forked from luck/tmp_suning_uos_patched
a1c28b75a9
Pull ARM updates from Russell King: "Changes included in this pull request: - revert pxa2xx-flash back to using ioremap_cached() and switch memremap() to use arch_memremap_wb() - remove pci=firmware command line argument handling - remove unnecessary arm_dma_set_mask() implementation, the generic implementation will do for ARM - removal of the ARM kallsyms "hack" to work around mode switching veneers and vectors located below PAGE_OFFSET - tidy up build system output a little - add L2 cache power management DT bindings - remove duplicated local_irq_disable() in reboot paths - handle AMBA primecell devices better at registration time with PM domains (needed for Samsung SoCs) - ARM specific preparation to support Keystone II kexec" * 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: ARM: 8567/1: cache-uniphier: activate ways for secondary CPUs ARM: 8570/2: Documentation: devicetree: Add PL310 PM bindings ARM: 8569/1: pl2x0: Add OF control of cache power management ARM: 8568/1: reboot: remove duplicated local_irq_disable() ARM: 8566/1: drivers: amba: properly handle devices with power domains ARM: provide arm_has_idmap_alias() helper ARM: kexec: remove 512MB restriction on kexec crashdump ARM: provide improved virt_to_idmap() functionality ARM: kexec: fix crashkernel= handling ARM: 8557/1: specify install, zinstall, and uinstall as PHONY targets ARM: 8562/1: suppress "include/generated/mach-types.h is up to date." ARM: 8553/1: kallsyms: remove --page-offset command line option ARM: 8552/1: kallsyms: remove special lower address limit for CONFIG_ARM ARM: 8555/1: kallsyms: ignore ARM mode switching veneers ARM: 8548/1: dma-mapping: remove arm_dma_set_mask() ARM: 8554/1: kernel: pci: remove pci=firmware command line parameter handling ARM: memremap: implement arch_memremap_wb() memremap: add arch specific hook for MEMREMAP_WB mappings mtd: pxa2xx-flash: switch back from memremap to ioremap_cached ARM: reintroduce ioremap_cached() for creating cached I/O mappings
404 lines
10 KiB
C
404 lines
10 KiB
C
/*
|
|
* linux/arch/arm/mm/nommu.c
|
|
*
|
|
* ARM uCLinux supporting functions.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/io.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/page.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/mpu.h>
|
|
#include <asm/procinfo.h>
|
|
|
|
#include "mm.h"
|
|
|
|
#ifdef CONFIG_ARM_MPU
|
|
struct mpu_rgn_info mpu_rgn_info;
|
|
|
|
/* Region number */
|
|
static void rgnr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
|
|
}
|
|
|
|
/* Data-side / unified region attributes */
|
|
|
|
/* Region access control register */
|
|
static void dracr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
|
|
}
|
|
|
|
/* Region size register */
|
|
static void drsr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
|
|
}
|
|
|
|
/* Region base address register */
|
|
static void drbar_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
|
|
}
|
|
|
|
static u32 drbar_read(void)
|
|
{
|
|
u32 v;
|
|
asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
|
|
return v;
|
|
}
|
|
/* Optional instruction-side region attributes */
|
|
|
|
/* I-side Region access control register */
|
|
static void iracr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
|
|
}
|
|
|
|
/* I-side Region size register */
|
|
static void irsr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
|
|
}
|
|
|
|
/* I-side Region base address register */
|
|
static void irbar_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
|
|
}
|
|
|
|
static unsigned long irbar_read(void)
|
|
{
|
|
unsigned long v;
|
|
asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
|
|
return v;
|
|
}
|
|
|
|
/* MPU initialisation functions */
|
|
void __init sanity_check_meminfo_mpu(void)
|
|
{
|
|
phys_addr_t phys_offset = PHYS_OFFSET;
|
|
phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
|
|
struct memblock_region *reg;
|
|
bool first = true;
|
|
phys_addr_t mem_start;
|
|
phys_addr_t mem_end;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
if (first) {
|
|
/*
|
|
* Initially only use memory continuous from
|
|
* PHYS_OFFSET */
|
|
if (reg->base != phys_offset)
|
|
panic("First memory bank must be contiguous from PHYS_OFFSET");
|
|
|
|
mem_start = reg->base;
|
|
mem_end = reg->base + reg->size;
|
|
specified_mem_size = reg->size;
|
|
first = false;
|
|
} else {
|
|
/*
|
|
* memblock auto merges contiguous blocks, remove
|
|
* all blocks afterwards in one go (we can't remove
|
|
* blocks separately while iterating)
|
|
*/
|
|
pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
|
|
&mem_end, ®->base);
|
|
memblock_remove(reg->base, 0 - reg->base);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MPU has curious alignment requirements: Size must be power of 2, and
|
|
* region start must be aligned to the region size
|
|
*/
|
|
if (phys_offset != 0)
|
|
pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
|
|
|
|
/*
|
|
* Maximum aligned region might overflow phys_addr_t if phys_offset is
|
|
* 0. Hence we keep everything below 4G until we take the smaller of
|
|
* the aligned_region_size and rounded_mem_size, one of which is
|
|
* guaranteed to be smaller than the maximum physical address.
|
|
*/
|
|
aligned_region_size = (phys_offset - 1) ^ (phys_offset);
|
|
/* Find the max power-of-two sized region that fits inside our bank */
|
|
rounded_mem_size = (1 << __fls(specified_mem_size)) - 1;
|
|
|
|
/* The actual region size is the smaller of the two */
|
|
aligned_region_size = aligned_region_size < rounded_mem_size
|
|
? aligned_region_size + 1
|
|
: rounded_mem_size + 1;
|
|
|
|
if (aligned_region_size != specified_mem_size) {
|
|
pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
|
|
&specified_mem_size, &aligned_region_size);
|
|
memblock_remove(mem_start + aligned_region_size,
|
|
specified_mem_size - aligned_region_size);
|
|
|
|
mem_end = mem_start + aligned_region_size;
|
|
}
|
|
|
|
pr_debug("MPU Region from %pa size %pa (end %pa))\n",
|
|
&phys_offset, &aligned_region_size, &mem_end);
|
|
|
|
}
|
|
|
|
static int mpu_present(void)
|
|
{
|
|
return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
|
|
}
|
|
|
|
static int mpu_max_regions(void)
|
|
{
|
|
/*
|
|
* We don't support a different number of I/D side regions so if we
|
|
* have separate instruction and data memory maps then return
|
|
* whichever side has a smaller number of supported regions.
|
|
*/
|
|
u32 dregions, iregions, mpuir;
|
|
mpuir = read_cpuid(CPUID_MPUIR);
|
|
|
|
dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
|
|
|
|
/* Check for separate d-side and i-side memory maps */
|
|
if (mpuir & MPUIR_nU)
|
|
iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
|
|
|
|
/* Use the smallest of the two maxima */
|
|
return min(dregions, iregions);
|
|
}
|
|
|
|
static int mpu_iside_independent(void)
|
|
{
|
|
/* MPUIR.nU specifies whether there is *not* a unified memory map */
|
|
return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
|
|
}
|
|
|
|
static int mpu_min_region_order(void)
|
|
{
|
|
u32 drbar_result, irbar_result;
|
|
/* We've kept a region free for this probing */
|
|
rgnr_write(MPU_PROBE_REGION);
|
|
isb();
|
|
/*
|
|
* As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
|
|
* region order
|
|
*/
|
|
drbar_write(0xFFFFFFFC);
|
|
drbar_result = irbar_result = drbar_read();
|
|
drbar_write(0x0);
|
|
/* If the MPU is non-unified, we use the larger of the two minima*/
|
|
if (mpu_iside_independent()) {
|
|
irbar_write(0xFFFFFFFC);
|
|
irbar_result = irbar_read();
|
|
irbar_write(0x0);
|
|
}
|
|
isb(); /* Ensure that MPU region operations have completed */
|
|
/* Return whichever result is larger */
|
|
return __ffs(max(drbar_result, irbar_result));
|
|
}
|
|
|
|
static int mpu_setup_region(unsigned int number, phys_addr_t start,
|
|
unsigned int size_order, unsigned int properties)
|
|
{
|
|
u32 size_data;
|
|
|
|
/* We kept a region free for probing resolution of MPU regions*/
|
|
if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
|
|
return -ENOENT;
|
|
|
|
if (size_order > 32)
|
|
return -ENOMEM;
|
|
|
|
if (size_order < mpu_min_region_order())
|
|
return -ENOMEM;
|
|
|
|
/* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
|
|
size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
|
|
|
|
dsb(); /* Ensure all previous data accesses occur with old mappings */
|
|
rgnr_write(number);
|
|
isb();
|
|
drbar_write(start);
|
|
dracr_write(properties);
|
|
isb(); /* Propagate properties before enabling region */
|
|
drsr_write(size_data);
|
|
|
|
/* Check for independent I-side registers */
|
|
if (mpu_iside_independent()) {
|
|
irbar_write(start);
|
|
iracr_write(properties);
|
|
isb();
|
|
irsr_write(size_data);
|
|
}
|
|
isb();
|
|
|
|
/* Store region info (we treat i/d side the same, so only store d) */
|
|
mpu_rgn_info.rgns[number].dracr = properties;
|
|
mpu_rgn_info.rgns[number].drbar = start;
|
|
mpu_rgn_info.rgns[number].drsr = size_data;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up default MPU regions, doing nothing if there is no MPU
|
|
*/
|
|
void __init mpu_setup(void)
|
|
{
|
|
int region_err;
|
|
if (!mpu_present())
|
|
return;
|
|
|
|
region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
|
|
ilog2(memblock.memory.regions[0].size),
|
|
MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
|
|
if (region_err) {
|
|
panic("MPU region initialization failure! %d", region_err);
|
|
} else {
|
|
pr_info("Using ARMv7 PMSA Compliant MPU. "
|
|
"Region independence: %s, Max regions: %d\n",
|
|
mpu_iside_independent() ? "Yes" : "No",
|
|
mpu_max_regions());
|
|
}
|
|
}
|
|
#else
|
|
static void sanity_check_meminfo_mpu(void) {}
|
|
static void __init mpu_setup(void) {}
|
|
#endif /* CONFIG_ARM_MPU */
|
|
|
|
void __init arm_mm_memblock_reserve(void)
|
|
{
|
|
#ifndef CONFIG_CPU_V7M
|
|
/*
|
|
* Register the exception vector page.
|
|
* some architectures which the DRAM is the exception vector to trap,
|
|
* alloc_page breaks with error, although it is not NULL, but "0."
|
|
*/
|
|
memblock_reserve(CONFIG_VECTORS_BASE, 2 * PAGE_SIZE);
|
|
#else /* ifndef CONFIG_CPU_V7M */
|
|
/*
|
|
* There is no dedicated vector page on V7-M. So nothing needs to be
|
|
* reserved here.
|
|
*/
|
|
#endif
|
|
}
|
|
|
|
void __init sanity_check_meminfo(void)
|
|
{
|
|
phys_addr_t end;
|
|
sanity_check_meminfo_mpu();
|
|
end = memblock_end_of_DRAM();
|
|
high_memory = __va(end - 1) + 1;
|
|
memblock_set_current_limit(end);
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables, initialises the zone memory
|
|
* maps, and sets up the zero page, bad page and bad page tables.
|
|
*/
|
|
void __init paging_init(const struct machine_desc *mdesc)
|
|
{
|
|
early_trap_init((void *)CONFIG_VECTORS_BASE);
|
|
mpu_setup();
|
|
bootmem_init();
|
|
}
|
|
|
|
/*
|
|
* We don't need to do anything here for nommu machines.
|
|
*/
|
|
void setup_mm_for_reboot(void)
|
|
{
|
|
}
|
|
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void flush_kernel_dcache_page(struct page *page)
|
|
{
|
|
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
|
|
}
|
|
EXPORT_SYMBOL(flush_kernel_dcache_page);
|
|
|
|
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long uaddr, void *dst, const void *src,
|
|
unsigned long len)
|
|
{
|
|
memcpy(dst, src, len);
|
|
if (vma->vm_flags & VM_EXEC)
|
|
__cpuc_coherent_user_range(uaddr, uaddr + len);
|
|
}
|
|
|
|
void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
|
|
size_t size, unsigned int mtype)
|
|
{
|
|
if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
|
|
return NULL;
|
|
return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
|
|
}
|
|
EXPORT_SYMBOL(__arm_ioremap_pfn);
|
|
|
|
void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
|
|
unsigned int mtype, void *caller)
|
|
{
|
|
return (void __iomem *)phys_addr;
|
|
}
|
|
|
|
void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
|
|
|
|
void __iomem *ioremap(resource_size_t res_cookie, size_t size)
|
|
{
|
|
return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap);
|
|
|
|
void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
|
|
__alias(ioremap_cached);
|
|
|
|
void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
|
|
{
|
|
return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_cache);
|
|
EXPORT_SYMBOL(ioremap_cached);
|
|
|
|
void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
|
|
{
|
|
return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
|
|
void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
|
|
{
|
|
return (void *)phys_addr;
|
|
}
|
|
|
|
void __iounmap(volatile void __iomem *addr)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(__iounmap);
|
|
|
|
void (*arch_iounmap)(volatile void __iomem *);
|
|
|
|
void iounmap(volatile void __iomem *addr)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(iounmap);
|