forked from luck/tmp_suning_uos_patched
63c9744b9a
Things like THIS_MODULE and EXPORT_SYMBOL were simply everywhere because module.h was also everywhere. But we are fixing the latter. So we need to call out the real users in advance. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
559 lines
15 KiB
C
559 lines
15 KiB
C
/*
|
|
* Copyright 2010
|
|
* by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
*
|
|
* This code provides a IOMMU for Xen PV guests with PCI passthrough.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License v2.0 as published by
|
|
* the Free Software Foundation
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* PV guests under Xen are running in an non-contiguous memory architecture.
|
|
*
|
|
* When PCI pass-through is utilized, this necessitates an IOMMU for
|
|
* translating bus (DMA) to virtual and vice-versa and also providing a
|
|
* mechanism to have contiguous pages for device drivers operations (say DMA
|
|
* operations).
|
|
*
|
|
* Specifically, under Xen the Linux idea of pages is an illusion. It
|
|
* assumes that pages start at zero and go up to the available memory. To
|
|
* help with that, the Linux Xen MMU provides a lookup mechanism to
|
|
* translate the page frame numbers (PFN) to machine frame numbers (MFN)
|
|
* and vice-versa. The MFN are the "real" frame numbers. Furthermore
|
|
* memory is not contiguous. Xen hypervisor stitches memory for guests
|
|
* from different pools, which means there is no guarantee that PFN==MFN
|
|
* and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
|
|
* allocated in descending order (high to low), meaning the guest might
|
|
* never get any MFN's under the 4GB mark.
|
|
*
|
|
*/
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/export.h>
|
|
#include <xen/swiotlb-xen.h>
|
|
#include <xen/page.h>
|
|
#include <xen/xen-ops.h>
|
|
#include <xen/hvc-console.h>
|
|
/*
|
|
* Used to do a quick range check in swiotlb_tbl_unmap_single and
|
|
* swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
|
|
* API.
|
|
*/
|
|
|
|
static char *xen_io_tlb_start, *xen_io_tlb_end;
|
|
static unsigned long xen_io_tlb_nslabs;
|
|
/*
|
|
* Quick lookup value of the bus address of the IOTLB.
|
|
*/
|
|
|
|
u64 start_dma_addr;
|
|
|
|
static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
|
|
{
|
|
return phys_to_machine(XPADDR(paddr)).maddr;
|
|
}
|
|
|
|
static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
|
|
{
|
|
return machine_to_phys(XMADDR(baddr)).paddr;
|
|
}
|
|
|
|
static dma_addr_t xen_virt_to_bus(void *address)
|
|
{
|
|
return xen_phys_to_bus(virt_to_phys(address));
|
|
}
|
|
|
|
static int check_pages_physically_contiguous(unsigned long pfn,
|
|
unsigned int offset,
|
|
size_t length)
|
|
{
|
|
unsigned long next_mfn;
|
|
int i;
|
|
int nr_pages;
|
|
|
|
next_mfn = pfn_to_mfn(pfn);
|
|
nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
|
|
|
|
for (i = 1; i < nr_pages; i++) {
|
|
if (pfn_to_mfn(++pfn) != ++next_mfn)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int range_straddles_page_boundary(phys_addr_t p, size_t size)
|
|
{
|
|
unsigned long pfn = PFN_DOWN(p);
|
|
unsigned int offset = p & ~PAGE_MASK;
|
|
|
|
if (offset + size <= PAGE_SIZE)
|
|
return 0;
|
|
if (check_pages_physically_contiguous(pfn, offset, size))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
|
|
{
|
|
unsigned long mfn = PFN_DOWN(dma_addr);
|
|
unsigned long pfn = mfn_to_local_pfn(mfn);
|
|
phys_addr_t paddr;
|
|
|
|
/* If the address is outside our domain, it CAN
|
|
* have the same virtual address as another address
|
|
* in our domain. Therefore _only_ check address within our domain.
|
|
*/
|
|
if (pfn_valid(pfn)) {
|
|
paddr = PFN_PHYS(pfn);
|
|
return paddr >= virt_to_phys(xen_io_tlb_start) &&
|
|
paddr < virt_to_phys(xen_io_tlb_end);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int max_dma_bits = 32;
|
|
|
|
static int
|
|
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
|
|
{
|
|
int i, rc;
|
|
int dma_bits;
|
|
|
|
dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
|
|
|
|
i = 0;
|
|
do {
|
|
int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
|
|
|
|
do {
|
|
rc = xen_create_contiguous_region(
|
|
(unsigned long)buf + (i << IO_TLB_SHIFT),
|
|
get_order(slabs << IO_TLB_SHIFT),
|
|
dma_bits);
|
|
} while (rc && dma_bits++ < max_dma_bits);
|
|
if (rc)
|
|
return rc;
|
|
|
|
i += slabs;
|
|
} while (i < nslabs);
|
|
return 0;
|
|
}
|
|
|
|
void __init xen_swiotlb_init(int verbose)
|
|
{
|
|
unsigned long bytes;
|
|
int rc = -ENOMEM;
|
|
unsigned long nr_tbl;
|
|
char *m = NULL;
|
|
unsigned int repeat = 3;
|
|
|
|
nr_tbl = swioltb_nr_tbl();
|
|
if (nr_tbl)
|
|
xen_io_tlb_nslabs = nr_tbl;
|
|
else {
|
|
xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
|
|
xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
|
|
}
|
|
retry:
|
|
bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
|
|
|
|
/*
|
|
* Get IO TLB memory from any location.
|
|
*/
|
|
xen_io_tlb_start = alloc_bootmem(bytes);
|
|
if (!xen_io_tlb_start) {
|
|
m = "Cannot allocate Xen-SWIOTLB buffer!\n";
|
|
goto error;
|
|
}
|
|
xen_io_tlb_end = xen_io_tlb_start + bytes;
|
|
/*
|
|
* And replace that memory with pages under 4GB.
|
|
*/
|
|
rc = xen_swiotlb_fixup(xen_io_tlb_start,
|
|
bytes,
|
|
xen_io_tlb_nslabs);
|
|
if (rc) {
|
|
free_bootmem(__pa(xen_io_tlb_start), bytes);
|
|
m = "Failed to get contiguous memory for DMA from Xen!\n"\
|
|
"You either: don't have the permissions, do not have"\
|
|
" enough free memory under 4GB, or the hypervisor memory"\
|
|
"is too fragmented!";
|
|
goto error;
|
|
}
|
|
start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
|
|
swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
|
|
|
|
return;
|
|
error:
|
|
if (repeat--) {
|
|
xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
|
|
(xen_io_tlb_nslabs >> 1));
|
|
printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
|
|
(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
|
|
goto retry;
|
|
}
|
|
xen_raw_printk("%s (rc:%d)", m, rc);
|
|
panic("%s (rc:%d)", m, rc);
|
|
}
|
|
|
|
void *
|
|
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags)
|
|
{
|
|
void *ret;
|
|
int order = get_order(size);
|
|
u64 dma_mask = DMA_BIT_MASK(32);
|
|
unsigned long vstart;
|
|
phys_addr_t phys;
|
|
dma_addr_t dev_addr;
|
|
|
|
/*
|
|
* Ignore region specifiers - the kernel's ideas of
|
|
* pseudo-phys memory layout has nothing to do with the
|
|
* machine physical layout. We can't allocate highmem
|
|
* because we can't return a pointer to it.
|
|
*/
|
|
flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
|
|
|
|
if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
|
|
return ret;
|
|
|
|
vstart = __get_free_pages(flags, order);
|
|
ret = (void *)vstart;
|
|
|
|
if (!ret)
|
|
return ret;
|
|
|
|
if (hwdev && hwdev->coherent_dma_mask)
|
|
dma_mask = hwdev->coherent_dma_mask;
|
|
|
|
phys = virt_to_phys(ret);
|
|
dev_addr = xen_phys_to_bus(phys);
|
|
if (((dev_addr + size - 1 <= dma_mask)) &&
|
|
!range_straddles_page_boundary(phys, size))
|
|
*dma_handle = dev_addr;
|
|
else {
|
|
if (xen_create_contiguous_region(vstart, order,
|
|
fls64(dma_mask)) != 0) {
|
|
free_pages(vstart, order);
|
|
return NULL;
|
|
}
|
|
*dma_handle = virt_to_machine(ret).maddr;
|
|
}
|
|
memset(ret, 0, size);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
|
|
|
|
void
|
|
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
|
|
dma_addr_t dev_addr)
|
|
{
|
|
int order = get_order(size);
|
|
phys_addr_t phys;
|
|
u64 dma_mask = DMA_BIT_MASK(32);
|
|
|
|
if (dma_release_from_coherent(hwdev, order, vaddr))
|
|
return;
|
|
|
|
if (hwdev && hwdev->coherent_dma_mask)
|
|
dma_mask = hwdev->coherent_dma_mask;
|
|
|
|
phys = virt_to_phys(vaddr);
|
|
|
|
if (((dev_addr + size - 1 > dma_mask)) ||
|
|
range_straddles_page_boundary(phys, size))
|
|
xen_destroy_contiguous_region((unsigned long)vaddr, order);
|
|
|
|
free_pages((unsigned long)vaddr, order);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
|
|
|
|
|
|
/*
|
|
* Map a single buffer of the indicated size for DMA in streaming mode. The
|
|
* physical address to use is returned.
|
|
*
|
|
* Once the device is given the dma address, the device owns this memory until
|
|
* either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
|
|
*/
|
|
dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
phys_addr_t phys = page_to_phys(page) + offset;
|
|
dma_addr_t dev_addr = xen_phys_to_bus(phys);
|
|
void *map;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
/*
|
|
* If the address happens to be in the device's DMA window,
|
|
* we can safely return the device addr and not worry about bounce
|
|
* buffering it.
|
|
*/
|
|
if (dma_capable(dev, dev_addr, size) &&
|
|
!range_straddles_page_boundary(phys, size) && !swiotlb_force)
|
|
return dev_addr;
|
|
|
|
/*
|
|
* Oh well, have to allocate and map a bounce buffer.
|
|
*/
|
|
map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
|
|
if (!map)
|
|
return DMA_ERROR_CODE;
|
|
|
|
dev_addr = xen_virt_to_bus(map);
|
|
|
|
/*
|
|
* Ensure that the address returned is DMA'ble
|
|
*/
|
|
if (!dma_capable(dev, dev_addr, size)) {
|
|
swiotlb_tbl_unmap_single(dev, map, size, dir);
|
|
dev_addr = 0;
|
|
}
|
|
return dev_addr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
|
|
|
|
/*
|
|
* Unmap a single streaming mode DMA translation. The dma_addr and size must
|
|
* match what was provided for in a previous xen_swiotlb_map_page call. All
|
|
* other usages are undefined.
|
|
*
|
|
* After this call, reads by the cpu to the buffer are guaranteed to see
|
|
* whatever the device wrote there.
|
|
*/
|
|
static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = xen_bus_to_phys(dev_addr);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
/* NOTE: We use dev_addr here, not paddr! */
|
|
if (is_xen_swiotlb_buffer(dev_addr)) {
|
|
swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
|
|
return;
|
|
}
|
|
|
|
if (dir != DMA_FROM_DEVICE)
|
|
return;
|
|
|
|
/*
|
|
* phys_to_virt doesn't work with hihgmem page but we could
|
|
* call dma_mark_clean() with hihgmem page here. However, we
|
|
* are fine since dma_mark_clean() is null on POWERPC. We can
|
|
* make dma_mark_clean() take a physical address if necessary.
|
|
*/
|
|
dma_mark_clean(phys_to_virt(paddr), size);
|
|
}
|
|
|
|
void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
xen_unmap_single(hwdev, dev_addr, size, dir);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
|
|
|
|
/*
|
|
* Make physical memory consistent for a single streaming mode DMA translation
|
|
* after a transfer.
|
|
*
|
|
* If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
|
|
* using the cpu, yet do not wish to teardown the dma mapping, you must
|
|
* call this function before doing so. At the next point you give the dma
|
|
* address back to the card, you must first perform a
|
|
* xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
|
|
*/
|
|
static void
|
|
xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
enum dma_sync_target target)
|
|
{
|
|
phys_addr_t paddr = xen_bus_to_phys(dev_addr);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
/* NOTE: We use dev_addr here, not paddr! */
|
|
if (is_xen_swiotlb_buffer(dev_addr)) {
|
|
swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
|
|
target);
|
|
return;
|
|
}
|
|
|
|
if (dir != DMA_FROM_DEVICE)
|
|
return;
|
|
|
|
dma_mark_clean(phys_to_virt(paddr), size);
|
|
}
|
|
|
|
void
|
|
xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
|
|
|
|
void
|
|
xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
|
|
|
|
/*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* This is the scatter-gather version of the above xen_swiotlb_map_page
|
|
* interface. Here the scatter gather list elements are each tagged with the
|
|
* appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}(SG).
|
|
*
|
|
* NOTE: An implementation may be able to use a smaller number of
|
|
* DMA address/length pairs than there are SG table elements.
|
|
* (for example via virtual mapping capabilities)
|
|
* The routine returns the number of addr/length pairs actually
|
|
* used, at most nents.
|
|
*
|
|
* Device ownership issues as mentioned above for xen_swiotlb_map_page are the
|
|
* same here.
|
|
*/
|
|
int
|
|
xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
for_each_sg(sgl, sg, nelems, i) {
|
|
phys_addr_t paddr = sg_phys(sg);
|
|
dma_addr_t dev_addr = xen_phys_to_bus(paddr);
|
|
|
|
if (swiotlb_force ||
|
|
!dma_capable(hwdev, dev_addr, sg->length) ||
|
|
range_straddles_page_boundary(paddr, sg->length)) {
|
|
void *map = swiotlb_tbl_map_single(hwdev,
|
|
start_dma_addr,
|
|
sg_phys(sg),
|
|
sg->length, dir);
|
|
if (!map) {
|
|
/* Don't panic here, we expect map_sg users
|
|
to do proper error handling. */
|
|
xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
|
|
attrs);
|
|
sgl[0].dma_length = 0;
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
sg->dma_address = xen_virt_to_bus(map);
|
|
} else
|
|
sg->dma_address = dev_addr;
|
|
sg->dma_length = sg->length;
|
|
}
|
|
return nelems;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
|
|
|
|
int
|
|
xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
|
|
|
|
/*
|
|
* Unmap a set of streaming mode DMA translations. Again, cpu read rules
|
|
* concerning calls here are the same as for swiotlb_unmap_page() above.
|
|
*/
|
|
void
|
|
xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
|
|
|
|
void
|
|
xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
|
|
|
|
/*
|
|
* Make physical memory consistent for a set of streaming mode DMA translations
|
|
* after a transfer.
|
|
*
|
|
* The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
|
|
* and usage.
|
|
*/
|
|
static void
|
|
xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
enum dma_sync_target target)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
xen_swiotlb_sync_single(hwdev, sg->dma_address,
|
|
sg->dma_length, dir, target);
|
|
}
|
|
|
|
void
|
|
xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
|
|
int nelems, enum dma_data_direction dir)
|
|
{
|
|
xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
|
|
|
|
void
|
|
xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
|
|
int nelems, enum dma_data_direction dir)
|
|
{
|
|
xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
|
|
|
|
int
|
|
xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
|
|
{
|
|
return !dma_addr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
|
|
|
|
/*
|
|
* Return whether the given device DMA address mask can be supported
|
|
* properly. For example, if your device can only drive the low 24-bits
|
|
* during bus mastering, then you would pass 0x00ffffff as the mask to
|
|
* this function.
|
|
*/
|
|
int
|
|
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
|
|
{
|
|
return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
|