kernel_optimize_test/arch/mips/mm/tlbex.c
Matt LaPlante 4b3f686d4a Attack of "the the"s in arch
The patch below corrects multiple occurances of "the the"
typos across several files, both in source comments and KConfig files.
There is no actual code changed, only text.  Note this only affects the /arch
directory, and I believe I could find many more elsewhere. :)

Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-10-03 22:21:02 +02:00

1831 lines
46 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Synthesize TLB refill handlers at runtime.
*
* Copyright (C) 2004,2005,2006 by Thiemo Seufer
* Copyright (C) 2005 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
*
* ... and the days got worse and worse and now you see
* I've gone completly out of my mind.
*
* They're coming to take me a away haha
* they're coming to take me a away hoho hihi haha
* to the funny farm where code is beautiful all the time ...
*
* (Condolences to Napoleon XIV)
*/
#include <stdarg.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/init.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/smp.h>
#include <asm/war.h>
static __init int __attribute__((unused)) r45k_bvahwbug(void)
{
/* XXX: We should probe for the presence of this bug, but we don't. */
return 0;
}
static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
{
/* XXX: We should probe for the presence of this bug, but we don't. */
return 0;
}
static __init int __attribute__((unused)) bcm1250_m3_war(void)
{
return BCM1250_M3_WAR;
}
static __init int __attribute__((unused)) r10000_llsc_war(void)
{
return R10000_LLSC_WAR;
}
/*
* A little micro-assembler, intended for TLB refill handler
* synthesizing. It is intentionally kept simple, does only support
* a subset of instructions, and does not try to hide pipeline effects
* like branch delay slots.
*/
enum fields
{
RS = 0x001,
RT = 0x002,
RD = 0x004,
RE = 0x008,
SIMM = 0x010,
UIMM = 0x020,
BIMM = 0x040,
JIMM = 0x080,
FUNC = 0x100,
SET = 0x200
};
#define OP_MASK 0x2f
#define OP_SH 26
#define RS_MASK 0x1f
#define RS_SH 21
#define RT_MASK 0x1f
#define RT_SH 16
#define RD_MASK 0x1f
#define RD_SH 11
#define RE_MASK 0x1f
#define RE_SH 6
#define IMM_MASK 0xffff
#define IMM_SH 0
#define JIMM_MASK 0x3ffffff
#define JIMM_SH 0
#define FUNC_MASK 0x2f
#define FUNC_SH 0
#define SET_MASK 0x7
#define SET_SH 0
enum opcode {
insn_invalid,
insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
insn_tlbwr, insn_xor, insn_xori
};
struct insn {
enum opcode opcode;
u32 match;
enum fields fields;
};
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
static __initdata struct insn insn_table[] = {
{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
{ insn_j, M(j_op,0,0,0,0,0), JIMM },
{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
{ insn_invalid, 0, 0 }
};
#undef M
static __init u32 build_rs(u32 arg)
{
if (arg & ~RS_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RS_MASK) << RS_SH;
}
static __init u32 build_rt(u32 arg)
{
if (arg & ~RT_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RT_MASK) << RT_SH;
}
static __init u32 build_rd(u32 arg)
{
if (arg & ~RD_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RD_MASK) << RD_SH;
}
static __init u32 build_re(u32 arg)
{
if (arg & ~RE_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RE_MASK) << RE_SH;
}
static __init u32 build_simm(s32 arg)
{
if (arg > 0x7fff || arg < -0x8000)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & 0xffff;
}
static __init u32 build_uimm(u32 arg)
{
if (arg & ~IMM_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & IMM_MASK;
}
static __init u32 build_bimm(s32 arg)
{
if (arg > 0x1ffff || arg < -0x20000)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
if (arg & 0x3)
printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}
static __init u32 build_jimm(u32 arg)
{
if (arg & ~((JIMM_MASK) << 2))
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg >> 2) & JIMM_MASK;
}
static __init u32 build_func(u32 arg)
{
if (arg & ~FUNC_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & FUNC_MASK;
}
static __init u32 build_set(u32 arg)
{
if (arg & ~SET_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & SET_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void __init build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
va_list ap;
u32 op;
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
if (insn_table[i].opcode == opc) {
ip = &insn_table[i];
break;
}
if (!ip)
panic("Unsupported TLB synthesizer instruction %d", opc);
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
va_end(ap);
**buf = op;
(*buf)++;
}
#define I_u1u2u3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, unsigned int c) \
{ \
build_insn(buf, insn##op, a, b, c); \
}
#define I_u2u1u3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, unsigned int c) \
{ \
build_insn(buf, insn##op, b, a, c); \
}
#define I_u3u1u2(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, unsigned int c) \
{ \
build_insn(buf, insn##op, b, c, a); \
}
#define I_u1u2s3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, signed int c) \
{ \
build_insn(buf, insn##op, a, b, c); \
}
#define I_u2s3u1(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
signed int b, unsigned int c) \
{ \
build_insn(buf, insn##op, c, a, b); \
}
#define I_u2u1s3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, signed int c) \
{ \
build_insn(buf, insn##op, b, a, c); \
}
#define I_u1u2(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b) \
{ \
build_insn(buf, insn##op, a, b); \
}
#define I_u1s2(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
signed int b) \
{ \
build_insn(buf, insn##op, a, b); \
}
#define I_u1(op) \
static inline void __init i##op(u32 **buf, unsigned int a) \
{ \
build_insn(buf, insn##op, a); \
}
#define I_0(op) \
static inline void __init i##op(u32 **buf) \
{ \
build_insn(buf, insn##op); \
}
I_u2u1s3(_addiu);
I_u3u1u2(_addu);
I_u2u1u3(_andi);
I_u3u1u2(_and);
I_u1u2s3(_beq);
I_u1u2s3(_beql);
I_u1s2(_bgez);
I_u1s2(_bgezl);
I_u1s2(_bltz);
I_u1s2(_bltzl);
I_u1u2s3(_bne);
I_u1u2u3(_dmfc0);
I_u1u2u3(_dmtc0);
I_u2u1s3(_daddiu);
I_u3u1u2(_daddu);
I_u2u1u3(_dsll);
I_u2u1u3(_dsll32);
I_u2u1u3(_dsra);
I_u2u1u3(_dsrl);
I_u3u1u2(_dsubu);
I_0(_eret);
I_u1(_j);
I_u1(_jal);
I_u1(_jr);
I_u2s3u1(_ld);
I_u2s3u1(_ll);
I_u2s3u1(_lld);
I_u1s2(_lui);
I_u2s3u1(_lw);
I_u1u2u3(_mfc0);
I_u1u2u3(_mtc0);
I_u2u1u3(_ori);
I_0(_rfe);
I_u2s3u1(_sc);
I_u2s3u1(_scd);
I_u2s3u1(_sd);
I_u2u1u3(_sll);
I_u2u1u3(_sra);
I_u2u1u3(_srl);
I_u3u1u2(_subu);
I_u2s3u1(_sw);
I_0(_tlbp);
I_0(_tlbwi);
I_0(_tlbwr);
I_u3u1u2(_xor)
I_u2u1u3(_xori);
/*
* handling labels
*/
enum label_id {
label_invalid,
label_second_part,
label_leave,
label_vmalloc,
label_vmalloc_done,
label_tlbw_hazard,
label_split,
label_nopage_tlbl,
label_nopage_tlbs,
label_nopage_tlbm,
label_smp_pgtable_change,
label_r3000_write_probe_fail,
};
struct label {
u32 *addr;
enum label_id lab;
};
static __init void build_label(struct label **lab, u32 *addr,
enum label_id l)
{
(*lab)->addr = addr;
(*lab)->lab = l;
(*lab)++;
}
#define L_LA(lb) \
static inline void l##lb(struct label **lab, u32 *addr) \
{ \
build_label(lab, addr, label##lb); \
}
L_LA(_second_part)
L_LA(_leave)
L_LA(_vmalloc)
L_LA(_vmalloc_done)
L_LA(_tlbw_hazard)
L_LA(_split)
L_LA(_nopage_tlbl)
L_LA(_nopage_tlbs)
L_LA(_nopage_tlbm)
L_LA(_smp_pgtable_change)
L_LA(_r3000_write_probe_fail)
/* convenience macros for instructions */
#ifdef CONFIG_64BIT
# define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
# define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
# define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
# define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
# define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
# define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
# define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
# define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
# define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
# define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
# define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
# define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
#else
# define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
# define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
# define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
# define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
# define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
# define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
# define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
# define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
# define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
# define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
# define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
# define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
#endif
#define i_b(buf, off) i_beq(buf, 0, 0, off)
#define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
#define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
#define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
#define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
#define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
#define i_nop(buf) i_sll(buf, 0, 0, 0)
#define i_ssnop(buf) i_sll(buf, 0, 0, 1)
#define i_ehb(buf) i_sll(buf, 0, 0, 3)
#ifdef CONFIG_64BIT
static __init int __attribute__((unused)) in_compat_space_p(long addr)
{
/* Is this address in 32bit compat space? */
return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
}
static __init int __attribute__((unused)) rel_highest(long val)
{
return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
}
static __init int __attribute__((unused)) rel_higher(long val)
{
return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
}
#endif
static __init int rel_hi(long val)
{
return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
}
static __init int rel_lo(long val)
{
return ((val & 0xffff) ^ 0x8000) - 0x8000;
}
static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
{
#ifdef CONFIG_64BIT
if (!in_compat_space_p(addr)) {
i_lui(buf, rs, rel_highest(addr));
if (rel_higher(addr))
i_daddiu(buf, rs, rs, rel_higher(addr));
if (rel_hi(addr)) {
i_dsll(buf, rs, rs, 16);
i_daddiu(buf, rs, rs, rel_hi(addr));
i_dsll(buf, rs, rs, 16);
} else
i_dsll32(buf, rs, rs, 0);
} else
#endif
i_lui(buf, rs, rel_hi(addr));
}
static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
long addr)
{
i_LA_mostly(buf, rs, addr);
if (rel_lo(addr))
i_ADDIU(buf, rs, rs, rel_lo(addr));
}
/*
* handle relocations
*/
struct reloc {
u32 *addr;
unsigned int type;
enum label_id lab;
};
static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
enum label_id l)
{
(*rel)->addr = addr;
(*rel)->type = R_MIPS_PC16;
(*rel)->lab = l;
(*rel)++;
}
static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
*rel->addr |= build_bimm(laddr - (raddr + 4));
break;
default:
panic("Unsupported TLB synthesizer relocation %d",
rel->type);
}
}
static __init void resolve_relocs(struct reloc *rel, struct label *lab)
{
struct label *l;
for (; rel->lab != label_invalid; rel++)
for (l = lab; l->lab != label_invalid; l++)
if (rel->lab == l->lab)
__resolve_relocs(rel, l);
}
static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
long off)
{
for (; rel->lab != label_invalid; rel++)
if (rel->addr >= first && rel->addr < end)
rel->addr += off;
}
static __init void move_labels(struct label *lab, u32 *first, u32 *end,
long off)
{
for (; lab->lab != label_invalid; lab++)
if (lab->addr >= first && lab->addr < end)
lab->addr += off;
}
static __init void copy_handler(struct reloc *rel, struct label *lab,
u32 *first, u32 *end, u32 *target)
{
long off = (long)(target - first);
memcpy(target, first, (end - first) * sizeof(u32));
move_relocs(rel, first, end, off);
move_labels(lab, first, end, off);
}
static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
u32 *addr)
{
for (; rel->lab != label_invalid; rel++) {
if (rel->addr == addr
&& (rel->type == R_MIPS_PC16
|| rel->type == R_MIPS_26))
return 1;
}
return 0;
}
/* convenience functions for labeled branches */
static void __init __attribute__((unused))
il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bltz(p, reg, 0);
}
static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_b(p, 0);
}
static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_beqz(p, reg, 0);
}
static void __init __attribute__((unused))
il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
{
r_mips_pc16(r, *p, l);
i_beqzl(p, reg, 0);
}
static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bnez(p, reg, 0);
}
static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bgezl(p, reg, 0);
}
/* The only general purpose registers allowed in TLB handlers. */
#define K0 26
#define K1 27
/* Some CP0 registers */
#define C0_INDEX 0, 0
#define C0_ENTRYLO0 2, 0
#define C0_TCBIND 2, 2
#define C0_ENTRYLO1 3, 0
#define C0_CONTEXT 4, 0
#define C0_BADVADDR 8, 0
#define C0_ENTRYHI 10, 0
#define C0_EPC 14, 0
#define C0_XCONTEXT 20, 0
#ifdef CONFIG_64BIT
# define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
#else
# define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
#endif
/* The worst case length of the handler is around 18 instructions for
* R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
* Maximum space available is 32 instructions for R3000 and 64
* instructions for R4000.
*
* We deliberately chose a buffer size of 128, so we won't scribble
* over anything important on overflow before we panic.
*/
static __initdata u32 tlb_handler[128];
/* simply assume worst case size for labels and relocs */
static __initdata struct label labels[128];
static __initdata struct reloc relocs[128];
/*
* The R3000 TLB handler is simple.
*/
static void __init build_r3000_tlb_refill_handler(void)
{
long pgdc = (long)pgd_current;
u32 *p;
int i;
memset(tlb_handler, 0, sizeof(tlb_handler));
p = tlb_handler;
i_mfc0(&p, K0, C0_BADVADDR);
i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
i_lw(&p, K1, rel_lo(pgdc), K1);
i_srl(&p, K0, K0, 22); /* load delay */
i_sll(&p, K0, K0, 2);
i_addu(&p, K1, K1, K0);
i_mfc0(&p, K0, C0_CONTEXT);
i_lw(&p, K1, 0, K1); /* cp0 delay */
i_andi(&p, K0, K0, 0xffc); /* load delay */
i_addu(&p, K1, K1, K0);
i_lw(&p, K0, 0, K1);
i_nop(&p); /* load delay */
i_mtc0(&p, K0, C0_ENTRYLO0);
i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
i_tlbwr(&p); /* cp0 delay */
i_jr(&p, K1);
i_rfe(&p); /* branch delay */
if (p > tlb_handler + 32)
panic("TLB refill handler space exceeded");
pr_info("Synthesized TLB refill handler (%u instructions).\n",
(unsigned int)(p - tlb_handler));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - tlb_handler); i++)
pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
pr_debug("\t.set pop\n");
memcpy((void *)ebase, tlb_handler, 0x80);
}
/*
* The R4000 TLB handler is much more complicated. We have two
* consecutive handler areas with 32 instructions space each.
* Since they aren't used at the same time, we can overflow in the
* other one.To keep things simple, we first assume linear space,
* then we relocate it to the final handler layout as needed.
*/
static __initdata u32 final_handler[64];
/*
* Hazards
*
* From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
* 2. A timing hazard exists for the TLBP instruction.
*
* stalling_instruction
* TLBP
*
* The JTLB is being read for the TLBP throughout the stall generated by the
* previous instruction. This is not really correct as the stalling instruction
* can modify the address used to access the JTLB. The failure symptom is that
* the TLBP instruction will use an address created for the stalling instruction
* and not the address held in C0_ENHI and thus report the wrong results.
*
* The software work-around is to not allow the instruction preceding the TLBP
* to stall - make it an NOP or some other instruction guaranteed not to stall.
*
* Errata 2 will not be fixed. This errata is also on the R5000.
*
* As if we MIPS hackers wouldn't know how to nop pipelines happy ...
*/
static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
{
switch (current_cpu_data.cputype) {
/* Found by experiment: R4600 v2.0 needs this, too. */
case CPU_R4600:
case CPU_R5000:
case CPU_R5000A:
case CPU_NEVADA:
i_nop(p);
i_tlbp(p);
break;
default:
i_tlbp(p);
break;
}
}
/*
* Write random or indexed TLB entry, and care about the hazards from
* the preceeding mtc0 and for the following eret.
*/
enum tlb_write_entry { tlb_random, tlb_indexed };
static __init void build_tlb_write_entry(u32 **p, struct label **l,
struct reloc **r,
enum tlb_write_entry wmode)
{
void(*tlbw)(u32 **) = NULL;
switch (wmode) {
case tlb_random: tlbw = i_tlbwr; break;
case tlb_indexed: tlbw = i_tlbwi; break;
}
switch (current_cpu_data.cputype) {
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
/*
* This branch uses up a mtc0 hazard nop slot and saves
* two nops after the tlbw instruction.
*/
il_bgezl(p, r, 0, label_tlbw_hazard);
tlbw(p);
l_tlbw_hazard(l, *p);
i_nop(p);
break;
case CPU_R4600:
case CPU_R4700:
case CPU_R5000:
case CPU_R5000A:
i_nop(p);
tlbw(p);
i_nop(p);
break;
case CPU_R4300:
case CPU_5KC:
case CPU_TX49XX:
case CPU_AU1000:
case CPU_AU1100:
case CPU_AU1500:
case CPU_AU1550:
case CPU_AU1200:
case CPU_PR4450:
i_nop(p);
tlbw(p);
break;
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
case CPU_4KC:
case CPU_SB1:
case CPU_SB1A:
case CPU_4KSC:
case CPU_20KC:
case CPU_25KF:
tlbw(p);
break;
case CPU_NEVADA:
i_nop(p); /* QED specifies 2 nops hazard */
/*
* This branch uses up a mtc0 hazard nop slot and saves
* a nop after the tlbw instruction.
*/
il_bgezl(p, r, 0, label_tlbw_hazard);
tlbw(p);
l_tlbw_hazard(l, *p);
break;
case CPU_RM7000:
i_nop(p);
i_nop(p);
i_nop(p);
i_nop(p);
tlbw(p);
break;
case CPU_4KEC:
case CPU_24K:
case CPU_34K:
case CPU_74K:
i_ehb(p);
tlbw(p);
break;
case CPU_RM9000:
/*
* When the JTLB is updated by tlbwi or tlbwr, a subsequent
* use of the JTLB for instructions should not occur for 4
* cpu cycles and use for data translations should not occur
* for 3 cpu cycles.
*/
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
tlbw(p);
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
break;
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4181:
case CPU_VR4181A:
i_nop(p);
i_nop(p);
tlbw(p);
i_nop(p);
i_nop(p);
break;
case CPU_VR4131:
case CPU_VR4133:
case CPU_R5432:
i_nop(p);
i_nop(p);
tlbw(p);
break;
default:
panic("No TLB refill handler yet (CPU type: %d)",
current_cpu_data.cputype);
break;
}
}
#ifdef CONFIG_64BIT
/*
* TMP and PTR are scratch.
* TMP will be clobbered, PTR will hold the pmd entry.
*/
static __init void
build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
unsigned int tmp, unsigned int ptr)
{
long pgdc = (long)pgd_current;
/*
* The vmalloc handling is not in the hotpath.
*/
i_dmfc0(p, tmp, C0_BADVADDR);
il_bltz(p, r, tmp, label_vmalloc);
/* No i_nop needed here, since the next insn doesn't touch TMP. */
#ifdef CONFIG_SMP
# ifdef CONFIG_MIPS_MT_SMTC
/*
* SMTC uses TCBind value as "CPU" index
*/
i_mfc0(p, ptr, C0_TCBIND);
i_dsrl(p, ptr, ptr, 19);
# else
/*
* 64 bit SMP running in XKPHYS has smp_processor_id() << 3
* stored in CONTEXT.
*/
i_dmfc0(p, ptr, C0_CONTEXT);
i_dsrl(p, ptr, ptr, 23);
#endif
i_LA_mostly(p, tmp, pgdc);
i_daddu(p, ptr, ptr, tmp);
i_dmfc0(p, tmp, C0_BADVADDR);
i_ld(p, ptr, rel_lo(pgdc), ptr);
#else
i_LA_mostly(p, ptr, pgdc);
i_ld(p, ptr, rel_lo(pgdc), ptr);
#endif
l_vmalloc_done(l, *p);
i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
i_ld(p, ptr, 0, ptr); /* get pmd pointer */
i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
}
/*
* BVADDR is the faulting address, PTR is scratch.
* PTR will hold the pgd for vmalloc.
*/
static __init void
build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
unsigned int bvaddr, unsigned int ptr)
{
long swpd = (long)swapper_pg_dir;
l_vmalloc(l, *p);
i_LA(p, ptr, VMALLOC_START);
i_dsubu(p, bvaddr, bvaddr, ptr);
if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
il_b(p, r, label_vmalloc_done);
i_lui(p, ptr, rel_hi(swpd));
} else {
i_LA_mostly(p, ptr, swpd);
il_b(p, r, label_vmalloc_done);
i_daddiu(p, ptr, ptr, rel_lo(swpd));
}
}
#else /* !CONFIG_64BIT */
/*
* TMP and PTR are scratch.
* TMP will be clobbered, PTR will hold the pgd entry.
*/
static __init void __attribute__((unused))
build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
{
long pgdc = (long)pgd_current;
/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
#ifdef CONFIG_SMP
#ifdef CONFIG_MIPS_MT_SMTC
/*
* SMTC uses TCBind value as "CPU" index
*/
i_mfc0(p, ptr, C0_TCBIND);
i_LA_mostly(p, tmp, pgdc);
i_srl(p, ptr, ptr, 19);
#else
/*
* smp_processor_id() << 3 is stored in CONTEXT.
*/
i_mfc0(p, ptr, C0_CONTEXT);
i_LA_mostly(p, tmp, pgdc);
i_srl(p, ptr, ptr, 23);
#endif
i_addu(p, ptr, tmp, ptr);
#else
i_LA_mostly(p, ptr, pgdc);
#endif
i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
i_lw(p, ptr, rel_lo(pgdc), ptr);
i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
i_sll(p, tmp, tmp, PGD_T_LOG2);
i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
}
#endif /* !CONFIG_64BIT */
static __init void build_adjust_context(u32 **p, unsigned int ctx)
{
unsigned int shift = 4 - (PTE_T_LOG2 + 1);
unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
switch (current_cpu_data.cputype) {
case CPU_VR41XX:
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4131:
case CPU_VR4181:
case CPU_VR4181A:
case CPU_VR4133:
shift += 2;
break;
default:
break;
}
if (shift)
i_SRL(p, ctx, ctx, shift);
i_andi(p, ctx, ctx, mask);
}
static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
{
/*
* Bug workaround for the Nevada. It seems as if under certain
* circumstances the move from cp0_context might produce a
* bogus result when the mfc0 instruction and its consumer are
* in a different cacheline or a load instruction, probably any
* memory reference, is between them.
*/
switch (current_cpu_data.cputype) {
case CPU_NEVADA:
i_LW(p, ptr, 0, ptr);
GET_CONTEXT(p, tmp); /* get context reg */
break;
default:
GET_CONTEXT(p, tmp); /* get context reg */
i_LW(p, ptr, 0, ptr);
break;
}
build_adjust_context(p, tmp);
i_ADDU(p, ptr, ptr, tmp); /* add in offset */
}
static __init void build_update_entries(u32 **p, unsigned int tmp,
unsigned int ptep)
{
/*
* 64bit address support (36bit on a 32bit CPU) in a 32bit
* Kernel is a special case. Only a few CPUs use it.
*/
#ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits) {
i_ld(p, tmp, 0, ptep); /* get even pte */
i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
} else {
int pte_off_even = sizeof(pte_t) / 2;
int pte_off_odd = pte_off_even + sizeof(pte_t);
/* The pte entries are pre-shifted */
i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
}
#else
i_LW(p, tmp, 0, ptep); /* get even pte */
i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
if (r45k_bvahwbug())
build_tlb_probe_entry(p);
i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
if (r4k_250MHZhwbug())
i_mtc0(p, 0, C0_ENTRYLO0);
i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
if (r45k_bvahwbug())
i_mfc0(p, tmp, C0_INDEX);
if (r4k_250MHZhwbug())
i_mtc0(p, 0, C0_ENTRYLO1);
i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
#endif
}
static void __init build_r4000_tlb_refill_handler(void)
{
u32 *p = tlb_handler;
struct label *l = labels;
struct reloc *r = relocs;
u32 *f;
unsigned int final_len;
int i;
memset(tlb_handler, 0, sizeof(tlb_handler));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
memset(final_handler, 0, sizeof(final_handler));
/*
* create the plain linear handler
*/
if (bcm1250_m3_war()) {
i_MFC0(&p, K0, C0_BADVADDR);
i_MFC0(&p, K1, C0_ENTRYHI);
i_xor(&p, K0, K0, K1);
i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
il_bnez(&p, &r, K0, label_leave);
/* No need for i_nop */
}
#ifdef CONFIG_64BIT
build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
#else
build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
#endif
build_get_ptep(&p, K0, K1);
build_update_entries(&p, K0, K1);
build_tlb_write_entry(&p, &l, &r, tlb_random);
l_leave(&l, p);
i_eret(&p); /* return from trap */
#ifdef CONFIG_64BIT
build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
#endif
/*
* Overflow check: For the 64bit handler, we need at least one
* free instruction slot for the wrap-around branch. In worst
* case, if the intended insertion point is a delay slot, we
* need three, with the second nop'ed and the third being
* unused.
*/
#ifdef CONFIG_32BIT
if ((p - tlb_handler) > 64)
panic("TLB refill handler space exceeded");
#else
if (((p - tlb_handler) > 63)
|| (((p - tlb_handler) > 61)
&& insn_has_bdelay(relocs, tlb_handler + 29)))
panic("TLB refill handler space exceeded");
#endif
/*
* Now fold the handler in the TLB refill handler space.
*/
#ifdef CONFIG_32BIT
f = final_handler;
/* Simplest case, just copy the handler. */
copy_handler(relocs, labels, tlb_handler, p, f);
final_len = p - tlb_handler;
#else /* CONFIG_64BIT */
f = final_handler + 32;
if ((p - tlb_handler) <= 32) {
/* Just copy the handler. */
copy_handler(relocs, labels, tlb_handler, p, f);
final_len = p - tlb_handler;
} else {
u32 *split = tlb_handler + 30;
/*
* Find the split point.
*/
if (insn_has_bdelay(relocs, split - 1))
split--;
/* Copy first part of the handler. */
copy_handler(relocs, labels, tlb_handler, split, f);
f += split - tlb_handler;
/* Insert branch. */
l_split(&l, final_handler);
il_b(&f, &r, label_split);
if (insn_has_bdelay(relocs, split))
i_nop(&f);
else {
copy_handler(relocs, labels, split, split + 1, f);
move_labels(labels, f, f + 1, -1);
f++;
split++;
}
/* Copy the rest of the handler. */
copy_handler(relocs, labels, split, p, final_handler);
final_len = (f - (final_handler + 32)) + (p - split);
}
#endif /* CONFIG_64BIT */
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB refill handler (%u instructions).\n",
final_len);
f = final_handler;
#ifdef CONFIG_64BIT
if (final_len > 32)
final_len = 64;
else
f = final_handler + 32;
#endif /* CONFIG_64BIT */
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < final_len; i++)
pr_debug("\t.word 0x%08x\n", f[i]);
pr_debug("\t.set pop\n");
memcpy((void *)ebase, final_handler, 0x100);
}
/*
* TLB load/store/modify handlers.
*
* Only the fastpath gets synthesized at runtime, the slowpath for
* do_page_fault remains normal asm.
*/
extern void tlb_do_page_fault_0(void);
extern void tlb_do_page_fault_1(void);
#define __tlb_handler_align \
__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
/*
* 128 instructions for the fastpath handler is generous and should
* never be exceeded.
*/
#define FASTPATH_SIZE 128
u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
static void __init
iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
{
#ifdef CONFIG_SMP
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_lld(p, pte, 0, ptr);
else
# endif
i_LL(p, pte, 0, ptr);
#else
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_ld(p, pte, 0, ptr);
else
# endif
i_LW(p, pte, 0, ptr);
#endif
}
static void __init
iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
unsigned int mode)
{
#ifdef CONFIG_64BIT_PHYS_ADDR
unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
#endif
i_ori(p, pte, pte, mode);
#ifdef CONFIG_SMP
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_scd(p, pte, 0, ptr);
else
# endif
i_SC(p, pte, 0, ptr);
if (r10000_llsc_war())
il_beqzl(p, r, pte, label_smp_pgtable_change);
else
il_beqz(p, r, pte, label_smp_pgtable_change);
# ifdef CONFIG_64BIT_PHYS_ADDR
if (!cpu_has_64bits) {
/* no i_nop needed */
i_ll(p, pte, sizeof(pte_t) / 2, ptr);
i_ori(p, pte, pte, hwmode);
i_sc(p, pte, sizeof(pte_t) / 2, ptr);
il_beqz(p, r, pte, label_smp_pgtable_change);
/* no i_nop needed */
i_lw(p, pte, 0, ptr);
} else
i_nop(p);
# else
i_nop(p);
# endif
#else
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_sd(p, pte, 0, ptr);
else
# endif
i_SW(p, pte, 0, ptr);
# ifdef CONFIG_64BIT_PHYS_ADDR
if (!cpu_has_64bits) {
i_lw(p, pte, sizeof(pte_t) / 2, ptr);
i_ori(p, pte, pte, hwmode);
i_sw(p, pte, sizeof(pte_t) / 2, ptr);
i_lw(p, pte, 0, ptr);
}
# endif
#endif
}
/*
* Check if PTE is present, if not then jump to LABEL. PTR points to
* the page table where this PTE is located, PTE will be re-loaded
* with it's original value.
*/
static void __init
build_pte_present(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
il_bnez(p, r, pte, lid);
iPTE_LW(p, l, pte, ptr);
}
/* Make PTE valid, store result in PTR. */
static void __init
build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
unsigned int ptr)
{
unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
iPTE_SW(p, r, pte, ptr, mode);
}
/*
* Check if PTE can be written to, if not branch to LABEL. Regardless
* restore PTE with value from PTR when done.
*/
static void __init
build_pte_writable(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
il_bnez(p, r, pte, lid);
iPTE_LW(p, l, pte, ptr);
}
/* Make PTE writable, update software status bits as well, then store
* at PTR.
*/
static void __init
build_make_write(u32 **p, struct reloc **r, unsigned int pte,
unsigned int ptr)
{
unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
| _PAGE_DIRTY);
iPTE_SW(p, r, pte, ptr, mode);
}
/*
* Check if PTE can be modified, if not branch to LABEL. Regardless
* restore PTE with value from PTR when done.
*/
static void __init
build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
i_andi(p, pte, pte, _PAGE_WRITE);
il_beqz(p, r, pte, lid);
iPTE_LW(p, l, pte, ptr);
}
/*
* R3000 style TLB load/store/modify handlers.
*/
/*
* This places the pte into ENTRYLO0 and writes it with tlbwi.
* Then it returns.
*/
static void __init
build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
{
i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
i_tlbwi(p);
i_jr(p, tmp);
i_rfe(p); /* branch delay */
}
/*
* This places the pte into ENTRYLO0 and writes it with tlbwi
* or tlbwr as appropriate. This is because the index register
* may have the probe fail bit set as a result of a trap on a
* kseg2 access, i.e. without refill. Then it returns.
*/
static void __init
build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int tmp)
{
i_mfc0(p, tmp, C0_INDEX);
i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
i_mfc0(p, tmp, C0_EPC); /* branch delay */
i_tlbwi(p); /* cp0 delay */
i_jr(p, tmp);
i_rfe(p); /* branch delay */
l_r3000_write_probe_fail(l, *p);
i_tlbwr(p); /* cp0 delay */
i_jr(p, tmp);
i_rfe(p); /* branch delay */
}
static void __init
build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
unsigned int ptr)
{
long pgdc = (long)pgd_current;
i_mfc0(p, pte, C0_BADVADDR);
i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
i_lw(p, ptr, rel_lo(pgdc), ptr);
i_srl(p, pte, pte, 22); /* load delay */
i_sll(p, pte, pte, 2);
i_addu(p, ptr, ptr, pte);
i_mfc0(p, pte, C0_CONTEXT);
i_lw(p, ptr, 0, ptr); /* cp0 delay */
i_andi(p, pte, pte, 0xffc); /* load delay */
i_addu(p, ptr, ptr, pte);
i_lw(p, pte, 0, ptr);
i_tlbp(p); /* load delay */
}
static void __init build_r3000_tlb_load_handler(void)
{
u32 *p = handle_tlbl;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbl, 0, sizeof(handle_tlbl));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
i_nop(&p); /* load delay */
build_make_valid(&p, &r, K0, K1);
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
l_nopage_tlbl(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbl) > FASTPATH_SIZE)
panic("TLB load handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbl));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbl); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r3000_tlb_store_handler(void)
{
u32 *p = handle_tlbs;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbs, 0, sizeof(handle_tlbs));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
i_nop(&p); /* load delay */
build_make_write(&p, &r, K0, K1);
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
l_nopage_tlbs(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbs) > FASTPATH_SIZE)
panic("TLB store handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbs));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbs); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r3000_tlb_modify_handler(void)
{
u32 *p = handle_tlbm;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbm, 0, sizeof(handle_tlbm));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
i_nop(&p); /* load delay */
build_make_write(&p, &r, K0, K1);
build_r3000_pte_reload_tlbwi(&p, K0, K1);
l_nopage_tlbm(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbm) > FASTPATH_SIZE)
panic("TLB modify handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbm));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbm); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
pr_debug("\t.set pop\n");
}
/*
* R4000 style TLB load/store/modify handlers.
*/
static void __init
build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
struct reloc **r, unsigned int pte,
unsigned int ptr)
{
#ifdef CONFIG_64BIT
build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
#else
build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
#endif
i_MFC0(p, pte, C0_BADVADDR);
i_LW(p, ptr, 0, ptr);
i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
i_ADDU(p, ptr, ptr, pte);
#ifdef CONFIG_SMP
l_smp_pgtable_change(l, *p);
# endif
iPTE_LW(p, l, pte, ptr); /* get even pte */
build_tlb_probe_entry(p);
}
static void __init
build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
struct reloc **r, unsigned int tmp,
unsigned int ptr)
{
i_ori(p, ptr, ptr, sizeof(pte_t));
i_xori(p, ptr, ptr, sizeof(pte_t));
build_update_entries(p, tmp, ptr);
build_tlb_write_entry(p, l, r, tlb_indexed);
l_leave(l, *p);
i_eret(p); /* return from trap */
#ifdef CONFIG_64BIT
build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
#endif
}
static void __init build_r4000_tlb_load_handler(void)
{
u32 *p = handle_tlbl;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbl, 0, sizeof(handle_tlbl));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
if (bcm1250_m3_war()) {
i_MFC0(&p, K0, C0_BADVADDR);
i_MFC0(&p, K1, C0_ENTRYHI);
i_xor(&p, K0, K0, K1);
i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
il_bnez(&p, &r, K0, label_leave);
/* No need for i_nop */
}
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
build_make_valid(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
l_nopage_tlbl(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbl) > FASTPATH_SIZE)
panic("TLB load handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbl));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbl); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r4000_tlb_store_handler(void)
{
u32 *p = handle_tlbs;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbs, 0, sizeof(handle_tlbs));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
build_make_write(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
l_nopage_tlbs(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbs) > FASTPATH_SIZE)
panic("TLB store handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbs));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbs); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r4000_tlb_modify_handler(void)
{
u32 *p = handle_tlbm;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbm, 0, sizeof(handle_tlbm));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
/* Present and writable bits set, set accessed and dirty bits. */
build_make_write(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
l_nopage_tlbm(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbm) > FASTPATH_SIZE)
panic("TLB modify handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbm));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbm); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
pr_debug("\t.set pop\n");
}
void __init build_tlb_refill_handler(void)
{
/*
* The refill handler is generated per-CPU, multi-node systems
* may have local storage for it. The other handlers are only
* needed once.
*/
static int run_once = 0;
switch (current_cpu_data.cputype) {
case CPU_R2000:
case CPU_R3000:
case CPU_R3000A:
case CPU_R3081E:
case CPU_TX3912:
case CPU_TX3922:
case CPU_TX3927:
build_r3000_tlb_refill_handler();
if (!run_once) {
build_r3000_tlb_load_handler();
build_r3000_tlb_store_handler();
build_r3000_tlb_modify_handler();
run_once++;
}
break;
case CPU_R6000:
case CPU_R6000A:
panic("No R6000 TLB refill handler yet");
break;
case CPU_R8000:
panic("No R8000 TLB refill handler yet");
break;
default:
build_r4000_tlb_refill_handler();
if (!run_once) {
build_r4000_tlb_load_handler();
build_r4000_tlb_store_handler();
build_r4000_tlb_modify_handler();
run_once++;
}
}
}
void __init flush_tlb_handlers(void)
{
flush_icache_range((unsigned long)handle_tlbl,
(unsigned long)handle_tlbl + sizeof(handle_tlbl));
flush_icache_range((unsigned long)handle_tlbs,
(unsigned long)handle_tlbs + sizeof(handle_tlbs));
flush_icache_range((unsigned long)handle_tlbm,
(unsigned long)handle_tlbm + sizeof(handle_tlbm));
}