kernel_optimize_test/lib/mpi/mpih-mul.c
Thomas Gleixner 465ae83692 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 26
Based on 1 normalized pattern(s):

  gnupg is free software you can redistribute it and or modify it
  under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version gnupg is distributed in the hope that
  it will be useful but without any warranty without even the implied
  warranty of merchantability or fitness for a particular purpose see
  the gnu general public license for more details you should have
  received a copy of the gnu general public license along with this
  program if not write to the free software foundation inc 59 temple
  place suite 330 boston ma 02111 1307 usa note this code is heavily
  based on the gnu mp library actually it s the same code with only
  minor changes in the way the data is stored this is to support the
  abstraction of an optional secure memory allocation which may be
  used to avoid revealing of sensitive data due to paging etc the gnu
  mp library itself is published under the lgpl however i decided to
  publish this code under the plain gpl

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 14 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170856.639982569@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:10 +02:00

485 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* mpihelp-mul.c - MPI helper functions
* Copyright (C) 1994, 1996, 1998, 1999,
* 2000 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
* The GNU MP Library itself is published under the LGPL;
* however I decided to publish this code under the plain GPL.
*/
#include <linux/string.h>
#include "mpi-internal.h"
#include "longlong.h"
#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
do { \
if ((size) < KARATSUBA_THRESHOLD) \
mul_n_basecase(prodp, up, vp, size); \
else \
mul_n(prodp, up, vp, size, tspace); \
} while (0);
#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
do { \
if ((size) < KARATSUBA_THRESHOLD) \
mpih_sqr_n_basecase(prodp, up, size); \
else \
mpih_sqr_n(prodp, up, size, tspace); \
} while (0);
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
* both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
* always stored. Return the most significant limb.
*
* Argument constraints:
* 1. PRODP != UP and PRODP != VP, i.e. the destination
* must be distinct from the multiplier and the multiplicand.
*
*
* Handle simple cases with traditional multiplication.
*
* This is the most critical code of multiplication. All multiplies rely
* on this, both small and huge. Small ones arrive here immediately. Huge
* ones arrive here as this is the base case for Karatsuba's recursive
* algorithm below.
*/
static mpi_limb_t
mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
{
mpi_size_t i;
mpi_limb_t cy;
mpi_limb_t v_limb;
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
if (v_limb <= 1) {
if (v_limb == 1)
MPN_COPY(prodp, up, size);
else
MPN_ZERO(prodp, size);
cy = 0;
} else
cy = mpihelp_mul_1(prodp, up, size, v_limb);
prodp[size] = cy;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V, and add it to PROD. */
for (i = 1; i < size; i++) {
v_limb = vp[i];
if (v_limb <= 1) {
cy = 0;
if (v_limb == 1)
cy = mpihelp_add_n(prodp, prodp, up, size);
} else
cy = mpihelp_addmul_1(prodp, up, size, v_limb);
prodp[size] = cy;
prodp++;
}
return cy;
}
static void
mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
mpi_size_t size, mpi_ptr_t tspace)
{
if (size & 1) {
/* The size is odd, and the code below doesn't handle that.
* Multiply the least significant (size - 1) limbs with a recursive
* call, and handle the most significant limb of S1 and S2
* separately.
* A slightly faster way to do this would be to make the Karatsuba
* code below behave as if the size were even, and let it check for
* odd size in the end. I.e., in essence move this code to the end.
* Doing so would save us a recursive call, and potentially make the
* stack grow a lot less.
*/
mpi_size_t esize = size - 1; /* even size */
mpi_limb_t cy_limb;
MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
prodp[esize + esize] = cy_limb;
cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
prodp[esize + size] = cy_limb;
} else {
/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
*
* Split U in two pieces, U1 and U0, such that
* U = U0 + U1*(B**n),
* and V in V1 and V0, such that
* V = V0 + V1*(B**n).
*
* UV is then computed recursively using the identity
*
* 2n n n n
* UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
* 1 1 1 0 0 1 0 0
*
* Where B = 2**BITS_PER_MP_LIMB.
*/
mpi_size_t hsize = size >> 1;
mpi_limb_t cy;
int negflg;
/* Product H. ________________ ________________
* |_____U1 x V1____||____U0 x V0_____|
* Put result in upper part of PROD and pass low part of TSPACE
* as new TSPACE.
*/
MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
tspace);
/* Product M. ________________
* |_(U1-U0)(V0-V1)_|
*/
if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
mpihelp_sub_n(prodp, up + hsize, up, hsize);
negflg = 0;
} else {
mpihelp_sub_n(prodp, up, up + hsize, hsize);
negflg = 1;
}
if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
negflg ^= 1;
} else {
mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
/* No change of NEGFLG. */
}
/* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE.
*/
MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
tspace + size);
/* Add/copy product H. */
MPN_COPY(prodp + hsize, prodp + size, hsize);
cy = mpihelp_add_n(prodp + size, prodp + size,
prodp + size + hsize, hsize);
/* Add product M (if NEGFLG M is a negative number) */
if (negflg)
cy -=
mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
size);
else
cy +=
mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
size);
/* Product L. ________________ ________________
* |________________||____U0 x V0_____|
* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE.
*/
MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
/* Add/copy Product L (twice) */
cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
if (cy)
mpihelp_add_1(prodp + hsize + size,
prodp + hsize + size, hsize, cy);
MPN_COPY(prodp, tspace, hsize);
cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
hsize);
if (cy)
mpihelp_add_1(prodp + size, prodp + size, size, 1);
}
}
void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
{
mpi_size_t i;
mpi_limb_t cy_limb;
mpi_limb_t v_limb;
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = up[0];
if (v_limb <= 1) {
if (v_limb == 1)
MPN_COPY(prodp, up, size);
else
MPN_ZERO(prodp, size);
cy_limb = 0;
} else
cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V, and add it to PROD. */
for (i = 1; i < size; i++) {
v_limb = up[i];
if (v_limb <= 1) {
cy_limb = 0;
if (v_limb == 1)
cy_limb = mpihelp_add_n(prodp, prodp, up, size);
} else
cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
}
}
void
mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
{
if (size & 1) {
/* The size is odd, and the code below doesn't handle that.
* Multiply the least significant (size - 1) limbs with a recursive
* call, and handle the most significant limb of S1 and S2
* separately.
* A slightly faster way to do this would be to make the Karatsuba
* code below behave as if the size were even, and let it check for
* odd size in the end. I.e., in essence move this code to the end.
* Doing so would save us a recursive call, and potentially make the
* stack grow a lot less.
*/
mpi_size_t esize = size - 1; /* even size */
mpi_limb_t cy_limb;
MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
prodp[esize + esize] = cy_limb;
cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
prodp[esize + size] = cy_limb;
} else {
mpi_size_t hsize = size >> 1;
mpi_limb_t cy;
/* Product H. ________________ ________________
* |_____U1 x U1____||____U0 x U0_____|
* Put result in upper part of PROD and pass low part of TSPACE
* as new TSPACE.
*/
MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
/* Product M. ________________
* |_(U1-U0)(U0-U1)_|
*/
if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
mpihelp_sub_n(prodp, up + hsize, up, hsize);
else
mpihelp_sub_n(prodp, up, up + hsize, hsize);
/* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE. */
MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
/* Add/copy product H */
MPN_COPY(prodp + hsize, prodp + size, hsize);
cy = mpihelp_add_n(prodp + size, prodp + size,
prodp + size + hsize, hsize);
/* Add product M (if NEGFLG M is a negative number). */
cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
/* Product L. ________________ ________________
* |________________||____U0 x U0_____|
* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE. */
MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
/* Add/copy Product L (twice). */
cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
if (cy)
mpihelp_add_1(prodp + hsize + size,
prodp + hsize + size, hsize, cy);
MPN_COPY(prodp, tspace, hsize);
cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
hsize);
if (cy)
mpihelp_add_1(prodp + size, prodp + size, size, 1);
}
}
int
mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
mpi_ptr_t up, mpi_size_t usize,
mpi_ptr_t vp, mpi_size_t vsize,
struct karatsuba_ctx *ctx)
{
mpi_limb_t cy;
if (!ctx->tspace || ctx->tspace_size < vsize) {
if (ctx->tspace)
mpi_free_limb_space(ctx->tspace);
ctx->tspace = mpi_alloc_limb_space(2 * vsize);
if (!ctx->tspace)
return -ENOMEM;
ctx->tspace_size = vsize;
}
MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
prodp += vsize;
up += vsize;
usize -= vsize;
if (usize >= vsize) {
if (!ctx->tp || ctx->tp_size < vsize) {
if (ctx->tp)
mpi_free_limb_space(ctx->tp);
ctx->tp = mpi_alloc_limb_space(2 * vsize);
if (!ctx->tp) {
if (ctx->tspace)
mpi_free_limb_space(ctx->tspace);
ctx->tspace = NULL;
return -ENOMEM;
}
ctx->tp_size = vsize;
}
do {
MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
cy);
prodp += vsize;
up += vsize;
usize -= vsize;
} while (usize >= vsize);
}
if (usize) {
if (usize < KARATSUBA_THRESHOLD) {
mpi_limb_t tmp;
if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
< 0)
return -ENOMEM;
} else {
if (!ctx->next) {
ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
if (!ctx->next)
return -ENOMEM;
}
if (mpihelp_mul_karatsuba_case(ctx->tspace,
vp, vsize,
up, usize,
ctx->next) < 0)
return -ENOMEM;
}
cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
}
return 0;
}
void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
{
struct karatsuba_ctx *ctx2;
if (ctx->tp)
mpi_free_limb_space(ctx->tp);
if (ctx->tspace)
mpi_free_limb_space(ctx->tspace);
for (ctx = ctx->next; ctx; ctx = ctx2) {
ctx2 = ctx->next;
if (ctx->tp)
mpi_free_limb_space(ctx->tp);
if (ctx->tspace)
mpi_free_limb_space(ctx->tspace);
kfree(ctx);
}
}
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
* and v (pointed to by VP, with VSIZE limbs), and store the result at
* PRODP. USIZE + VSIZE limbs are always stored, but if the input
* operands are normalized. Return the most significant limb of the
* result.
*
* NOTE: The space pointed to by PRODP is overwritten before finished
* with U and V, so overlap is an error.
*
* Argument constraints:
* 1. USIZE >= VSIZE.
* 2. PRODP != UP and PRODP != VP, i.e. the destination
* must be distinct from the multiplier and the multiplicand.
*/
int
mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
{
mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
mpi_limb_t cy;
struct karatsuba_ctx ctx;
if (vsize < KARATSUBA_THRESHOLD) {
mpi_size_t i;
mpi_limb_t v_limb;
if (!vsize) {
*_result = 0;
return 0;
}
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
if (v_limb <= 1) {
if (v_limb == 1)
MPN_COPY(prodp, up, usize);
else
MPN_ZERO(prodp, usize);
cy = 0;
} else
cy = mpihelp_mul_1(prodp, up, usize, v_limb);
prodp[usize] = cy;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V, and add it to PROD. */
for (i = 1; i < vsize; i++) {
v_limb = vp[i];
if (v_limb <= 1) {
cy = 0;
if (v_limb == 1)
cy = mpihelp_add_n(prodp, prodp, up,
usize);
} else
cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
prodp[usize] = cy;
prodp++;
}
*_result = cy;
return 0;
}
memset(&ctx, 0, sizeof ctx);
if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
return -ENOMEM;
mpihelp_release_karatsuba_ctx(&ctx);
*_result = *prod_endp;
return 0;
}