kernel_optimize_test/kernel/kexec_file.c
Mike Rapoport 350e88bad4 mm: memblock: make keeping memblock memory opt-in rather than opt-out
Most architectures do not need the memblock memory after the page
allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the
arch Kconfig.

Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the
logic makes it clear which architectures actually use memblock after
system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK
to the architectures that are still missing that option.

Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:50 -07:00

1287 lines
32 KiB
C

/*
* kexec: kexec_file_load system call
*
* Copyright (C) 2014 Red Hat Inc.
* Authors:
* Vivek Goyal <vgoyal@redhat.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/kexec.h>
#include <linux/memblock.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/ima.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/vmalloc.h>
#include "kexec_internal.h"
static int kexec_calculate_store_digests(struct kimage *image);
/*
* Currently this is the only default function that is exported as some
* architectures need it to do additional handlings.
* In the future, other default functions may be exported too if required.
*/
int kexec_image_probe_default(struct kimage *image, void *buf,
unsigned long buf_len)
{
const struct kexec_file_ops * const *fops;
int ret = -ENOEXEC;
for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
ret = (*fops)->probe(buf, buf_len);
if (!ret) {
image->fops = *fops;
return ret;
}
}
return ret;
}
/* Architectures can provide this probe function */
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len)
{
return kexec_image_probe_default(image, buf, buf_len);
}
static void *kexec_image_load_default(struct kimage *image)
{
if (!image->fops || !image->fops->load)
return ERR_PTR(-ENOEXEC);
return image->fops->load(image, image->kernel_buf,
image->kernel_buf_len, image->initrd_buf,
image->initrd_buf_len, image->cmdline_buf,
image->cmdline_buf_len);
}
void * __weak arch_kexec_kernel_image_load(struct kimage *image)
{
return kexec_image_load_default(image);
}
int kexec_image_post_load_cleanup_default(struct kimage *image)
{
if (!image->fops || !image->fops->cleanup)
return 0;
return image->fops->cleanup(image->image_loader_data);
}
int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
{
return kexec_image_post_load_cleanup_default(image);
}
#ifdef CONFIG_KEXEC_VERIFY_SIG
static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
unsigned long buf_len)
{
if (!image->fops || !image->fops->verify_sig) {
pr_debug("kernel loader does not support signature verification.\n");
return -EKEYREJECTED;
}
return image->fops->verify_sig(buf, buf_len);
}
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
unsigned long buf_len)
{
return kexec_image_verify_sig_default(image, buf, buf_len);
}
#endif
/*
* arch_kexec_apply_relocations_add - apply relocations of type RELA
* @pi: Purgatory to be relocated.
* @section: Section relocations applying to.
* @relsec: Section containing RELAs.
* @symtab: Corresponding symtab.
*
* Return: 0 on success, negative errno on error.
*/
int __weak
arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
const Elf_Shdr *relsec, const Elf_Shdr *symtab)
{
pr_err("RELA relocation unsupported.\n");
return -ENOEXEC;
}
/*
* arch_kexec_apply_relocations - apply relocations of type REL
* @pi: Purgatory to be relocated.
* @section: Section relocations applying to.
* @relsec: Section containing RELs.
* @symtab: Corresponding symtab.
*
* Return: 0 on success, negative errno on error.
*/
int __weak
arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
const Elf_Shdr *relsec, const Elf_Shdr *symtab)
{
pr_err("REL relocation unsupported.\n");
return -ENOEXEC;
}
/*
* Free up memory used by kernel, initrd, and command line. This is temporary
* memory allocation which is not needed any more after these buffers have
* been loaded into separate segments and have been copied elsewhere.
*/
void kimage_file_post_load_cleanup(struct kimage *image)
{
struct purgatory_info *pi = &image->purgatory_info;
vfree(image->kernel_buf);
image->kernel_buf = NULL;
vfree(image->initrd_buf);
image->initrd_buf = NULL;
kfree(image->cmdline_buf);
image->cmdline_buf = NULL;
vfree(pi->purgatory_buf);
pi->purgatory_buf = NULL;
vfree(pi->sechdrs);
pi->sechdrs = NULL;
/* See if architecture has anything to cleanup post load */
arch_kimage_file_post_load_cleanup(image);
/*
* Above call should have called into bootloader to free up
* any data stored in kimage->image_loader_data. It should
* be ok now to free it up.
*/
kfree(image->image_loader_data);
image->image_loader_data = NULL;
}
/*
* In file mode list of segments is prepared by kernel. Copy relevant
* data from user space, do error checking, prepare segment list
*/
static int
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
const char __user *cmdline_ptr,
unsigned long cmdline_len, unsigned flags)
{
int ret = 0;
void *ldata;
loff_t size;
ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
&size, INT_MAX, READING_KEXEC_IMAGE);
if (ret)
return ret;
image->kernel_buf_len = size;
/* IMA needs to pass the measurement list to the next kernel. */
ima_add_kexec_buffer(image);
/* Call arch image probe handlers */
ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
image->kernel_buf_len);
if (ret)
goto out;
#ifdef CONFIG_KEXEC_VERIFY_SIG
ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
image->kernel_buf_len);
if (ret) {
pr_debug("kernel signature verification failed.\n");
goto out;
}
pr_debug("kernel signature verification successful.\n");
#endif
/* It is possible that there no initramfs is being loaded */
if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
&size, INT_MAX,
READING_KEXEC_INITRAMFS);
if (ret)
goto out;
image->initrd_buf_len = size;
}
if (cmdline_len) {
image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
if (IS_ERR(image->cmdline_buf)) {
ret = PTR_ERR(image->cmdline_buf);
image->cmdline_buf = NULL;
goto out;
}
image->cmdline_buf_len = cmdline_len;
/* command line should be a string with last byte null */
if (image->cmdline_buf[cmdline_len - 1] != '\0') {
ret = -EINVAL;
goto out;
}
}
/* Call arch image load handlers */
ldata = arch_kexec_kernel_image_load(image);
if (IS_ERR(ldata)) {
ret = PTR_ERR(ldata);
goto out;
}
image->image_loader_data = ldata;
out:
/* In case of error, free up all allocated memory in this function */
if (ret)
kimage_file_post_load_cleanup(image);
return ret;
}
static int
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
int initrd_fd, const char __user *cmdline_ptr,
unsigned long cmdline_len, unsigned long flags)
{
int ret;
struct kimage *image;
bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
image = do_kimage_alloc_init();
if (!image)
return -ENOMEM;
image->file_mode = 1;
if (kexec_on_panic) {
/* Enable special crash kernel control page alloc policy. */
image->control_page = crashk_res.start;
image->type = KEXEC_TYPE_CRASH;
}
ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
cmdline_ptr, cmdline_len, flags);
if (ret)
goto out_free_image;
ret = sanity_check_segment_list(image);
if (ret)
goto out_free_post_load_bufs;
ret = -ENOMEM;
image->control_code_page = kimage_alloc_control_pages(image,
get_order(KEXEC_CONTROL_PAGE_SIZE));
if (!image->control_code_page) {
pr_err("Could not allocate control_code_buffer\n");
goto out_free_post_load_bufs;
}
if (!kexec_on_panic) {
image->swap_page = kimage_alloc_control_pages(image, 0);
if (!image->swap_page) {
pr_err("Could not allocate swap buffer\n");
goto out_free_control_pages;
}
}
*rimage = image;
return 0;
out_free_control_pages:
kimage_free_page_list(&image->control_pages);
out_free_post_load_bufs:
kimage_file_post_load_cleanup(image);
out_free_image:
kfree(image);
return ret;
}
SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
unsigned long, cmdline_len, const char __user *, cmdline_ptr,
unsigned long, flags)
{
int ret = 0, i;
struct kimage **dest_image, *image;
/* We only trust the superuser with rebooting the system. */
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
return -EPERM;
/* Make sure we have a legal set of flags */
if (flags != (flags & KEXEC_FILE_FLAGS))
return -EINVAL;
image = NULL;
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
dest_image = &kexec_image;
if (flags & KEXEC_FILE_ON_CRASH) {
dest_image = &kexec_crash_image;
if (kexec_crash_image)
arch_kexec_unprotect_crashkres();
}
if (flags & KEXEC_FILE_UNLOAD)
goto exchange;
/*
* In case of crash, new kernel gets loaded in reserved region. It is
* same memory where old crash kernel might be loaded. Free any
* current crash dump kernel before we corrupt it.
*/
if (flags & KEXEC_FILE_ON_CRASH)
kimage_free(xchg(&kexec_crash_image, NULL));
ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
cmdline_len, flags);
if (ret)
goto out;
ret = machine_kexec_prepare(image);
if (ret)
goto out;
/*
* Some architecture(like S390) may touch the crash memory before
* machine_kexec_prepare(), we must copy vmcoreinfo data after it.
*/
ret = kimage_crash_copy_vmcoreinfo(image);
if (ret)
goto out;
ret = kexec_calculate_store_digests(image);
if (ret)
goto out;
for (i = 0; i < image->nr_segments; i++) {
struct kexec_segment *ksegment;
ksegment = &image->segment[i];
pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
i, ksegment->buf, ksegment->bufsz, ksegment->mem,
ksegment->memsz);
ret = kimage_load_segment(image, &image->segment[i]);
if (ret)
goto out;
}
kimage_terminate(image);
/*
* Free up any temporary buffers allocated which are not needed
* after image has been loaded
*/
kimage_file_post_load_cleanup(image);
exchange:
image = xchg(dest_image, image);
out:
if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
arch_kexec_protect_crashkres();
mutex_unlock(&kexec_mutex);
kimage_free(image);
return ret;
}
static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
struct kexec_buf *kbuf)
{
struct kimage *image = kbuf->image;
unsigned long temp_start, temp_end;
temp_end = min(end, kbuf->buf_max);
temp_start = temp_end - kbuf->memsz;
do {
/* align down start */
temp_start = temp_start & (~(kbuf->buf_align - 1));
if (temp_start < start || temp_start < kbuf->buf_min)
return 0;
temp_end = temp_start + kbuf->memsz - 1;
/*
* Make sure this does not conflict with any of existing
* segments
*/
if (kimage_is_destination_range(image, temp_start, temp_end)) {
temp_start = temp_start - PAGE_SIZE;
continue;
}
/* We found a suitable memory range */
break;
} while (1);
/* If we are here, we found a suitable memory range */
kbuf->mem = temp_start;
/* Success, stop navigating through remaining System RAM ranges */
return 1;
}
static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
struct kexec_buf *kbuf)
{
struct kimage *image = kbuf->image;
unsigned long temp_start, temp_end;
temp_start = max(start, kbuf->buf_min);
do {
temp_start = ALIGN(temp_start, kbuf->buf_align);
temp_end = temp_start + kbuf->memsz - 1;
if (temp_end > end || temp_end > kbuf->buf_max)
return 0;
/*
* Make sure this does not conflict with any of existing
* segments
*/
if (kimage_is_destination_range(image, temp_start, temp_end)) {
temp_start = temp_start + PAGE_SIZE;
continue;
}
/* We found a suitable memory range */
break;
} while (1);
/* If we are here, we found a suitable memory range */
kbuf->mem = temp_start;
/* Success, stop navigating through remaining System RAM ranges */
return 1;
}
static int locate_mem_hole_callback(struct resource *res, void *arg)
{
struct kexec_buf *kbuf = (struct kexec_buf *)arg;
u64 start = res->start, end = res->end;
unsigned long sz = end - start + 1;
/* Returning 0 will take to next memory range */
if (sz < kbuf->memsz)
return 0;
if (end < kbuf->buf_min || start > kbuf->buf_max)
return 0;
/*
* Allocate memory top down with-in ram range. Otherwise bottom up
* allocation.
*/
if (kbuf->top_down)
return locate_mem_hole_top_down(start, end, kbuf);
return locate_mem_hole_bottom_up(start, end, kbuf);
}
#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
static int kexec_walk_memblock(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
int ret = 0;
u64 i;
phys_addr_t mstart, mend;
struct resource res = { };
if (kbuf->image->type == KEXEC_TYPE_CRASH)
return func(&crashk_res, kbuf);
if (kbuf->top_down) {
for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
&mstart, &mend, NULL) {
/*
* In memblock, end points to the first byte after the
* range while in kexec, end points to the last byte
* in the range.
*/
res.start = mstart;
res.end = mend - 1;
ret = func(&res, kbuf);
if (ret)
break;
}
} else {
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
&mstart, &mend, NULL) {
/*
* In memblock, end points to the first byte after the
* range while in kexec, end points to the last byte
* in the range.
*/
res.start = mstart;
res.end = mend - 1;
ret = func(&res, kbuf);
if (ret)
break;
}
}
return ret;
}
#else
static int kexec_walk_memblock(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
return 0;
}
#endif
/**
* kexec_walk_resources - call func(data) on free memory regions
* @kbuf: Context info for the search. Also passed to @func.
* @func: Function to call for each memory region.
*
* Return: The memory walk will stop when func returns a non-zero value
* and that value will be returned. If all free regions are visited without
* func returning non-zero, then zero will be returned.
*/
static int kexec_walk_resources(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
if (kbuf->image->type == KEXEC_TYPE_CRASH)
return walk_iomem_res_desc(crashk_res.desc,
IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
crashk_res.start, crashk_res.end,
kbuf, func);
else
return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
}
/**
* kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
* @kbuf: Parameters for the memory search.
*
* On success, kbuf->mem will have the start address of the memory region found.
*
* Return: 0 on success, negative errno on error.
*/
int kexec_locate_mem_hole(struct kexec_buf *kbuf)
{
int ret;
/* Arch knows where to place */
if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
return 0;
if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
else
ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
return ret == 1 ? 0 : -EADDRNOTAVAIL;
}
/**
* kexec_add_buffer - place a buffer in a kexec segment
* @kbuf: Buffer contents and memory parameters.
*
* This function assumes that kexec_mutex is held.
* On successful return, @kbuf->mem will have the physical address of
* the buffer in memory.
*
* Return: 0 on success, negative errno on error.
*/
int kexec_add_buffer(struct kexec_buf *kbuf)
{
struct kexec_segment *ksegment;
int ret;
/* Currently adding segment this way is allowed only in file mode */
if (!kbuf->image->file_mode)
return -EINVAL;
if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
return -EINVAL;
/*
* Make sure we are not trying to add buffer after allocating
* control pages. All segments need to be placed first before
* any control pages are allocated. As control page allocation
* logic goes through list of segments to make sure there are
* no destination overlaps.
*/
if (!list_empty(&kbuf->image->control_pages)) {
WARN_ON(1);
return -EINVAL;
}
/* Ensure minimum alignment needed for segments. */
kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
/* Walk the RAM ranges and allocate a suitable range for the buffer */
ret = kexec_locate_mem_hole(kbuf);
if (ret)
return ret;
/* Found a suitable memory range */
ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
ksegment->kbuf = kbuf->buffer;
ksegment->bufsz = kbuf->bufsz;
ksegment->mem = kbuf->mem;
ksegment->memsz = kbuf->memsz;
kbuf->image->nr_segments++;
return 0;
}
/* Calculate and store the digest of segments */
static int kexec_calculate_store_digests(struct kimage *image)
{
struct crypto_shash *tfm;
struct shash_desc *desc;
int ret = 0, i, j, zero_buf_sz, sha_region_sz;
size_t desc_size, nullsz;
char *digest;
void *zero_buf;
struct kexec_sha_region *sha_regions;
struct purgatory_info *pi = &image->purgatory_info;
if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
return 0;
zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
zero_buf_sz = PAGE_SIZE;
tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out;
}
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
desc = kzalloc(desc_size, GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto out_free_tfm;
}
sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
sha_regions = vzalloc(sha_region_sz);
if (!sha_regions)
goto out_free_desc;
desc->tfm = tfm;
ret = crypto_shash_init(desc);
if (ret < 0)
goto out_free_sha_regions;
digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
if (!digest) {
ret = -ENOMEM;
goto out_free_sha_regions;
}
for (j = i = 0; i < image->nr_segments; i++) {
struct kexec_segment *ksegment;
ksegment = &image->segment[i];
/*
* Skip purgatory as it will be modified once we put digest
* info in purgatory.
*/
if (ksegment->kbuf == pi->purgatory_buf)
continue;
ret = crypto_shash_update(desc, ksegment->kbuf,
ksegment->bufsz);
if (ret)
break;
/*
* Assume rest of the buffer is filled with zero and
* update digest accordingly.
*/
nullsz = ksegment->memsz - ksegment->bufsz;
while (nullsz) {
unsigned long bytes = nullsz;
if (bytes > zero_buf_sz)
bytes = zero_buf_sz;
ret = crypto_shash_update(desc, zero_buf, bytes);
if (ret)
break;
nullsz -= bytes;
}
if (ret)
break;
sha_regions[j].start = ksegment->mem;
sha_regions[j].len = ksegment->memsz;
j++;
}
if (!ret) {
ret = crypto_shash_final(desc, digest);
if (ret)
goto out_free_digest;
ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
sha_regions, sha_region_sz, 0);
if (ret)
goto out_free_digest;
ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
digest, SHA256_DIGEST_SIZE, 0);
if (ret)
goto out_free_digest;
}
out_free_digest:
kfree(digest);
out_free_sha_regions:
vfree(sha_regions);
out_free_desc:
kfree(desc);
out_free_tfm:
kfree(tfm);
out:
return ret;
}
#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
/*
* kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
* @pi: Purgatory to be loaded.
* @kbuf: Buffer to setup.
*
* Allocates the memory needed for the buffer. Caller is responsible to free
* the memory after use.
*
* Return: 0 on success, negative errno on error.
*/
static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
struct kexec_buf *kbuf)
{
const Elf_Shdr *sechdrs;
unsigned long bss_align;
unsigned long bss_sz;
unsigned long align;
int i, ret;
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
kbuf->buf_align = bss_align = 1;
kbuf->bufsz = bss_sz = 0;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
align = sechdrs[i].sh_addralign;
if (sechdrs[i].sh_type != SHT_NOBITS) {
if (kbuf->buf_align < align)
kbuf->buf_align = align;
kbuf->bufsz = ALIGN(kbuf->bufsz, align);
kbuf->bufsz += sechdrs[i].sh_size;
} else {
if (bss_align < align)
bss_align = align;
bss_sz = ALIGN(bss_sz, align);
bss_sz += sechdrs[i].sh_size;
}
}
kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
kbuf->memsz = kbuf->bufsz + bss_sz;
if (kbuf->buf_align < bss_align)
kbuf->buf_align = bss_align;
kbuf->buffer = vzalloc(kbuf->bufsz);
if (!kbuf->buffer)
return -ENOMEM;
pi->purgatory_buf = kbuf->buffer;
ret = kexec_add_buffer(kbuf);
if (ret)
goto out;
return 0;
out:
vfree(pi->purgatory_buf);
pi->purgatory_buf = NULL;
return ret;
}
/*
* kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
* @pi: Purgatory to be loaded.
* @kbuf: Buffer prepared to store purgatory.
*
* Allocates the memory needed for the buffer. Caller is responsible to free
* the memory after use.
*
* Return: 0 on success, negative errno on error.
*/
static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
struct kexec_buf *kbuf)
{
unsigned long bss_addr;
unsigned long offset;
Elf_Shdr *sechdrs;
int i;
/*
* The section headers in kexec_purgatory are read-only. In order to
* have them modifiable make a temporary copy.
*/
sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
if (!sechdrs)
return -ENOMEM;
memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
pi->ehdr->e_shnum * sizeof(Elf_Shdr));
pi->sechdrs = sechdrs;
offset = 0;
bss_addr = kbuf->mem + kbuf->bufsz;
kbuf->image->start = pi->ehdr->e_entry;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
unsigned long align;
void *src, *dst;
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
align = sechdrs[i].sh_addralign;
if (sechdrs[i].sh_type == SHT_NOBITS) {
bss_addr = ALIGN(bss_addr, align);
sechdrs[i].sh_addr = bss_addr;
bss_addr += sechdrs[i].sh_size;
continue;
}
offset = ALIGN(offset, align);
if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
pi->ehdr->e_entry < (sechdrs[i].sh_addr
+ sechdrs[i].sh_size)) {
kbuf->image->start -= sechdrs[i].sh_addr;
kbuf->image->start += kbuf->mem + offset;
}
src = (void *)pi->ehdr + sechdrs[i].sh_offset;
dst = pi->purgatory_buf + offset;
memcpy(dst, src, sechdrs[i].sh_size);
sechdrs[i].sh_addr = kbuf->mem + offset;
sechdrs[i].sh_offset = offset;
offset += sechdrs[i].sh_size;
}
return 0;
}
static int kexec_apply_relocations(struct kimage *image)
{
int i, ret;
struct purgatory_info *pi = &image->purgatory_info;
const Elf_Shdr *sechdrs;
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
const Elf_Shdr *relsec;
const Elf_Shdr *symtab;
Elf_Shdr *section;
relsec = sechdrs + i;
if (relsec->sh_type != SHT_RELA &&
relsec->sh_type != SHT_REL)
continue;
/*
* For section of type SHT_RELA/SHT_REL,
* ->sh_link contains section header index of associated
* symbol table. And ->sh_info contains section header
* index of section to which relocations apply.
*/
if (relsec->sh_info >= pi->ehdr->e_shnum ||
relsec->sh_link >= pi->ehdr->e_shnum)
return -ENOEXEC;
section = pi->sechdrs + relsec->sh_info;
symtab = sechdrs + relsec->sh_link;
if (!(section->sh_flags & SHF_ALLOC))
continue;
/*
* symtab->sh_link contain section header index of associated
* string table.
*/
if (symtab->sh_link >= pi->ehdr->e_shnum)
/* Invalid section number? */
continue;
/*
* Respective architecture needs to provide support for applying
* relocations of type SHT_RELA/SHT_REL.
*/
if (relsec->sh_type == SHT_RELA)
ret = arch_kexec_apply_relocations_add(pi, section,
relsec, symtab);
else if (relsec->sh_type == SHT_REL)
ret = arch_kexec_apply_relocations(pi, section,
relsec, symtab);
if (ret)
return ret;
}
return 0;
}
/*
* kexec_load_purgatory - Load and relocate the purgatory object.
* @image: Image to add the purgatory to.
* @kbuf: Memory parameters to use.
*
* Allocates the memory needed for image->purgatory_info.sechdrs and
* image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
* to free the memory after use.
*
* Return: 0 on success, negative errno on error.
*/
int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
{
struct purgatory_info *pi = &image->purgatory_info;
int ret;
if (kexec_purgatory_size <= 0)
return -EINVAL;
pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
ret = kexec_purgatory_setup_kbuf(pi, kbuf);
if (ret)
return ret;
ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
if (ret)
goto out_free_kbuf;
ret = kexec_apply_relocations(image);
if (ret)
goto out;
return 0;
out:
vfree(pi->sechdrs);
pi->sechdrs = NULL;
out_free_kbuf:
vfree(pi->purgatory_buf);
pi->purgatory_buf = NULL;
return ret;
}
/*
* kexec_purgatory_find_symbol - find a symbol in the purgatory
* @pi: Purgatory to search in.
* @name: Name of the symbol.
*
* Return: pointer to symbol in read-only symtab on success, NULL on error.
*/
static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
const char *name)
{
const Elf_Shdr *sechdrs;
const Elf_Ehdr *ehdr;
const Elf_Sym *syms;
const char *strtab;
int i, k;
if (!pi->ehdr)
return NULL;
ehdr = pi->ehdr;
sechdrs = (void *)ehdr + ehdr->e_shoff;
for (i = 0; i < ehdr->e_shnum; i++) {
if (sechdrs[i].sh_type != SHT_SYMTAB)
continue;
if (sechdrs[i].sh_link >= ehdr->e_shnum)
/* Invalid strtab section number */
continue;
strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
syms = (void *)ehdr + sechdrs[i].sh_offset;
/* Go through symbols for a match */
for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
continue;
if (strcmp(strtab + syms[k].st_name, name) != 0)
continue;
if (syms[k].st_shndx == SHN_UNDEF ||
syms[k].st_shndx >= ehdr->e_shnum) {
pr_debug("Symbol: %s has bad section index %d.\n",
name, syms[k].st_shndx);
return NULL;
}
/* Found the symbol we are looking for */
return &syms[k];
}
}
return NULL;
}
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
{
struct purgatory_info *pi = &image->purgatory_info;
const Elf_Sym *sym;
Elf_Shdr *sechdr;
sym = kexec_purgatory_find_symbol(pi, name);
if (!sym)
return ERR_PTR(-EINVAL);
sechdr = &pi->sechdrs[sym->st_shndx];
/*
* Returns the address where symbol will finally be loaded after
* kexec_load_segment()
*/
return (void *)(sechdr->sh_addr + sym->st_value);
}
/*
* Get or set value of a symbol. If "get_value" is true, symbol value is
* returned in buf otherwise symbol value is set based on value in buf.
*/
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
void *buf, unsigned int size, bool get_value)
{
struct purgatory_info *pi = &image->purgatory_info;
const Elf_Sym *sym;
Elf_Shdr *sec;
char *sym_buf;
sym = kexec_purgatory_find_symbol(pi, name);
if (!sym)
return -EINVAL;
if (sym->st_size != size) {
pr_err("symbol %s size mismatch: expected %lu actual %u\n",
name, (unsigned long)sym->st_size, size);
return -EINVAL;
}
sec = pi->sechdrs + sym->st_shndx;
if (sec->sh_type == SHT_NOBITS) {
pr_err("symbol %s is in a bss section. Cannot %s\n", name,
get_value ? "get" : "set");
return -EINVAL;
}
sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
if (get_value)
memcpy((void *)buf, sym_buf, size);
else
memcpy((void *)sym_buf, buf, size);
return 0;
}
#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
int crash_exclude_mem_range(struct crash_mem *mem,
unsigned long long mstart, unsigned long long mend)
{
int i, j;
unsigned long long start, end;
struct crash_mem_range temp_range = {0, 0};
for (i = 0; i < mem->nr_ranges; i++) {
start = mem->ranges[i].start;
end = mem->ranges[i].end;
if (mstart > end || mend < start)
continue;
/* Truncate any area outside of range */
if (mstart < start)
mstart = start;
if (mend > end)
mend = end;
/* Found completely overlapping range */
if (mstart == start && mend == end) {
mem->ranges[i].start = 0;
mem->ranges[i].end = 0;
if (i < mem->nr_ranges - 1) {
/* Shift rest of the ranges to left */
for (j = i; j < mem->nr_ranges - 1; j++) {
mem->ranges[j].start =
mem->ranges[j+1].start;
mem->ranges[j].end =
mem->ranges[j+1].end;
}
}
mem->nr_ranges--;
return 0;
}
if (mstart > start && mend < end) {
/* Split original range */
mem->ranges[i].end = mstart - 1;
temp_range.start = mend + 1;
temp_range.end = end;
} else if (mstart != start)
mem->ranges[i].end = mstart - 1;
else
mem->ranges[i].start = mend + 1;
break;
}
/* If a split happened, add the split to array */
if (!temp_range.end)
return 0;
/* Split happened */
if (i == mem->max_nr_ranges - 1)
return -ENOMEM;
/* Location where new range should go */
j = i + 1;
if (j < mem->nr_ranges) {
/* Move over all ranges one slot towards the end */
for (i = mem->nr_ranges - 1; i >= j; i--)
mem->ranges[i + 1] = mem->ranges[i];
}
mem->ranges[j].start = temp_range.start;
mem->ranges[j].end = temp_range.end;
mem->nr_ranges++;
return 0;
}
int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
void **addr, unsigned long *sz)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
unsigned char *buf;
unsigned int cpu, i;
unsigned long long notes_addr;
unsigned long mstart, mend;
/* extra phdr for vmcoreinfo elf note */
nr_phdr = nr_cpus + 1;
nr_phdr += mem->nr_ranges;
/*
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
* I think this is required by tools like gdb. So same physical
* memory will be mapped in two elf headers. One will contain kernel
* text virtual addresses and other will have __va(physical) addresses.
*/
nr_phdr++;
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
buf = vzalloc(elf_sz);
if (!buf)
return -ENOMEM;
ehdr = (Elf64_Ehdr *)buf;
phdr = (Elf64_Phdr *)(ehdr + 1);
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = ELF_ARCH;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
/* Prepare one phdr of type PT_NOTE for each present cpu */
for_each_present_cpu(cpu) {
phdr->p_type = PT_NOTE;
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
phdr->p_offset = phdr->p_paddr = notes_addr;
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
(ehdr->e_phnum)++;
phdr++;
}
/* Prepare one PT_NOTE header for vmcoreinfo */
phdr->p_type = PT_NOTE;
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
(ehdr->e_phnum)++;
phdr++;
/* Prepare PT_LOAD type program header for kernel text region */
if (kernel_map) {
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_vaddr = (Elf64_Addr)_text;
phdr->p_filesz = phdr->p_memsz = _end - _text;
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
ehdr->e_phnum++;
phdr++;
}
/* Go through all the ranges in mem->ranges[] and prepare phdr */
for (i = 0; i < mem->nr_ranges; i++) {
mstart = mem->ranges[i].start;
mend = mem->ranges[i].end;
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_offset = mstart;
phdr->p_paddr = mstart;
phdr->p_vaddr = (unsigned long long) __va(mstart);
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
phdr->p_align = 0;
ehdr->e_phnum++;
phdr++;
pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
ehdr->e_phnum, phdr->p_offset);
}
*addr = buf;
*sz = elf_sz;
return 0;
}