kernel_optimize_test/drivers/gpu/drm/i915/intel_sdvo.c
Jesse Barnes e2f0ba97d6 drm/i915: sync SDVO code with stable userland modesetting driver
Pull in an update from the 2D driver (hopefully the last one, future work
should be done here and pulled back into xf86-video-intel as needed).

Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Dave Airlie <airlied@linux.ie>
2009-02-08 21:38:14 +10:00

1803 lines
53 KiB
C

/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2007 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <linux/delay.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_sdvo_regs.h"
#undef SDVO_DEBUG
struct intel_sdvo_priv {
struct intel_i2c_chan *i2c_bus;
int slaveaddr;
/* Register for the SDVO device: SDVOB or SDVOC */
int output_device;
/* Active outputs controlled by this SDVO output */
uint16_t controlled_output;
/*
* Capabilities of the SDVO device returned by
* i830_sdvo_get_capabilities()
*/
struct intel_sdvo_caps caps;
/* Pixel clock limitations reported by the SDVO device, in kHz */
int pixel_clock_min, pixel_clock_max;
/**
* This is set if we're going to treat the device as TV-out.
*
* While we have these nice friendly flags for output types that ought
* to decide this for us, the S-Video output on our HDMI+S-Video card
* shows up as RGB1 (VGA).
*/
bool is_tv;
/**
* This is set if we treat the device as HDMI, instead of DVI.
*/
bool is_hdmi;
/**
* Returned SDTV resolutions allowed for the current format, if the
* device reported it.
*/
struct intel_sdvo_sdtv_resolution_reply sdtv_resolutions;
/**
* Current selected TV format.
*
* This is stored in the same structure that's passed to the device, for
* convenience.
*/
struct intel_sdvo_tv_format tv_format;
/*
* supported encoding mode, used to determine whether HDMI is
* supported
*/
struct intel_sdvo_encode encode;
/* DDC bus used by this SDVO output */
uint8_t ddc_bus;
int save_sdvo_mult;
u16 save_active_outputs;
struct intel_sdvo_dtd save_input_dtd_1, save_input_dtd_2;
struct intel_sdvo_dtd save_output_dtd[16];
u32 save_SDVOX;
};
/**
* Writes the SDVOB or SDVOC with the given value, but always writes both
* SDVOB and SDVOC to work around apparent hardware issues (according to
* comments in the BIOS).
*/
static void intel_sdvo_write_sdvox(struct intel_output *intel_output, u32 val)
{
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u32 bval = val, cval = val;
int i;
if (sdvo_priv->output_device == SDVOB) {
cval = I915_READ(SDVOC);
} else {
bval = I915_READ(SDVOB);
}
/*
* Write the registers twice for luck. Sometimes,
* writing them only once doesn't appear to 'stick'.
* The BIOS does this too. Yay, magic
*/
for (i = 0; i < 2; i++)
{
I915_WRITE(SDVOB, bval);
I915_READ(SDVOB);
I915_WRITE(SDVOC, cval);
I915_READ(SDVOC);
}
}
static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
u8 *ch)
{
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u8 out_buf[2];
u8 buf[2];
int ret;
struct i2c_msg msgs[] = {
{
.addr = sdvo_priv->i2c_bus->slave_addr,
.flags = 0,
.len = 1,
.buf = out_buf,
},
{
.addr = sdvo_priv->i2c_bus->slave_addr,
.flags = I2C_M_RD,
.len = 1,
.buf = buf,
}
};
out_buf[0] = addr;
out_buf[1] = 0;
if ((ret = i2c_transfer(&sdvo_priv->i2c_bus->adapter, msgs, 2)) == 2)
{
*ch = buf[0];
return true;
}
DRM_DEBUG("i2c transfer returned %d\n", ret);
return false;
}
static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr,
u8 ch)
{
u8 out_buf[2];
struct i2c_msg msgs[] = {
{
.addr = intel_output->i2c_bus->slave_addr,
.flags = 0,
.len = 2,
.buf = out_buf,
}
};
out_buf[0] = addr;
out_buf[1] = ch;
if (i2c_transfer(&intel_output->i2c_bus->adapter, msgs, 1) == 1)
{
return true;
}
return false;
}
#define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
/** Mapping of command numbers to names, for debug output */
const static struct _sdvo_cmd_name {
u8 cmd;
char *name;
} sdvo_cmd_names[] = {
SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS),
/* HDMI op code */
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA),
};
#define SDVO_NAME(dev_priv) ((dev_priv)->output_device == SDVOB ? "SDVOB" : "SDVOC")
#define SDVO_PRIV(output) ((struct intel_sdvo_priv *) (output)->dev_priv)
#ifdef SDVO_DEBUG
static void intel_sdvo_debug_write(struct intel_output *intel_output, u8 cmd,
void *args, int args_len)
{
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int i;
DRM_DEBUG("%s: W: %02X ", SDVO_NAME(sdvo_priv), cmd);
for (i = 0; i < args_len; i++)
printk("%02X ", ((u8 *)args)[i]);
for (; i < 8; i++)
printk(" ");
for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) {
if (cmd == sdvo_cmd_names[i].cmd) {
printk("(%s)", sdvo_cmd_names[i].name);
break;
}
}
if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0]))
printk("(%02X)",cmd);
printk("\n");
}
#else
#define intel_sdvo_debug_write(o, c, a, l)
#endif
static void intel_sdvo_write_cmd(struct intel_output *intel_output, u8 cmd,
void *args, int args_len)
{
int i;
intel_sdvo_debug_write(intel_output, cmd, args, args_len);
for (i = 0; i < args_len; i++) {
intel_sdvo_write_byte(intel_output, SDVO_I2C_ARG_0 - i,
((u8*)args)[i]);
}
intel_sdvo_write_byte(intel_output, SDVO_I2C_OPCODE, cmd);
}
#ifdef SDVO_DEBUG
static const char *cmd_status_names[] = {
"Power on",
"Success",
"Not supported",
"Invalid arg",
"Pending",
"Target not specified",
"Scaling not supported"
};
static void intel_sdvo_debug_response(struct intel_output *intel_output,
void *response, int response_len,
u8 status)
{
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
DRM_DEBUG("%s: R: ", SDVO_NAME(sdvo_priv));
for (i = 0; i < response_len; i++)
printk("%02X ", ((u8 *)response)[i]);
for (; i < 8; i++)
printk(" ");
if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
printk("(%s)", cmd_status_names[status]);
else
printk("(??? %d)", status);
printk("\n");
}
#else
#define intel_sdvo_debug_response(o, r, l, s)
#endif
static u8 intel_sdvo_read_response(struct intel_output *intel_output,
void *response, int response_len)
{
int i;
u8 status;
u8 retry = 50;
while (retry--) {
/* Read the command response */
for (i = 0; i < response_len; i++) {
intel_sdvo_read_byte(intel_output,
SDVO_I2C_RETURN_0 + i,
&((u8 *)response)[i]);
}
/* read the return status */
intel_sdvo_read_byte(intel_output, SDVO_I2C_CMD_STATUS,
&status);
intel_sdvo_debug_response(intel_output, response, response_len,
status);
if (status != SDVO_CMD_STATUS_PENDING)
return status;
mdelay(50);
}
return status;
}
static int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode)
{
if (mode->clock >= 100000)
return 1;
else if (mode->clock >= 50000)
return 2;
else
return 4;
}
/**
* Don't check status code from this as it switches the bus back to the
* SDVO chips which defeats the purpose of doing a bus switch in the first
* place.
*/
static void intel_sdvo_set_control_bus_switch(struct intel_output *intel_output,
u8 target)
{
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1);
}
static bool intel_sdvo_set_target_input(struct intel_output *intel_output, bool target_0, bool target_1)
{
struct intel_sdvo_set_target_input_args targets = {0};
u8 status;
if (target_0 && target_1)
return SDVO_CMD_STATUS_NOTSUPP;
if (target_1)
targets.target_1 = 1;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_INPUT, &targets,
sizeof(targets));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
/**
* Return whether each input is trained.
*
* This function is making an assumption about the layout of the response,
* which should be checked against the docs.
*/
static bool intel_sdvo_get_trained_inputs(struct intel_output *intel_output, bool *input_1, bool *input_2)
{
struct intel_sdvo_get_trained_inputs_response response;
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, sizeof(response));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
*input_1 = response.input0_trained;
*input_2 = response.input1_trained;
return true;
}
static bool intel_sdvo_get_active_outputs(struct intel_output *intel_output,
u16 *outputs)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_OUTPUTS, NULL, 0);
status = intel_sdvo_read_response(intel_output, outputs, sizeof(*outputs));
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_active_outputs(struct intel_output *intel_output,
u16 outputs)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs,
sizeof(outputs));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_encoder_power_state(struct intel_output *intel_output,
int mode)
{
u8 status, state = SDVO_ENCODER_STATE_ON;
switch (mode) {
case DRM_MODE_DPMS_ON:
state = SDVO_ENCODER_STATE_ON;
break;
case DRM_MODE_DPMS_STANDBY:
state = SDVO_ENCODER_STATE_STANDBY;
break;
case DRM_MODE_DPMS_SUSPEND:
state = SDVO_ENCODER_STATE_SUSPEND;
break;
case DRM_MODE_DPMS_OFF:
state = SDVO_ENCODER_STATE_OFF;
break;
}
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ENCODER_POWER_STATE, &state,
sizeof(state));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_get_input_pixel_clock_range(struct intel_output *intel_output,
int *clock_min,
int *clock_max)
{
struct intel_sdvo_pixel_clock_range clocks;
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
NULL, 0);
status = intel_sdvo_read_response(intel_output, &clocks, sizeof(clocks));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
/* Convert the values from units of 10 kHz to kHz. */
*clock_min = clocks.min * 10;
*clock_max = clocks.max * 10;
return true;
}
static bool intel_sdvo_set_target_output(struct intel_output *intel_output,
u16 outputs)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_OUTPUT, &outputs,
sizeof(outputs));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_get_timing(struct intel_output *intel_output, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
u8 status;
intel_sdvo_write_cmd(intel_output, cmd, NULL, 0);
status = intel_sdvo_read_response(intel_output, &dtd->part1,
sizeof(dtd->part1));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(intel_output, cmd + 1, NULL, 0);
status = intel_sdvo_read_response(intel_output, &dtd->part2,
sizeof(dtd->part2));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_get_input_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(intel_output,
SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_get_output_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(intel_output,
SDVO_CMD_GET_OUTPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_timing(struct intel_output *intel_output, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
u8 status;
intel_sdvo_write_cmd(intel_output, cmd, &dtd->part1, sizeof(dtd->part1));
status = intel_sdvo_read_response(intel_output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(intel_output, cmd + 1, &dtd->part2, sizeof(dtd->part2));
status = intel_sdvo_read_response(intel_output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_set_input_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_output,
SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_output_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_output,
SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
}
static bool
intel_sdvo_create_preferred_input_timing(struct intel_output *output,
uint16_t clock,
uint16_t width,
uint16_t height)
{
struct intel_sdvo_preferred_input_timing_args args;
uint8_t status;
args.clock = clock;
args.width = width;
args.height = height;
intel_sdvo_write_cmd(output, SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING,
&args, sizeof(args));
status = intel_sdvo_read_response(output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_get_preferred_input_timing(struct intel_output *output,
struct intel_sdvo_dtd *dtd)
{
bool status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1,
NULL, 0);
status = intel_sdvo_read_response(output, &dtd->part1,
sizeof(dtd->part1));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2,
NULL, 0);
status = intel_sdvo_read_response(output, &dtd->part2,
sizeof(dtd->part2));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return false;
}
static int intel_sdvo_get_clock_rate_mult(struct intel_output *intel_output)
{
u8 response, status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_CLOCK_RATE_MULT, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 1);
if (status != SDVO_CMD_STATUS_SUCCESS) {
DRM_DEBUG("Couldn't get SDVO clock rate multiplier\n");
return SDVO_CLOCK_RATE_MULT_1X;
} else {
DRM_DEBUG("Current clock rate multiplier: %d\n", response);
}
return response;
}
static bool intel_sdvo_set_clock_rate_mult(struct intel_output *intel_output, u8 val)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
status = intel_sdvo_read_response(intel_output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd,
struct drm_display_mode *mode)
{
uint16_t width, height;
uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len;
uint16_t h_sync_offset, v_sync_offset;
width = mode->crtc_hdisplay;
height = mode->crtc_vdisplay;
/* do some mode translations */
h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start;
h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start;
v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start;
v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start;
dtd->part1.clock = mode->clock / 10;
dtd->part1.h_active = width & 0xff;
dtd->part1.h_blank = h_blank_len & 0xff;
dtd->part1.h_high = (((width >> 8) & 0xf) << 4) |
((h_blank_len >> 8) & 0xf);
dtd->part1.v_active = height & 0xff;
dtd->part1.v_blank = v_blank_len & 0xff;
dtd->part1.v_high = (((height >> 8) & 0xf) << 4) |
((v_blank_len >> 8) & 0xf);
dtd->part2.h_sync_off = h_sync_offset;
dtd->part2.h_sync_width = h_sync_len & 0xff;
dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
(v_sync_len & 0xf);
dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
((v_sync_len & 0x30) >> 4);
dtd->part2.dtd_flags = 0x18;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
dtd->part2.dtd_flags |= 0x2;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
dtd->part2.dtd_flags |= 0x4;
dtd->part2.sdvo_flags = 0;
dtd->part2.v_sync_off_high = v_sync_offset & 0xc0;
dtd->part2.reserved = 0;
}
static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode * mode,
struct intel_sdvo_dtd *dtd)
{
uint16_t width, height;
uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len;
uint16_t h_sync_offset, v_sync_offset;
width = mode->crtc_hdisplay;
height = mode->crtc_vdisplay;
/* do some mode translations */
h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start;
h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start;
v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start;
v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start;
mode->hdisplay = dtd->part1.h_active;
mode->hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8;
mode->hsync_start = mode->hdisplay + dtd->part2.h_sync_off;
mode->hsync_start += (dtd->part2.sync_off_width_high & 0xa0) << 2;
mode->hsync_end = mode->hsync_start + dtd->part2.h_sync_width;
mode->hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4;
mode->htotal = mode->hdisplay + dtd->part1.h_blank;
mode->htotal += (dtd->part1.h_high & 0xf) << 8;
mode->vdisplay = dtd->part1.v_active;
mode->vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8;
mode->vsync_start = mode->vdisplay;
mode->vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf;
mode->vsync_start += (dtd->part2.sync_off_width_high & 0x0a) << 2;
mode->vsync_start += dtd->part2.v_sync_off_high & 0xc0;
mode->vsync_end = mode->vsync_start +
(dtd->part2.v_sync_off_width & 0xf);
mode->vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4;
mode->vtotal = mode->vdisplay + dtd->part1.v_blank;
mode->vtotal += (dtd->part1.v_high & 0xf) << 8;
mode->clock = dtd->part1.clock * 10;
mode->flags &= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
if (dtd->part2.dtd_flags & 0x2)
mode->flags |= DRM_MODE_FLAG_PHSYNC;
if (dtd->part2.dtd_flags & 0x4)
mode->flags |= DRM_MODE_FLAG_PVSYNC;
}
static bool intel_sdvo_get_supp_encode(struct intel_output *output,
struct intel_sdvo_encode *encode)
{
uint8_t status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_SUPP_ENCODE, NULL, 0);
status = intel_sdvo_read_response(output, encode, sizeof(*encode));
if (status != SDVO_CMD_STATUS_SUCCESS) { /* non-support means DVI */
memset(encode, 0, sizeof(*encode));
return false;
}
return true;
}
static bool intel_sdvo_set_encode(struct intel_output *output, uint8_t mode)
{
uint8_t status;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_ENCODE, &mode, 1);
status = intel_sdvo_read_response(output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_colorimetry(struct intel_output *output,
uint8_t mode)
{
uint8_t status;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_COLORIMETRY, &mode, 1);
status = intel_sdvo_read_response(output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
#if 0
static void intel_sdvo_dump_hdmi_buf(struct intel_output *output)
{
int i, j;
uint8_t set_buf_index[2];
uint8_t av_split;
uint8_t buf_size;
uint8_t buf[48];
uint8_t *pos;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_AV_SPLIT, NULL, 0);
intel_sdvo_read_response(output, &av_split, 1);
for (i = 0; i <= av_split; i++) {
set_buf_index[0] = i; set_buf_index[1] = 0;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_INDEX,
set_buf_index, 2);
intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_INFO, NULL, 0);
intel_sdvo_read_response(output, &buf_size, 1);
pos = buf;
for (j = 0; j <= buf_size; j += 8) {
intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_DATA,
NULL, 0);
intel_sdvo_read_response(output, pos, 8);
pos += 8;
}
}
}
#endif
static void intel_sdvo_set_hdmi_buf(struct intel_output *output, int index,
uint8_t *data, int8_t size, uint8_t tx_rate)
{
uint8_t set_buf_index[2];
set_buf_index[0] = index;
set_buf_index[1] = 0;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2);
for (; size > 0; size -= 8) {
intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_DATA, data, 8);
data += 8;
}
intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_TXRATE, &tx_rate, 1);
}
static uint8_t intel_sdvo_calc_hbuf_csum(uint8_t *data, uint8_t size)
{
uint8_t csum = 0;
int i;
for (i = 0; i < size; i++)
csum += data[i];
return 0x100 - csum;
}
#define DIP_TYPE_AVI 0x82
#define DIP_VERSION_AVI 0x2
#define DIP_LEN_AVI 13
struct dip_infoframe {
uint8_t type;
uint8_t version;
uint8_t len;
uint8_t checksum;
union {
struct {
/* Packet Byte #1 */
uint8_t S:2;
uint8_t B:2;
uint8_t A:1;
uint8_t Y:2;
uint8_t rsvd1:1;
/* Packet Byte #2 */
uint8_t R:4;
uint8_t M:2;
uint8_t C:2;
/* Packet Byte #3 */
uint8_t SC:2;
uint8_t Q:2;
uint8_t EC:3;
uint8_t ITC:1;
/* Packet Byte #4 */
uint8_t VIC:7;
uint8_t rsvd2:1;
/* Packet Byte #5 */
uint8_t PR:4;
uint8_t rsvd3:4;
/* Packet Byte #6~13 */
uint16_t top_bar_end;
uint16_t bottom_bar_start;
uint16_t left_bar_end;
uint16_t right_bar_start;
} avi;
struct {
/* Packet Byte #1 */
uint8_t channel_count:3;
uint8_t rsvd1:1;
uint8_t coding_type:4;
/* Packet Byte #2 */
uint8_t sample_size:2; /* SS0, SS1 */
uint8_t sample_frequency:3;
uint8_t rsvd2:3;
/* Packet Byte #3 */
uint8_t coding_type_private:5;
uint8_t rsvd3:3;
/* Packet Byte #4 */
uint8_t channel_allocation;
/* Packet Byte #5 */
uint8_t rsvd4:3;
uint8_t level_shift:4;
uint8_t downmix_inhibit:1;
} audio;
uint8_t payload[28];
} __attribute__ ((packed)) u;
} __attribute__((packed));
static void intel_sdvo_set_avi_infoframe(struct intel_output *output,
struct drm_display_mode * mode)
{
struct dip_infoframe avi_if = {
.type = DIP_TYPE_AVI,
.version = DIP_VERSION_AVI,
.len = DIP_LEN_AVI,
};
avi_if.checksum = intel_sdvo_calc_hbuf_csum((uint8_t *)&avi_if,
4 + avi_if.len);
intel_sdvo_set_hdmi_buf(output, 1, (uint8_t *)&avi_if, 4 + avi_if.len,
SDVO_HBUF_TX_VSYNC);
}
static bool intel_sdvo_mode_fixup(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct intel_output *output = enc_to_intel_output(encoder);
struct intel_sdvo_priv *dev_priv = output->dev_priv;
if (!dev_priv->is_tv) {
/* Make the CRTC code factor in the SDVO pixel multiplier. The
* SDVO device will be told of the multiplier during mode_set.
*/
adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode);
} else {
struct intel_sdvo_dtd output_dtd;
bool success;
/* We need to construct preferred input timings based on our
* output timings. To do that, we have to set the output
* timings, even though this isn't really the right place in
* the sequence to do it. Oh well.
*/
/* Set output timings */
intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
intel_sdvo_set_target_output(output,
dev_priv->controlled_output);
intel_sdvo_set_output_timing(output, &output_dtd);
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(output, true, false);
success = intel_sdvo_create_preferred_input_timing(output,
mode->clock / 10,
mode->hdisplay,
mode->vdisplay);
if (success) {
struct intel_sdvo_dtd input_dtd;
intel_sdvo_get_preferred_input_timing(output,
&input_dtd);
intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
} else {
return false;
}
}
return true;
}
static void intel_sdvo_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_output *output = enc_to_intel_output(encoder);
struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
u32 sdvox = 0;
int sdvo_pixel_multiply;
struct intel_sdvo_in_out_map in_out;
struct intel_sdvo_dtd input_dtd;
u8 status;
if (!mode)
return;
/* First, set the input mapping for the first input to our controlled
* output. This is only correct if we're a single-input device, in
* which case the first input is the output from the appropriate SDVO
* channel on the motherboard. In a two-input device, the first input
* will be SDVOB and the second SDVOC.
*/
in_out.in0 = sdvo_priv->controlled_output;
in_out.in1 = 0;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_IN_OUT_MAP,
&in_out, sizeof(in_out));
status = intel_sdvo_read_response(output, NULL, 0);
if (sdvo_priv->is_hdmi) {
intel_sdvo_set_avi_infoframe(output, mode);
sdvox |= SDVO_AUDIO_ENABLE;
}
intel_sdvo_get_dtd_from_mode(&input_dtd, mode);
/* If it's a TV, we already set the output timing in mode_fixup.
* Otherwise, the output timing is equal to the input timing.
*/
if (!sdvo_priv->is_tv) {
/* Set the output timing to the screen */
intel_sdvo_set_target_output(output,
sdvo_priv->controlled_output);
intel_sdvo_set_output_timing(output, &input_dtd);
}
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(output, true, false);
/* We would like to use intel_sdvo_create_preferred_input_timing() to
* provide the device with a timing it can support, if it supports that
* feature. However, presumably we would need to adjust the CRTC to
* output the preferred timing, and we don't support that currently.
*/
#if 0
success = intel_sdvo_create_preferred_input_timing(output, clock,
width, height);
if (success) {
struct intel_sdvo_dtd *input_dtd;
intel_sdvo_get_preferred_input_timing(output, &input_dtd);
intel_sdvo_set_input_timing(output, &input_dtd);
}
#else
intel_sdvo_set_input_timing(output, &input_dtd);
#endif
switch (intel_sdvo_get_pixel_multiplier(mode)) {
case 1:
intel_sdvo_set_clock_rate_mult(output,
SDVO_CLOCK_RATE_MULT_1X);
break;
case 2:
intel_sdvo_set_clock_rate_mult(output,
SDVO_CLOCK_RATE_MULT_2X);
break;
case 4:
intel_sdvo_set_clock_rate_mult(output,
SDVO_CLOCK_RATE_MULT_4X);
break;
}
/* Set the SDVO control regs. */
if (IS_I965G(dev)) {
sdvox |= SDVO_BORDER_ENABLE |
SDVO_VSYNC_ACTIVE_HIGH |
SDVO_HSYNC_ACTIVE_HIGH;
} else {
sdvox |= I915_READ(sdvo_priv->output_device);
switch (sdvo_priv->output_device) {
case SDVOB:
sdvox &= SDVOB_PRESERVE_MASK;
break;
case SDVOC:
sdvox &= SDVOC_PRESERVE_MASK;
break;
}
sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
}
if (intel_crtc->pipe == 1)
sdvox |= SDVO_PIPE_B_SELECT;
sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode);
if (IS_I965G(dev)) {
/* done in crtc_mode_set as the dpll_md reg must be written early */
} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
/* done in crtc_mode_set as it lives inside the dpll register */
} else {
sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT;
}
intel_sdvo_write_sdvox(output, sdvox);
}
static void intel_sdvo_dpms(struct drm_encoder *encoder, int mode)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = enc_to_intel_output(encoder);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u32 temp;
if (mode != DRM_MODE_DPMS_ON) {
intel_sdvo_set_active_outputs(intel_output, 0);
if (0)
intel_sdvo_set_encoder_power_state(intel_output, mode);
if (mode == DRM_MODE_DPMS_OFF) {
temp = I915_READ(sdvo_priv->output_device);
if ((temp & SDVO_ENABLE) != 0) {
intel_sdvo_write_sdvox(intel_output, temp & ~SDVO_ENABLE);
}
}
} else {
bool input1, input2;
int i;
u8 status;
temp = I915_READ(sdvo_priv->output_device);
if ((temp & SDVO_ENABLE) == 0)
intel_sdvo_write_sdvox(intel_output, temp | SDVO_ENABLE);
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev);
status = intel_sdvo_get_trained_inputs(intel_output, &input1,
&input2);
/* Warn if the device reported failure to sync.
* A lot of SDVO devices fail to notify of sync, but it's
* a given it the status is a success, we succeeded.
*/
if (status == SDVO_CMD_STATUS_SUCCESS && !input1) {
DRM_DEBUG("First %s output reported failure to sync\n",
SDVO_NAME(sdvo_priv));
}
if (0)
intel_sdvo_set_encoder_power_state(intel_output, mode);
intel_sdvo_set_active_outputs(intel_output, sdvo_priv->controlled_output);
}
return;
}
static void intel_sdvo_save(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int o;
sdvo_priv->save_sdvo_mult = intel_sdvo_get_clock_rate_mult(intel_output);
intel_sdvo_get_active_outputs(intel_output, &sdvo_priv->save_active_outputs);
if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
intel_sdvo_set_target_input(intel_output, true, false);
intel_sdvo_get_input_timing(intel_output,
&sdvo_priv->save_input_dtd_1);
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
intel_sdvo_set_target_input(intel_output, false, true);
intel_sdvo_get_input_timing(intel_output,
&sdvo_priv->save_input_dtd_2);
}
for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
{
u16 this_output = (1 << o);
if (sdvo_priv->caps.output_flags & this_output)
{
intel_sdvo_set_target_output(intel_output, this_output);
intel_sdvo_get_output_timing(intel_output,
&sdvo_priv->save_output_dtd[o]);
}
}
if (sdvo_priv->is_tv) {
/* XXX: Save TV format/enhancements. */
}
sdvo_priv->save_SDVOX = I915_READ(sdvo_priv->output_device);
}
static void intel_sdvo_restore(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int o;
int i;
bool input1, input2;
u8 status;
intel_sdvo_set_active_outputs(intel_output, 0);
for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
{
u16 this_output = (1 << o);
if (sdvo_priv->caps.output_flags & this_output) {
intel_sdvo_set_target_output(intel_output, this_output);
intel_sdvo_set_output_timing(intel_output, &sdvo_priv->save_output_dtd[o]);
}
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
intel_sdvo_set_target_input(intel_output, true, false);
intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_1);
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
intel_sdvo_set_target_input(intel_output, false, true);
intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_2);
}
intel_sdvo_set_clock_rate_mult(intel_output, sdvo_priv->save_sdvo_mult);
if (sdvo_priv->is_tv) {
/* XXX: Restore TV format/enhancements. */
}
intel_sdvo_write_sdvox(intel_output, sdvo_priv->save_SDVOX);
if (sdvo_priv->save_SDVOX & SDVO_ENABLE)
{
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev);
status = intel_sdvo_get_trained_inputs(intel_output, &input1, &input2);
if (status == SDVO_CMD_STATUS_SUCCESS && !input1)
DRM_DEBUG("First %s output reported failure to sync\n",
SDVO_NAME(sdvo_priv));
}
intel_sdvo_set_active_outputs(intel_output, sdvo_priv->save_active_outputs);
}
static int intel_sdvo_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
if (sdvo_priv->pixel_clock_min > mode->clock)
return MODE_CLOCK_LOW;
if (sdvo_priv->pixel_clock_max < mode->clock)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static bool intel_sdvo_get_capabilities(struct intel_output *intel_output, struct intel_sdvo_caps *caps)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0);
status = intel_sdvo_read_response(intel_output, caps, sizeof(*caps));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
struct drm_connector* intel_sdvo_find(struct drm_device *dev, int sdvoB)
{
struct drm_connector *connector = NULL;
struct intel_output *iout = NULL;
struct intel_sdvo_priv *sdvo;
/* find the sdvo connector */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
iout = to_intel_output(connector);
if (iout->type != INTEL_OUTPUT_SDVO)
continue;
sdvo = iout->dev_priv;
if (sdvo->output_device == SDVOB && sdvoB)
return connector;
if (sdvo->output_device == SDVOC && !sdvoB)
return connector;
}
return NULL;
}
int intel_sdvo_supports_hotplug(struct drm_connector *connector)
{
u8 response[2];
u8 status;
struct intel_output *intel_output;
DRM_DEBUG("\n");
if (!connector)
return 0;
intel_output = to_intel_output(connector);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 2);
if (response[0] !=0)
return 1;
return 0;
}
void intel_sdvo_set_hotplug(struct drm_connector *connector, int on)
{
u8 response[2];
u8 status;
struct intel_output *intel_output = to_intel_output(connector);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
intel_sdvo_read_response(intel_output, &response, 2);
if (on) {
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 2);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
} else {
response[0] = 0;
response[1] = 0;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
}
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
intel_sdvo_read_response(intel_output, &response, 2);
}
static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector)
{
u8 response[2];
u8 status;
struct intel_output *intel_output = to_intel_output(connector);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 2);
DRM_DEBUG("SDVO response %d %d\n", response[0], response[1]);
if (status != SDVO_CMD_STATUS_SUCCESS)
return connector_status_unknown;
if ((response[0] != 0) || (response[1] != 0))
return connector_status_connected;
else
return connector_status_disconnected;
}
static void intel_sdvo_get_ddc_modes(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
/* set the bus switch and get the modes */
intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus);
intel_ddc_get_modes(intel_output);
#if 0
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
/* Mac mini hack. On this device, I get DDC through the analog, which
* load-detects as disconnected. I fail to DDC through the SDVO DDC,
* but it does load-detect as connected. So, just steal the DDC bits
* from analog when we fail at finding it the right way.
*/
crt = xf86_config->output[0];
intel_output = crt->driver_private;
if (intel_output->type == I830_OUTPUT_ANALOG &&
crt->funcs->detect(crt) == XF86OutputStatusDisconnected) {
I830I2CInit(pScrn, &intel_output->pDDCBus, GPIOA, "CRTDDC_A");
edid_mon = xf86OutputGetEDID(crt, intel_output->pDDCBus);
xf86DestroyI2CBusRec(intel_output->pDDCBus, true, true);
}
if (edid_mon) {
xf86OutputSetEDID(output, edid_mon);
modes = xf86OutputGetEDIDModes(output);
}
#endif
}
/**
* This function checks the current TV format, and chooses a default if
* it hasn't been set.
*/
static void
intel_sdvo_check_tv_format(struct intel_output *output)
{
struct intel_sdvo_priv *dev_priv = output->dev_priv;
struct intel_sdvo_tv_format format, unset;
uint8_t status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_TV_FORMAT, NULL, 0);
status = intel_sdvo_read_response(output, &format, sizeof(format));
if (status != SDVO_CMD_STATUS_SUCCESS)
return;
memset(&unset, 0, sizeof(unset));
if (memcmp(&format, &unset, sizeof(format))) {
DRM_DEBUG("%s: Choosing default TV format of NTSC-M\n",
SDVO_NAME(dev_priv));
format.ntsc_m = true;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_TV_FORMAT, NULL, 0);
status = intel_sdvo_read_response(output, NULL, 0);
}
}
/*
* Set of SDVO TV modes.
* Note! This is in reply order (see loop in get_tv_modes).
* XXX: all 60Hz refresh?
*/
struct drm_display_mode sdvo_tv_modes[] = {
{ DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815680, 321, 384, 416,
200, 0, 232, 201, 233, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814080, 321, 384, 416,
240, 0, 272, 241, 273, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910080, 401, 464, 496,
300, 0, 332, 301, 333, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913280, 641, 704, 736,
350, 0, 382, 351, 383, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121280, 641, 704, 736,
400, 0, 432, 401, 433, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121280, 641, 704, 736,
400, 0, 432, 401, 433, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624000, 705, 768, 800,
480, 0, 512, 481, 513, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232000, 705, 768, 800,
576, 0, 608, 577, 609, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751680, 721, 784, 816,
350, 0, 382, 351, 383, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199680, 721, 784, 816,
400, 0, 432, 401, 433, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116480, 721, 784, 816,
480, 0, 512, 481, 513, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054080, 721, 784, 816,
540, 0, 572, 541, 573, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816640, 721, 784, 816,
576, 0, 608, 577, 609, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570560, 769, 832, 864,
576, 0, 608, 577, 609, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030080, 801, 864, 896,
600, 0, 632, 601, 633, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581760, 833, 896, 928,
624, 0, 656, 625, 657, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707040, 921, 984, 1016,
766, 0, 798, 767, 799, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827200, 1025, 1088, 1120,
768, 0, 800, 769, 801, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265920, 1281, 1344, 1376,
1024, 0, 1056, 1025, 1057, 4196112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
};
static void intel_sdvo_get_tv_modes(struct drm_connector *connector)
{
struct intel_output *output = to_intel_output(connector);
uint32_t reply = 0;
uint8_t status;
int i = 0;
intel_sdvo_check_tv_format(output);
/* Read the list of supported input resolutions for the selected TV
* format.
*/
intel_sdvo_write_cmd(output, SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT,
NULL, 0);
status = intel_sdvo_read_response(output, &reply, 3);
if (status != SDVO_CMD_STATUS_SUCCESS)
return;
for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++)
if (reply & (1 << i))
drm_mode_probed_add(connector, &sdvo_tv_modes[i]);
}
static int intel_sdvo_get_modes(struct drm_connector *connector)
{
struct intel_output *output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
if (sdvo_priv->is_tv)
intel_sdvo_get_tv_modes(connector);
else
intel_sdvo_get_ddc_modes(connector);
if (list_empty(&connector->probed_modes))
return 0;
return 1;
}
static void intel_sdvo_destroy(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
if (intel_output->i2c_bus)
intel_i2c_destroy(intel_output->i2c_bus);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(intel_output);
}
static const struct drm_encoder_helper_funcs intel_sdvo_helper_funcs = {
.dpms = intel_sdvo_dpms,
.mode_fixup = intel_sdvo_mode_fixup,
.prepare = intel_encoder_prepare,
.mode_set = intel_sdvo_mode_set,
.commit = intel_encoder_commit,
};
static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
.save = intel_sdvo_save,
.restore = intel_sdvo_restore,
.detect = intel_sdvo_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = intel_sdvo_destroy,
};
static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = {
.get_modes = intel_sdvo_get_modes,
.mode_valid = intel_sdvo_mode_valid,
.best_encoder = intel_best_encoder,
};
static void intel_sdvo_enc_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs intel_sdvo_enc_funcs = {
.destroy = intel_sdvo_enc_destroy,
};
/**
* Choose the appropriate DDC bus for control bus switch command for this
* SDVO output based on the controlled output.
*
* DDC bus number assignment is in a priority order of RGB outputs, then TMDS
* outputs, then LVDS outputs.
*/
static void
intel_sdvo_select_ddc_bus(struct intel_sdvo_priv *dev_priv)
{
uint16_t mask = 0;
unsigned int num_bits;
/* Make a mask of outputs less than or equal to our own priority in the
* list.
*/
switch (dev_priv->controlled_output) {
case SDVO_OUTPUT_LVDS1:
mask |= SDVO_OUTPUT_LVDS1;
case SDVO_OUTPUT_LVDS0:
mask |= SDVO_OUTPUT_LVDS0;
case SDVO_OUTPUT_TMDS1:
mask |= SDVO_OUTPUT_TMDS1;
case SDVO_OUTPUT_TMDS0:
mask |= SDVO_OUTPUT_TMDS0;
case SDVO_OUTPUT_RGB1:
mask |= SDVO_OUTPUT_RGB1;
case SDVO_OUTPUT_RGB0:
mask |= SDVO_OUTPUT_RGB0;
break;
}
/* Count bits to find what number we are in the priority list. */
mask &= dev_priv->caps.output_flags;
num_bits = hweight16(mask);
if (num_bits > 3) {
/* if more than 3 outputs, default to DDC bus 3 for now */
num_bits = 3;
}
/* Corresponds to SDVO_CONTROL_BUS_DDCx */
dev_priv->ddc_bus = 1 << num_bits;
}
static bool
intel_sdvo_get_digital_encoding_mode(struct intel_output *output)
{
struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
uint8_t status;
intel_sdvo_set_target_output(output, sdvo_priv->controlled_output);
intel_sdvo_write_cmd(output, SDVO_CMD_GET_ENCODE, NULL, 0);
status = intel_sdvo_read_response(output, &sdvo_priv->is_hdmi, 1);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
bool intel_sdvo_init(struct drm_device *dev, int output_device)
{
struct drm_connector *connector;
struct intel_output *intel_output;
struct intel_sdvo_priv *sdvo_priv;
struct intel_i2c_chan *i2cbus = NULL;
int connector_type;
u8 ch[0x40];
int i;
int encoder_type, output_id;
intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL);
if (!intel_output) {
return false;
}
connector = &intel_output->base;
drm_connector_init(dev, connector, &intel_sdvo_connector_funcs,
DRM_MODE_CONNECTOR_Unknown);
drm_connector_helper_add(connector, &intel_sdvo_connector_helper_funcs);
sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1);
intel_output->type = INTEL_OUTPUT_SDVO;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
/* setup the DDC bus. */
if (output_device == SDVOB)
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB");
else
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC");
if (!i2cbus)
goto err_connector;
sdvo_priv->i2c_bus = i2cbus;
if (output_device == SDVOB) {
output_id = 1;
sdvo_priv->i2c_bus->slave_addr = 0x38;
} else {
output_id = 2;
sdvo_priv->i2c_bus->slave_addr = 0x39;
}
sdvo_priv->output_device = output_device;
intel_output->i2c_bus = i2cbus;
intel_output->dev_priv = sdvo_priv;
/* Read the regs to test if we can talk to the device */
for (i = 0; i < 0x40; i++) {
if (!intel_sdvo_read_byte(intel_output, i, &ch[i])) {
DRM_DEBUG("No SDVO device found on SDVO%c\n",
output_device == SDVOB ? 'B' : 'C');
goto err_i2c;
}
}
intel_sdvo_get_capabilities(intel_output, &sdvo_priv->caps);
if (sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) {
if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS0)
sdvo_priv->controlled_output = SDVO_OUTPUT_TMDS0;
else
sdvo_priv->controlled_output = SDVO_OUTPUT_TMDS1;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_TMDS;
connector_type = DRM_MODE_CONNECTOR_DVID;
if (intel_sdvo_get_supp_encode(intel_output,
&sdvo_priv->encode) &&
intel_sdvo_get_digital_encoding_mode(intel_output) &&
sdvo_priv->is_hdmi) {
/* enable hdmi encoding mode if supported */
intel_sdvo_set_encode(intel_output, SDVO_ENCODE_HDMI);
intel_sdvo_set_colorimetry(intel_output,
SDVO_COLORIMETRY_RGB256);
connector_type = DRM_MODE_CONNECTOR_HDMIA;
}
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_SVID0)
{
sdvo_priv->controlled_output = SDVO_OUTPUT_SVID0;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_TVDAC;
connector_type = DRM_MODE_CONNECTOR_SVIDEO;
sdvo_priv->is_tv = true;
intel_output->needs_tv_clock = true;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB0)
{
sdvo_priv->controlled_output = SDVO_OUTPUT_RGB0;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_DAC;
connector_type = DRM_MODE_CONNECTOR_VGA;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB1)
{
sdvo_priv->controlled_output = SDVO_OUTPUT_RGB1;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_DAC;
connector_type = DRM_MODE_CONNECTOR_VGA;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_LVDS0)
{
sdvo_priv->controlled_output = SDVO_OUTPUT_LVDS0;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_LVDS;
connector_type = DRM_MODE_CONNECTOR_LVDS;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_LVDS1)
{
sdvo_priv->controlled_output = SDVO_OUTPUT_LVDS1;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_LVDS;
connector_type = DRM_MODE_CONNECTOR_LVDS;
}
else
{
unsigned char bytes[2];
sdvo_priv->controlled_output = 0;
memcpy (bytes, &sdvo_priv->caps.output_flags, 2);
DRM_DEBUG("%s: Unknown SDVO output type (0x%02x%02x)\n",
SDVO_NAME(sdvo_priv),
bytes[0], bytes[1]);
encoder_type = DRM_MODE_ENCODER_NONE;
connector_type = DRM_MODE_CONNECTOR_Unknown;
goto err_i2c;
}
drm_encoder_init(dev, &intel_output->enc, &intel_sdvo_enc_funcs, encoder_type);
drm_encoder_helper_add(&intel_output->enc, &intel_sdvo_helper_funcs);
connector->connector_type = connector_type;
drm_mode_connector_attach_encoder(&intel_output->base, &intel_output->enc);
drm_sysfs_connector_add(connector);
intel_sdvo_select_ddc_bus(sdvo_priv);
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(intel_output, true, false);
intel_sdvo_get_input_pixel_clock_range(intel_output,
&sdvo_priv->pixel_clock_min,
&sdvo_priv->pixel_clock_max);
DRM_DEBUG("%s device VID/DID: %02X:%02X.%02X, "
"clock range %dMHz - %dMHz, "
"input 1: %c, input 2: %c, "
"output 1: %c, output 2: %c\n",
SDVO_NAME(sdvo_priv),
sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id,
sdvo_priv->caps.device_rev_id,
sdvo_priv->pixel_clock_min / 1000,
sdvo_priv->pixel_clock_max / 1000,
(sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
(sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
/* check currently supported outputs */
sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
intel_output->ddc_bus = i2cbus;
return true;
err_i2c:
intel_i2c_destroy(intel_output->i2c_bus);
err_connector:
drm_connector_cleanup(connector);
kfree(intel_output);
return false;
}