:
if (rec >= f->num) {
ldm_error("REC value (%d) exceeds NUM value (%d)", rec, f->num);
return false;
}
if (f->map & (1 << rec)) {
ldm_error ("Duplicate VBLK, part %d.", rec);
f->map &= 0x7F; /* Mark the group as broken */
return false;
}
f->map |= (1 << rec);
if (!rec)
memcpy(f->data, data, VBLK_SIZE_HEAD);
data += VBLK_SIZE_HEAD;
size -= VBLK_SIZE_HEAD;
memcpy(f->data + VBLK_SIZE_HEAD + rec * size, data, size);
return true;
}
/**
* ldm_frag_free - Free a linked list of VBLK fragments
* @list: Linked list of fragments
*
* Free a linked list of VBLK fragments
*
* Return: none
*/
static void ldm_frag_free (struct list_head *list)
{
struct list_head *item, *tmp;
BUG_ON (!list);
list_for_each_safe (item, tmp, list)
kfree (list_entry (item, struct frag, list));
}
/**
* ldm_frag_commit - Validate fragmented VBLKs and add them to the database
* @frags: Linked list of VBLK fragments
* @ldb: Cache of the database structures
*
* Now that all the fragmented VBLKs have been collected, they must be added to
* the database for later use.
*
* Return: 'true' All the fragments we added successfully
* 'false' One or more of the fragments we invalid
*/
static bool ldm_frag_commit (struct list_head *frags, struct ldmdb *ldb)
{
struct frag *f;
struct list_head *item;
BUG_ON (!frags || !ldb);
list_for_each (item, frags) {
f = list_entry (item, struct frag, list);
if (f->map != 0xFF) {
ldm_error ("VBLK group %d is incomplete (0x%02x).",
f->group, f->map);
return false;
}
if (!ldm_ldmdb_add (f->data, f->num*ldb->vm.vblk_size, ldb))
return false; /* Already logged */
}
return true;
}
/**
* ldm_get_vblks - Read the on-disk database of VBLKs into memory
* @state: Partition check state including device holding the LDM Database
* @base: Offset, into @state->bdev, of the database
* @ldb: Cache of the database structures
*
* To use the information from the VBLKs, they need to be read from the disk,
* unpacked and validated. We cache them in @ldb according to their type.
*
* Return: 'true' All the VBLKs were read successfully
* 'false' An error occurred
*/
static bool ldm_get_vblks(struct parsed_partitions *state, unsigned long base,
struct ldmdb *ldb)
{
int size, perbuf, skip, finish, s, v, recs;
u8 *data = NULL;
Sector sect;
bool result = false;
LIST_HEAD (frags);
BUG_ON(!state || !ldb);
size = ldb->vm.vblk_size;
perbuf = 512 / size;
skip = ldb->vm.vblk_offset >> 9; /* Bytes to sectors */
finish = (size * ldb->vm.last_vblk_seq) >> 9;
for (s = skip; s < finish; s++) { /* For each sector */
data = read_part_sector(state, base + OFF_VMDB + s, &sect);
if (!data) {
ldm_crit ("Disk read failed.");
goto out;
}
for (v = 0; v < perbuf; v++, data+=size) { /* For each vblk */
if (MAGIC_VBLK != get_unaligned_be32(data)) {
ldm_error ("Expected to find a VBLK.");
goto out;
}
recs = get_unaligned_be16(data + 0x0E); /* Number of records */
if (recs == 1) {
if (!ldm_ldmdb_add (data, size, ldb))
goto out; /* Already logged */
} else if (recs > 1) {
if (!ldm_frag_add (data, size, &frags))
goto out; /* Already logged */
}
/* else Record is not in use, ignore it. */
}
put_dev_sector (sect);
data = NULL;
}
result = ldm_frag_commit (&frags, ldb); /* Failures, already logged */
out:
if (data)
put_dev_sector (sect);
ldm_frag_free (&frags);
return result;
}
/**
* ldm_free_vblks - Free a linked list of vblk's
* @lh: Head of a linked list of struct vblk
*
* Free a list of vblk's and free the memory used to maintain the list.
*
* Return: none
*/
static void ldm_free_vblks (struct list_head *lh)
{
struct list_head *item, *tmp;
BUG_ON (!lh);
list_for_each_safe (item, tmp, lh)
kfree (list_entry (item, struct vblk, list));
}
/**
* ldm_partition - Find out whether a device is a dynamic disk and handle it
* @state: Partition check state including device holding the LDM Database
*
* This determines whether the device @bdev is a dynamic disk and if so creates
* the partitions necessary in the gendisk structure pointed to by @hd.
*
* We create a dummy device 1, which contains the LDM database, and then create
* each partition described by the LDM database in sequence as devices 2+. For
* example, if the device is hda, we would have: hda1: LDM database, hda2, hda3,
* and so on: the actual data containing partitions.
*
* Return: 1 Success, @state->bdev is a dynamic disk and we handled it
* 0 Success, @state->bdev is not a dynamic disk
* -1 An error occurred before enough information had been read
* Or @state->bdev is a dynamic disk, but it may be corrupted
*/
int ldm_partition(struct parsed_partitions *state)
{
struct ldmdb *ldb;
unsigned long base;
int result = -1;
BUG_ON(!state);
/* Look for signs of a Dynamic Disk */
if (!ldm_validate_partition_table(state))
return 0;
ldb = kmalloc (sizeof (*ldb), GFP_KERNEL);
if (!ldb) {
ldm_crit ("Out of memory.");
goto out;
}
/* Parse and check privheads. */
if (!ldm_validate_privheads(state, &ldb->ph))
goto out; /* Already logged */
/* All further references are relative to base (database start). */
base = ldb->ph.config_start;
/* Parse and check tocs and vmdb. */
if (!ldm_validate_tocblocks(state, base, ldb) ||
!ldm_validate_vmdb(state, base, ldb))
goto out; /* Already logged */
/* Initialize vblk lists in ldmdb struct */
INIT_LIST_HEAD (&ldb->v_dgrp);
INIT_LIST_HEAD (&ldb->v_disk);
INIT_LIST_HEAD (&ldb->v_volu);
INIT_LIST_HEAD (&ldb->v_comp);
INIT_LIST_HEAD (&ldb->v_part);
if (!ldm_get_vblks(state, base, ldb)) {
ldm_crit ("Failed to read the VBLKs from the database.");
goto cleanup;
}
/* Finally, create the data partition devices. */
if (ldm_create_data_partitions(state, ldb)) {
ldm_debug ("Parsed LDM database successfully.");
result = 1;
}
/* else Already logged */
cleanup:
ldm_free_vblks (&ldb->v_dgrp);
ldm_free_vblks (&ldb->v_disk);
ldm_free_vblks (&ldb->v_volu);
ldm_free_vblks (&ldb->v_comp);
ldm_free_vblks (&ldb->v_part);
out:
kfree (ldb);
return result;
}