kernel_optimize_test/tools/lib/bpf
Andrii Nakryiko ab88c8d906 libbpf: Fix logic for finding matching program for CO-RE relocation
[ Upstream commit 966a7509325395c51c5f6d89e7352b0585e4804b ]

Fix the bug in bpf_object__relocate_core() which can lead to finding
invalid matching BPF program when processing CO-RE relocation. IF
matching program is not found, last encountered program will be assumed
to be correct program and thus error detection won't detect the problem.

Fixes: 9c82a63cf3 ("libbpf: Fix CO-RE relocs against .text section")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220426004511.2691730-4-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:21:03 +02:00
..
.gitignore
bpf_core_read.h libbpf: Fix endianness detection in BPF_CORE_READ_BITFIELD_PROBED() 2021-11-18 14:04:11 +01:00
bpf_endian.h
bpf_helpers.h bpf, libbpf: Guard bpf inline asm from bpf_tail_call_static 2020-10-22 01:46:52 +02:00
bpf_prog_linfo.c
bpf_tracing.h libbpf: Initialize the bpf_seq_printf parameters array field by field 2021-05-14 09:50:40 +02:00
bpf.c
bpf.h
btf_dump.c libbpf: Skip forward declaration when counting duplicated type names 2022-04-08 14:40:18 +02:00
btf.c libbpf: Fix BTF header parsing checks 2021-11-18 14:04:10 +01:00
btf.h libbpf: Add explicit padding to btf_dump_emit_type_decl_opts 2021-05-14 09:50:30 +02:00
Build
hashmap.c
hashmap.h libbpf, hashmap: Fix undefined behavior in hash_bits 2020-11-02 23:33:51 +01:00
libbpf_common.h
libbpf_errno.c
libbpf_internal.h
libbpf_probes.c libbpf: Fix probe for BPF_PROG_TYPE_CGROUP_SOCKOPT 2021-08-18 08:59:09 +02:00
libbpf_util.h
libbpf.c libbpf: Fix logic for finding matching program for CO-RE relocation 2022-06-09 10:21:03 +02:00
libbpf.h libbpf: Add explicit padding to bpf_xdp_set_link_opts 2021-05-14 09:50:29 +02:00
libbpf.map
libbpf.pc.template
Makefile libbpf: Fix build issue with llvm-readelf 2022-04-13 21:00:56 +02:00
netlink.c libbpf: Use SOCK_CLOEXEC when opening the netlink socket 2021-03-30 14:32:01 +02:00
nlattr.c
nlattr.h
README.rst
ringbuf.c libbpf: Fix signed overflow in ringbuf_process_ring 2021-05-19 10:13:06 +02:00
str_error.c
str_error.h
xsk.c libbpf: Unmap rings when umem deleted 2022-04-08 14:40:20 +02:00
xsk.h

.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)

libbpf API naming convention
============================

libbpf API provides access to a few logically separated groups of
functions and types. Every group has its own naming convention
described here. It's recommended to follow these conventions whenever a
new function or type is added to keep libbpf API clean and consistent.

All types and functions provided by libbpf API should have one of the
following prefixes: ``bpf_``, ``btf_``, ``libbpf_``, ``xsk_``,
``perf_buffer_``.

System call wrappers
--------------------

System call wrappers are simple wrappers for commands supported by
sys_bpf system call. These wrappers should go to ``bpf.h`` header file
and map one-on-one to corresponding commands.

For example ``bpf_map_lookup_elem`` wraps ``BPF_MAP_LOOKUP_ELEM``
command of sys_bpf, ``bpf_prog_attach`` wraps ``BPF_PROG_ATTACH``, etc.

Objects
-------

Another class of types and functions provided by libbpf API is "objects"
and functions to work with them. Objects are high-level abstractions
such as BPF program or BPF map. They're represented by corresponding
structures such as ``struct bpf_object``, ``struct bpf_program``,
``struct bpf_map``, etc.

Structures are forward declared and access to their fields should be
provided via corresponding getters and setters rather than directly.

These objects are associated with corresponding parts of ELF object that
contains compiled BPF programs.

For example ``struct bpf_object`` represents ELF object itself created
from an ELF file or from a buffer, ``struct bpf_program`` represents a
program in ELF object and ``struct bpf_map`` is a map.

Functions that work with an object have names built from object name,
double underscore and part that describes function purpose.

For example ``bpf_object__open`` consists of the name of corresponding
object, ``bpf_object``, double underscore and ``open`` that defines the
purpose of the function to open ELF file and create ``bpf_object`` from
it.

Another example: ``bpf_program__load`` is named for corresponding
object, ``bpf_program``, that is separated from other part of the name
by double underscore.

All objects and corresponding functions other than BTF related should go
to ``libbpf.h``. BTF types and functions should go to ``btf.h``.

Auxiliary functions
-------------------

Auxiliary functions and types that don't fit well in any of categories
described above should have ``libbpf_`` prefix, e.g.
``libbpf_get_error`` or ``libbpf_prog_type_by_name``.

AF_XDP functions
-------------------

AF_XDP functions should have an ``xsk_`` prefix, e.g.
``xsk_umem__get_data`` or ``xsk_umem__create``. The interface consists
of both low-level ring access functions and high-level configuration
functions. These can be mixed and matched. Note that these functions
are not reentrant for performance reasons.

Please take a look at Documentation/networking/af_xdp.rst in the Linux
kernel source tree on how to use XDP sockets and for some common
mistakes in case you do not get any traffic up to user space.

libbpf ABI
==========

libbpf can be both linked statically or used as DSO. To avoid possible
conflicts with other libraries an application is linked with, all
non-static libbpf symbols should have one of the prefixes mentioned in
API documentation above. See API naming convention to choose the right
name for a new symbol.

Symbol visibility
-----------------

libbpf follow the model when all global symbols have visibility "hidden"
by default and to make a symbol visible it has to be explicitly
attributed with ``LIBBPF_API`` macro. For example:

.. code-block:: c

        LIBBPF_API int bpf_prog_get_fd_by_id(__u32 id);

This prevents from accidentally exporting a symbol, that is not supposed
to be a part of ABI what, in turn, improves both libbpf developer- and
user-experiences.

ABI versionning
---------------

To make future ABI extensions possible libbpf ABI is versioned.
Versioning is implemented by ``libbpf.map`` version script that is
passed to linker.

Version name is ``LIBBPF_`` prefix + three-component numeric version,
starting from ``0.0.1``.

Every time ABI is being changed, e.g. because a new symbol is added or
semantic of existing symbol is changed, ABI version should be bumped.
This bump in ABI version is at most once per kernel development cycle.

For example, if current state of ``libbpf.map`` is:

.. code-block::
        LIBBPF_0.0.1 {
        	global:
                        bpf_func_a;
                        bpf_func_b;
        	local:
        		\*;
        };

, and a new symbol ``bpf_func_c`` is being introduced, then
``libbpf.map`` should be changed like this:

.. code-block::
        LIBBPF_0.0.1 {
        	global:
                        bpf_func_a;
                        bpf_func_b;
        	local:
        		\*;
        };
        LIBBPF_0.0.2 {
                global:
                        bpf_func_c;
        } LIBBPF_0.0.1;

, where new version ``LIBBPF_0.0.2`` depends on the previous
``LIBBPF_0.0.1``.

Format of version script and ways to handle ABI changes, including
incompatible ones, described in details in [1].

Stand-alone build
=================

Under https://github.com/libbpf/libbpf there is a (semi-)automated
mirror of the mainline's version of libbpf for a stand-alone build.

However, all changes to libbpf's code base must be upstreamed through
the mainline kernel tree.

License
=======

libbpf is dual-licensed under LGPL 2.1 and BSD 2-Clause.

Links
=====

[1] https://www.akkadia.org/drepper/dsohowto.pdf
    (Chapter 3. Maintaining APIs and ABIs).