forked from luck/tmp_suning_uos_patched
cff65c4f0e
The serial UML OS-abstraction layer patch (um/kernel dir). This moves all systemcalls from time.c file under os-Linux dir and joins time.c and tine_kernel.c files Signed-off-by: Gennady Sharapov <Gennady.V.Sharapov@intel.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
258 lines
5.8 KiB
C
258 lines
5.8 KiB
C
/*
|
|
* Copyright (C) 2000, 2001 Jeff Dike (jdike@karaya.com)
|
|
* Licensed under the GPL
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/user.h>
|
|
#include <asm/page.h>
|
|
#include "user_util.h"
|
|
#include "kern_util.h"
|
|
#include "mem_user.h"
|
|
#include "irq_user.h"
|
|
#include "user.h"
|
|
#include "init.h"
|
|
#include "mode.h"
|
|
#include "choose-mode.h"
|
|
#include "uml-config.h"
|
|
#include "os.h"
|
|
|
|
/* Set in set_stklim, which is called from main and __wrap_malloc.
|
|
* __wrap_malloc only calls it if main hasn't started.
|
|
*/
|
|
unsigned long stacksizelim;
|
|
|
|
/* Set in main */
|
|
char *linux_prog;
|
|
|
|
#define PGD_BOUND (4 * 1024 * 1024)
|
|
#define STACKSIZE (8 * 1024 * 1024)
|
|
#define THREAD_NAME_LEN (256)
|
|
|
|
static void set_stklim(void)
|
|
{
|
|
struct rlimit lim;
|
|
|
|
if(getrlimit(RLIMIT_STACK, &lim) < 0){
|
|
perror("getrlimit");
|
|
exit(1);
|
|
}
|
|
if((lim.rlim_cur == RLIM_INFINITY) || (lim.rlim_cur > STACKSIZE)){
|
|
lim.rlim_cur = STACKSIZE;
|
|
if(setrlimit(RLIMIT_STACK, &lim) < 0){
|
|
perror("setrlimit");
|
|
exit(1);
|
|
}
|
|
}
|
|
stacksizelim = (lim.rlim_cur + PGD_BOUND - 1) & ~(PGD_BOUND - 1);
|
|
}
|
|
|
|
static __init void do_uml_initcalls(void)
|
|
{
|
|
initcall_t *call;
|
|
|
|
call = &__uml_initcall_start;
|
|
while (call < &__uml_initcall_end){;
|
|
(*call)();
|
|
call++;
|
|
}
|
|
}
|
|
|
|
static void last_ditch_exit(int sig)
|
|
{
|
|
signal(SIGINT, SIG_DFL);
|
|
signal(SIGTERM, SIG_DFL);
|
|
signal(SIGHUP, SIG_DFL);
|
|
uml_cleanup();
|
|
exit(1);
|
|
}
|
|
|
|
extern int uml_exitcode;
|
|
|
|
extern void scan_elf_aux( char **envp);
|
|
|
|
int main(int argc, char **argv, char **envp)
|
|
{
|
|
char **new_argv;
|
|
sigset_t mask;
|
|
int ret, i, err;
|
|
|
|
/* Enable all signals except SIGIO - in some environments, we can
|
|
* enter with some signals blocked
|
|
*/
|
|
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, SIGIO);
|
|
if(sigprocmask(SIG_SETMASK, &mask, NULL) < 0){
|
|
perror("sigprocmask");
|
|
exit(1);
|
|
}
|
|
|
|
#ifdef UML_CONFIG_CMDLINE_ON_HOST
|
|
/* Allocate memory for thread command lines */
|
|
if(argc < 2 || strlen(argv[1]) < THREAD_NAME_LEN - 1){
|
|
|
|
char padding[THREAD_NAME_LEN] = {
|
|
[ 0 ... THREAD_NAME_LEN - 2] = ' ', '\0'
|
|
};
|
|
|
|
new_argv = malloc((argc + 2) * sizeof(char*));
|
|
if(!new_argv) {
|
|
perror("Allocating extended argv");
|
|
exit(1);
|
|
}
|
|
|
|
new_argv[0] = argv[0];
|
|
new_argv[1] = padding;
|
|
|
|
for(i = 2; i <= argc; i++)
|
|
new_argv[i] = argv[i - 1];
|
|
new_argv[argc + 1] = NULL;
|
|
|
|
execvp(new_argv[0], new_argv);
|
|
perror("execing with extended args");
|
|
exit(1);
|
|
}
|
|
#endif
|
|
|
|
linux_prog = argv[0];
|
|
|
|
set_stklim();
|
|
|
|
new_argv = malloc((argc + 1) * sizeof(char *));
|
|
if(new_argv == NULL){
|
|
perror("Mallocing argv");
|
|
exit(1);
|
|
}
|
|
for(i=0;i<argc;i++){
|
|
new_argv[i] = strdup(argv[i]);
|
|
if(new_argv[i] == NULL){
|
|
perror("Mallocing an arg");
|
|
exit(1);
|
|
}
|
|
}
|
|
new_argv[argc] = NULL;
|
|
|
|
set_handler(SIGINT, last_ditch_exit, SA_ONESHOT | SA_NODEFER, -1);
|
|
set_handler(SIGTERM, last_ditch_exit, SA_ONESHOT | SA_NODEFER, -1);
|
|
set_handler(SIGHUP, last_ditch_exit, SA_ONESHOT | SA_NODEFER, -1);
|
|
|
|
scan_elf_aux( envp);
|
|
|
|
do_uml_initcalls();
|
|
ret = linux_main(argc, argv);
|
|
|
|
/* Disable SIGPROF - I have no idea why libc doesn't do this or turn
|
|
* off the profiling time, but UML dies with a SIGPROF just before
|
|
* exiting when profiling is active.
|
|
*/
|
|
change_sig(SIGPROF, 0);
|
|
|
|
/* This signal stuff used to be in the reboot case. However,
|
|
* sometimes a SIGVTALRM can come in when we're halting (reproducably
|
|
* when writing out gcov information, presumably because that takes
|
|
* some time) and cause a segfault.
|
|
*/
|
|
|
|
/* stop timers and set SIG*ALRM to be ignored */
|
|
disable_timer();
|
|
|
|
/* disable SIGIO for the fds and set SIGIO to be ignored */
|
|
err = deactivate_all_fds();
|
|
if(err)
|
|
printf("deactivate_all_fds failed, errno = %d\n", -err);
|
|
|
|
/* Let any pending signals fire now. This ensures
|
|
* that they won't be delivered after the exec, when
|
|
* they are definitely not expected.
|
|
*/
|
|
unblock_signals();
|
|
|
|
/* Reboot */
|
|
if(ret){
|
|
printf("\n");
|
|
execvp(new_argv[0], new_argv);
|
|
perror("Failed to exec kernel");
|
|
ret = 1;
|
|
}
|
|
printf("\n");
|
|
return(uml_exitcode);
|
|
}
|
|
|
|
#define CAN_KMALLOC() \
|
|
(kmalloc_ok && CHOOSE_MODE((os_getpid() != tracing_pid), 1))
|
|
|
|
extern void *__real_malloc(int);
|
|
|
|
void *__wrap_malloc(int size)
|
|
{
|
|
void *ret;
|
|
|
|
if(!CAN_KMALLOC())
|
|
return(__real_malloc(size));
|
|
else if(size <= PAGE_SIZE) /* finding contiguos pages can be hard*/
|
|
ret = um_kmalloc(size);
|
|
else ret = um_vmalloc(size);
|
|
|
|
/* glibc people insist that if malloc fails, errno should be
|
|
* set by malloc as well. So we do.
|
|
*/
|
|
if(ret == NULL)
|
|
errno = ENOMEM;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
void *__wrap_calloc(int n, int size)
|
|
{
|
|
void *ptr = __wrap_malloc(n * size);
|
|
|
|
if(ptr == NULL) return(NULL);
|
|
memset(ptr, 0, n * size);
|
|
return(ptr);
|
|
}
|
|
|
|
extern void __real_free(void *);
|
|
|
|
extern unsigned long high_physmem;
|
|
|
|
void __wrap_free(void *ptr)
|
|
{
|
|
unsigned long addr = (unsigned long) ptr;
|
|
|
|
/* We need to know how the allocation happened, so it can be correctly
|
|
* freed. This is done by seeing what region of memory the pointer is
|
|
* in -
|
|
* physical memory - kmalloc/kfree
|
|
* kernel virtual memory - vmalloc/vfree
|
|
* anywhere else - malloc/free
|
|
* If kmalloc is not yet possible, then either high_physmem and/or
|
|
* end_vm are still 0 (as at startup), in which case we call free, or
|
|
* we have set them, but anyway addr has not been allocated from those
|
|
* areas. So, in both cases __real_free is called.
|
|
*
|
|
* CAN_KMALLOC is checked because it would be bad to free a buffer
|
|
* with kmalloc/vmalloc after they have been turned off during
|
|
* shutdown.
|
|
* XXX: However, we sometimes shutdown CAN_KMALLOC temporarily, so
|
|
* there is a possibility for memory leaks.
|
|
*/
|
|
|
|
if((addr >= uml_physmem) && (addr < high_physmem)){
|
|
if(CAN_KMALLOC())
|
|
kfree(ptr);
|
|
}
|
|
else if((addr >= start_vm) && (addr < end_vm)){
|
|
if(CAN_KMALLOC())
|
|
vfree(ptr);
|
|
}
|
|
else __real_free(ptr);
|
|
}
|