forked from luck/tmp_suning_uos_patched
dcc7871128
These are the minimum changes to the kgdb core in order to enable an API to connect a new front end (kdb) to the debug core. This patch introduces the dbg_kdb_mode variable controls where the user level I/O is routed. It will be routed to the gdbstub (kgdb) or to the kdb front end which is a simple shell available over the kgdboc connection. You can switch back and forth between kdb or the gdb stub mode of operation dynamically. From gdb stub mode you can blindly type "$3#33", or from the kdb mode you can enter "kgdb" to switch to the gdb stub. The logic in the debug core depends on kdb to look for the typical gdb connection sequences and return immediately with KGDB_PASS_EVENT if a gdb serial command sequence is detected. That should allow a reasonably seamless transition between kdb -> gdb without leaving the kernel exception state. The two gdb serial queries that kdb is responsible for detecting are the "?" and "qSupported" packets. CC: Ingo Molnar <mingo@elte.hu> Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Acked-by: Martin Hicks <mort@sgi.com>
218 lines
5.7 KiB
C
218 lines
5.7 KiB
C
/*
|
|
* arch/arm/kernel/kgdb.c
|
|
*
|
|
* ARM KGDB support
|
|
*
|
|
* Copyright (c) 2002-2004 MontaVista Software, Inc
|
|
* Copyright (c) 2008 Wind River Systems, Inc.
|
|
*
|
|
* Authors: George Davis <davis_g@mvista.com>
|
|
* Deepak Saxena <dsaxena@plexity.net>
|
|
*/
|
|
#include <linux/irq.h>
|
|
#include <linux/kgdb.h>
|
|
#include <asm/traps.h>
|
|
|
|
/* Make a local copy of the registers passed into the handler (bletch) */
|
|
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs)
|
|
{
|
|
int regno;
|
|
|
|
/* Initialize all to zero. */
|
|
for (regno = 0; regno < GDB_MAX_REGS; regno++)
|
|
gdb_regs[regno] = 0;
|
|
|
|
gdb_regs[_R0] = kernel_regs->ARM_r0;
|
|
gdb_regs[_R1] = kernel_regs->ARM_r1;
|
|
gdb_regs[_R2] = kernel_regs->ARM_r2;
|
|
gdb_regs[_R3] = kernel_regs->ARM_r3;
|
|
gdb_regs[_R4] = kernel_regs->ARM_r4;
|
|
gdb_regs[_R5] = kernel_regs->ARM_r5;
|
|
gdb_regs[_R6] = kernel_regs->ARM_r6;
|
|
gdb_regs[_R7] = kernel_regs->ARM_r7;
|
|
gdb_regs[_R8] = kernel_regs->ARM_r8;
|
|
gdb_regs[_R9] = kernel_regs->ARM_r9;
|
|
gdb_regs[_R10] = kernel_regs->ARM_r10;
|
|
gdb_regs[_FP] = kernel_regs->ARM_fp;
|
|
gdb_regs[_IP] = kernel_regs->ARM_ip;
|
|
gdb_regs[_SPT] = kernel_regs->ARM_sp;
|
|
gdb_regs[_LR] = kernel_regs->ARM_lr;
|
|
gdb_regs[_PC] = kernel_regs->ARM_pc;
|
|
gdb_regs[_CPSR] = kernel_regs->ARM_cpsr;
|
|
}
|
|
|
|
/* Copy local gdb registers back to kgdb regs, for later copy to kernel */
|
|
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs)
|
|
{
|
|
kernel_regs->ARM_r0 = gdb_regs[_R0];
|
|
kernel_regs->ARM_r1 = gdb_regs[_R1];
|
|
kernel_regs->ARM_r2 = gdb_regs[_R2];
|
|
kernel_regs->ARM_r3 = gdb_regs[_R3];
|
|
kernel_regs->ARM_r4 = gdb_regs[_R4];
|
|
kernel_regs->ARM_r5 = gdb_regs[_R5];
|
|
kernel_regs->ARM_r6 = gdb_regs[_R6];
|
|
kernel_regs->ARM_r7 = gdb_regs[_R7];
|
|
kernel_regs->ARM_r8 = gdb_regs[_R8];
|
|
kernel_regs->ARM_r9 = gdb_regs[_R9];
|
|
kernel_regs->ARM_r10 = gdb_regs[_R10];
|
|
kernel_regs->ARM_fp = gdb_regs[_FP];
|
|
kernel_regs->ARM_ip = gdb_regs[_IP];
|
|
kernel_regs->ARM_sp = gdb_regs[_SPT];
|
|
kernel_regs->ARM_lr = gdb_regs[_LR];
|
|
kernel_regs->ARM_pc = gdb_regs[_PC];
|
|
kernel_regs->ARM_cpsr = gdb_regs[_CPSR];
|
|
}
|
|
|
|
void
|
|
sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task)
|
|
{
|
|
struct pt_regs *thread_regs;
|
|
int regno;
|
|
|
|
/* Just making sure... */
|
|
if (task == NULL)
|
|
return;
|
|
|
|
/* Initialize to zero */
|
|
for (regno = 0; regno < GDB_MAX_REGS; regno++)
|
|
gdb_regs[regno] = 0;
|
|
|
|
/* Otherwise, we have only some registers from switch_to() */
|
|
thread_regs = task_pt_regs(task);
|
|
gdb_regs[_R0] = thread_regs->ARM_r0;
|
|
gdb_regs[_R1] = thread_regs->ARM_r1;
|
|
gdb_regs[_R2] = thread_regs->ARM_r2;
|
|
gdb_regs[_R3] = thread_regs->ARM_r3;
|
|
gdb_regs[_R4] = thread_regs->ARM_r4;
|
|
gdb_regs[_R5] = thread_regs->ARM_r5;
|
|
gdb_regs[_R6] = thread_regs->ARM_r6;
|
|
gdb_regs[_R7] = thread_regs->ARM_r7;
|
|
gdb_regs[_R8] = thread_regs->ARM_r8;
|
|
gdb_regs[_R9] = thread_regs->ARM_r9;
|
|
gdb_regs[_R10] = thread_regs->ARM_r10;
|
|
gdb_regs[_FP] = thread_regs->ARM_fp;
|
|
gdb_regs[_IP] = thread_regs->ARM_ip;
|
|
gdb_regs[_SPT] = thread_regs->ARM_sp;
|
|
gdb_regs[_LR] = thread_regs->ARM_lr;
|
|
gdb_regs[_PC] = thread_regs->ARM_pc;
|
|
gdb_regs[_CPSR] = thread_regs->ARM_cpsr;
|
|
}
|
|
|
|
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
|
|
{
|
|
regs->ARM_pc = pc;
|
|
}
|
|
|
|
static int compiled_break;
|
|
|
|
int kgdb_arch_handle_exception(int exception_vector, int signo,
|
|
int err_code, char *remcom_in_buffer,
|
|
char *remcom_out_buffer,
|
|
struct pt_regs *linux_regs)
|
|
{
|
|
unsigned long addr;
|
|
char *ptr;
|
|
|
|
switch (remcom_in_buffer[0]) {
|
|
case 'D':
|
|
case 'k':
|
|
case 'c':
|
|
/*
|
|
* Try to read optional parameter, pc unchanged if no parm.
|
|
* If this was a compiled breakpoint, we need to move
|
|
* to the next instruction or we will just breakpoint
|
|
* over and over again.
|
|
*/
|
|
ptr = &remcom_in_buffer[1];
|
|
if (kgdb_hex2long(&ptr, &addr))
|
|
linux_regs->ARM_pc = addr;
|
|
else if (compiled_break == 1)
|
|
linux_regs->ARM_pc += 4;
|
|
|
|
compiled_break = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int kgdb_brk_fn(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
kgdb_handle_exception(1, SIGTRAP, 0, regs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgdb_compiled_brk_fn(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
compiled_break = 1;
|
|
kgdb_handle_exception(1, SIGTRAP, 0, regs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct undef_hook kgdb_brkpt_hook = {
|
|
.instr_mask = 0xffffffff,
|
|
.instr_val = KGDB_BREAKINST,
|
|
.fn = kgdb_brk_fn
|
|
};
|
|
|
|
static struct undef_hook kgdb_compiled_brkpt_hook = {
|
|
.instr_mask = 0xffffffff,
|
|
.instr_val = KGDB_COMPILED_BREAK,
|
|
.fn = kgdb_compiled_brk_fn
|
|
};
|
|
|
|
static void kgdb_call_nmi_hook(void *ignored)
|
|
{
|
|
kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
|
|
}
|
|
|
|
void kgdb_roundup_cpus(unsigned long flags)
|
|
{
|
|
local_irq_enable();
|
|
smp_call_function(kgdb_call_nmi_hook, NULL, 0);
|
|
local_irq_disable();
|
|
}
|
|
|
|
/**
|
|
* kgdb_arch_init - Perform any architecture specific initalization.
|
|
*
|
|
* This function will handle the initalization of any architecture
|
|
* specific callbacks.
|
|
*/
|
|
int kgdb_arch_init(void)
|
|
{
|
|
register_undef_hook(&kgdb_brkpt_hook);
|
|
register_undef_hook(&kgdb_compiled_brkpt_hook);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kgdb_arch_exit - Perform any architecture specific uninitalization.
|
|
*
|
|
* This function will handle the uninitalization of any architecture
|
|
* specific callbacks, for dynamic registration and unregistration.
|
|
*/
|
|
void kgdb_arch_exit(void)
|
|
{
|
|
unregister_undef_hook(&kgdb_brkpt_hook);
|
|
unregister_undef_hook(&kgdb_compiled_brkpt_hook);
|
|
}
|
|
|
|
/*
|
|
* Register our undef instruction hooks with ARM undef core.
|
|
* We regsiter a hook specifically looking for the KGB break inst
|
|
* and we handle the normal undef case within the do_undefinstr
|
|
* handler.
|
|
*/
|
|
struct kgdb_arch arch_kgdb_ops = {
|
|
#ifndef __ARMEB__
|
|
.gdb_bpt_instr = {0xfe, 0xde, 0xff, 0xe7}
|
|
#else /* ! __ARMEB__ */
|
|
.gdb_bpt_instr = {0xe7, 0xff, 0xde, 0xfe}
|
|
#endif
|
|
};
|