kernel_optimize_test/arch/openrisc
Michal Hocko 32d6bd9059 tree wide: get rid of __GFP_REPEAT for order-0 allocations part I
This is the third version of the patchset previously sent [1].  I have
basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get
rid of superfluous gfp flags" which went through dm tree.  I am sending
it now because it is tree wide and chances for conflicts are reduced
considerably when we want to target rc2.  I plan to send the next step
and rename the flag and move to a better semantic later during this
release cycle so we will have a new semantic ready for 4.8 merge window
hopefully.

Motivation:

While working on something unrelated I've checked the current usage of
__GFP_REPEAT in the tree.  It seems that a majority of the usage is and
always has been bogus because __GFP_REPEAT has always been about costly
high order allocations while we are using it for order-0 or very small
orders very often.  It seems that a big pile of them is just a
copy&paste when a code has been adopted from one arch to another.

I think it makes some sense to get rid of them because they are just
making the semantic more unclear.  Please note that GFP_REPEAT is
documented as

* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt

* _might_ fail.  This depends upon the particular VM implementation.
  while !costly requests have basically nofail semantic.  So one could
  reasonably expect that order-0 request with __GFP_REPEAT will not loop
  for ever.  This is not implemented right now though.

I would like to move on with __GFP_REPEAT and define a better semantic
for it.

  $ git grep __GFP_REPEAT origin/master | wc -l
  111
  $ git grep __GFP_REPEAT | wc -l
  36

So we are down to the third after this patch series.  The remaining
places really seem to be relying on __GFP_REPEAT due to large allocation
requests.  This still needs some double checking which I will do later
after all the simple ones are sorted out.

I am touching a lot of arch specific code here and I hope I got it right
but as a matter of fact I even didn't compile test for some archs as I
do not have cross compiler for them.  Patches should be quite trivial to
review for stupid compile mistakes though.  The tricky parts are usually
hidden by macro definitions and thats where I would appreciate help from
arch maintainers.

[1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org

This patch (of 19):

__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.  Yet we
have the full kernel tree with its usage for apparently order-0
allocations.  This is really confusing because __GFP_REPEAT is
explicitly documented to allow allocation failures which is a weaker
semantic than the current order-0 has (basically nofail).

Let's simply drop __GFP_REPEAT from those places.  This would allow to
identify place which really need allocator to retry harder and formulate
a more specific semantic for what the flag is supposed to do actually.

Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Crispin <blogic@openwrt.org>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
..
boot/dts
configs
include tree wide: get rid of __GFP_REPEAT for order-0 allocations part I 2016-06-24 17:23:52 -07:00
kernel
lib
mm tree wide: get rid of __GFP_REPEAT for order-0 allocations part I 2016-06-24 17:23:52 -07:00
Kconfig
Makefile
README.openrisc
TODO.openrisc

OpenRISC Linux
==============

This is a port of Linux to the OpenRISC class of microprocessors; the initial
target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k).

For information about OpenRISC processors and ongoing development:

	website		http://openrisc.net

For more information about Linux on OpenRISC, please contact South Pole AB.

	email:		info@southpole.se

	website:	http://southpole.se
			http://southpoleconsulting.com

---------------------------------------------------------------------

Build instructions for OpenRISC toolchain and Linux
===================================================

In order to build and run Linux for OpenRISC, you'll need at least a basic
toolchain and, perhaps, the architectural simulator.  Steps to get these bits
in place are outlined here.

1)  The toolchain can be obtained from openrisc.net.  Instructions for building
a toolchain can be found at:

http://openrisc.net/toolchain-build.html

2) or1ksim (optional)

or1ksim is the architectural simulator which will allow you to actually run
your OpenRISC Linux kernel if you don't have an OpenRISC processor at hand.

	git clone git://openrisc.net/jonas/or1ksim-svn

	cd or1ksim
	./configure --prefix=$OPENRISC_PREFIX
	make
	make install

3)  Linux kernel

Build the kernel as usual

	make ARCH=openrisc defconfig
	make ARCH=openrisc

4)  Run in architectural simulator

Grab the or1ksim platform configuration file (from the or1ksim source) and
together with your freshly built vmlinux, run your kernel with the following
incantation:

	sim -f arch/openrisc/or1ksim.cfg vmlinux

---------------------------------------------------------------------

Terminology
===========

In the code, the following particles are used on symbols to limit the scope
to more or less specific processor implementations:

openrisc: the OpenRISC class of processors
or1k:     the OpenRISC 1000 family of processors
or1200:   the OpenRISC 1200 processor

---------------------------------------------------------------------

History
========

18. 11. 2003	Matjaz Breskvar (phoenix@bsemi.com)
	initial port of linux to OpenRISC/or32 architecture.
        all the core stuff is implemented and seams usable.

08. 12. 2003	Matjaz Breskvar (phoenix@bsemi.com)
	complete change of TLB miss handling.
	rewrite of exceptions handling.
	fully functional sash-3.6 in default initrd.
	a much improved version with changes all around.

10. 04. 2004	Matjaz Breskvar (phoenix@bsemi.com)
	alot of bugfixes all over.
	ethernet support, functional http and telnet servers.
	running many standard linux apps.

26. 06. 2004	Matjaz Breskvar (phoenix@bsemi.com)
	port to 2.6.x

30. 11. 2004	Matjaz Breskvar (phoenix@bsemi.com)
	lots of bugfixes and enhancments.
	added opencores framebuffer driver.

09. 10. 2010    Jonas Bonn (jonas@southpole.se)
	major rewrite to bring up to par with upstream Linux 2.6.36