llvm-project/llvm/lib/Target/ARM/ARMFixCortexA57AES1742098Pass.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

433 lines
15 KiB
C++
Raw Normal View History

//===-- ARMFixCortexA57AES1742098Pass.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This pass works around a Cortex Core Fused AES erratum:
// - Cortex-A57 Erratum 1742098
// - Cortex-A72 Erratum 1655431
//
// The erratum may be triggered if an input vector register to AESE or AESD was
// last written by an instruction that only updated 32 bits of it. This can
// occur for either of the input registers.
//
// The workaround chosen is to update the input register using `r = VORRq r, r`,
// as this updates all 128 bits of the register unconditionally, but does not
// change the values observed in `r`, making the input safe.
//
// This pass has to be conservative in a few cases:
// - an input vector register to the AES instruction is defined outside the
// current function, where we have to assume the register was updated in an
// unsafe way; and
// - an input vector register to the AES instruction is updated along multiple
// different control-flow paths, where we have to ensure all the register
// updating instructions are safe.
//
// Both of these cases may apply to a input vector register. In either case, we
// need to ensure that, when the pass is finished, there exists a safe
// instruction between every unsafe register updating instruction and the AES
// instruction.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMSubtarget.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <assert.h>
#include <stdint.h>
using namespace llvm;
#define DEBUG_TYPE "arm-fix-cortex-a57-aes-1742098"
//===----------------------------------------------------------------------===//
namespace {
class ARMFixCortexA57AES1742098 : public MachineFunctionPass {
public:
static char ID;
explicit ARMFixCortexA57AES1742098() : MachineFunctionPass(ID) {
initializeARMFixCortexA57AES1742098Pass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &F) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override {
return "ARM fix for Cortex-A57 AES Erratum 1742098";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ReachingDefAnalysis>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
// This is the information needed to insert the fixup in the right place.
struct AESFixupLocation {
MachineBasicBlock *Block;
// The fixup instruction will be inserted *before* InsertionPt.
MachineInstr *InsertionPt;
MachineOperand *MOp;
};
void analyzeMF(MachineFunction &MF, ReachingDefAnalysis &RDA,
const ARMBaseRegisterInfo *TRI,
SmallVectorImpl<AESFixupLocation> &FixupLocsForFn) const;
void insertAESFixup(AESFixupLocation &FixupLoc, const ARMBaseInstrInfo *TII,
const ARMBaseRegisterInfo *TRI) const;
static bool isFirstAESPairInstr(MachineInstr &MI);
static bool isSafeAESInput(MachineInstr &MI);
};
char ARMFixCortexA57AES1742098::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(ARMFixCortexA57AES1742098, DEBUG_TYPE,
"ARM fix for Cortex-A57 AES Erratum 1742098", false,
false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis);
INITIALIZE_PASS_END(ARMFixCortexA57AES1742098, DEBUG_TYPE,
"ARM fix for Cortex-A57 AES Erratum 1742098", false, false)
//===----------------------------------------------------------------------===//
bool ARMFixCortexA57AES1742098::isFirstAESPairInstr(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return Opc == ARM::AESD || Opc == ARM::AESE;
}
bool ARMFixCortexA57AES1742098::isSafeAESInput(MachineInstr &MI) {
auto CondCodeIsAL = [](MachineInstr &MI) -> bool {
int CCIdx = MI.findFirstPredOperandIdx();
if (CCIdx == -1)
return false;
return MI.getOperand(CCIdx).getImm() == (int64_t)ARMCC::AL;
};
switch (MI.getOpcode()) {
// Unknown: Assume not safe.
default:
return false;
// 128-bit wide AES instructions
case ARM::AESD:
case ARM::AESE:
case ARM::AESMC:
case ARM::AESIMC:
// No CondCode.
return true;
// 128-bit and 64-bit wide bitwise ops (when condition = al)
case ARM::VANDd:
case ARM::VANDq:
case ARM::VORRd:
case ARM::VORRq:
case ARM::VEORd:
case ARM::VEORq:
case ARM::VMVNd:
case ARM::VMVNq:
// VMOV of 64-bit value between D registers (when condition = al)
case ARM::VMOVD:
// VMOV of 64 bit value from GPRs (when condition = al)
case ARM::VMOVDRR:
// VMOV of immediate into D or Q registers (when condition = al)
case ARM::VMOVv2i64:
case ARM::VMOVv1i64:
case ARM::VMOVv2f32:
case ARM::VMOVv4f32:
case ARM::VMOVv2i32:
case ARM::VMOVv4i32:
case ARM::VMOVv4i16:
case ARM::VMOVv8i16:
case ARM::VMOVv8i8:
case ARM::VMOVv16i8:
// Loads (when condition = al)
// VLD Dn, [Rn, #imm]
case ARM::VLDRD:
// VLDM
case ARM::VLDMDDB_UPD:
case ARM::VLDMDIA_UPD:
case ARM::VLDMDIA:
// VLDn to all lanes.
case ARM::VLD1d64:
case ARM::VLD1q64:
case ARM::VLD1d32:
case ARM::VLD1q32:
case ARM::VLD2b32:
case ARM::VLD2d32:
case ARM::VLD2q32:
case ARM::VLD1d16:
case ARM::VLD1q16:
case ARM::VLD2d16:
case ARM::VLD2q16:
case ARM::VLD1d8:
case ARM::VLD1q8:
case ARM::VLD2b8:
case ARM::VLD2d8:
case ARM::VLD2q8:
case ARM::VLD3d32:
case ARM::VLD3q32:
case ARM::VLD3d16:
case ARM::VLD3q16:
case ARM::VLD3d8:
case ARM::VLD3q8:
case ARM::VLD4d32:
case ARM::VLD4q32:
case ARM::VLD4d16:
case ARM::VLD4q16:
case ARM::VLD4d8:
case ARM::VLD4q8:
// VLD1 (single element to one lane)
case ARM::VLD1LNd32:
case ARM::VLD1LNd32_UPD:
case ARM::VLD1LNd8:
case ARM::VLD1LNd8_UPD:
case ARM::VLD1LNd16:
case ARM::VLD1LNd16_UPD:
// VLD1 (single element to all lanes)
case ARM::VLD1DUPd32:
case ARM::VLD1DUPd32wb_fixed:
case ARM::VLD1DUPd32wb_register:
case ARM::VLD1DUPd16:
case ARM::VLD1DUPd16wb_fixed:
case ARM::VLD1DUPd16wb_register:
case ARM::VLD1DUPd8:
case ARM::VLD1DUPd8wb_fixed:
case ARM::VLD1DUPd8wb_register:
case ARM::VLD1DUPq32:
case ARM::VLD1DUPq32wb_fixed:
case ARM::VLD1DUPq32wb_register:
case ARM::VLD1DUPq16:
case ARM::VLD1DUPq16wb_fixed:
case ARM::VLD1DUPq16wb_register:
case ARM::VLD1DUPq8:
case ARM::VLD1DUPq8wb_fixed:
case ARM::VLD1DUPq8wb_register:
// VMOV
case ARM::VSETLNi32:
case ARM::VSETLNi16:
case ARM::VSETLNi8:
return CondCodeIsAL(MI);
};
return false;
}
bool ARMFixCortexA57AES1742098::runOnMachineFunction(MachineFunction &F) {
LLVM_DEBUG(dbgs() << "***** ARMFixCortexA57AES1742098 *****\n");
auto &STI = F.getSubtarget<ARMSubtarget>();
// Fix not requested or AES instructions not present: skip pass.
if (!STI.hasAES() || !STI.fixCortexA57AES1742098())
return false;
const ARMBaseRegisterInfo *TRI = STI.getRegisterInfo();
const ARMBaseInstrInfo *TII = STI.getInstrInfo();
auto &RDA = getAnalysis<ReachingDefAnalysis>();
// Analyze whole function to find instructions which need fixing up...
SmallVector<AESFixupLocation> FixupLocsForFn{};
analyzeMF(F, RDA, TRI, FixupLocsForFn);
// ... and fix the instructions up all at the same time.
bool Changed = false;
LLVM_DEBUG(dbgs() << "Inserting " << FixupLocsForFn.size() << " fixup(s)\n");
for (AESFixupLocation &FixupLoc : FixupLocsForFn) {
insertAESFixup(FixupLoc, TII, TRI);
Changed |= true;
}
return Changed;
}
void ARMFixCortexA57AES1742098::analyzeMF(
MachineFunction &MF, ReachingDefAnalysis &RDA,
const ARMBaseRegisterInfo *TRI,
SmallVectorImpl<AESFixupLocation> &FixupLocsForFn) const {
unsigned MaxAllowedFixups = 0;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isFirstAESPairInstr(MI))
continue;
// Found an instruction to check the operands of.
LLVM_DEBUG(dbgs() << "Found AES Pair starting: " << MI);
assert(MI.getNumExplicitOperands() == 3 && MI.getNumExplicitDefs() == 1 &&
"Unknown AES Instruction Format. Expected 1 def, 2 uses.");
// A maximum of two fixups should be inserted for each AES pair (one per
// register use).
MaxAllowedFixups += 2;
// Inspect all operands, choosing whether to insert a fixup.
for (MachineOperand &MOp : MI.uses()) {
SmallPtrSet<MachineInstr *, 1> AllDefs{};
RDA.getGlobalReachingDefs(&MI, MOp.getReg(), AllDefs);
// Planned Fixup: This should be added to FixupLocsForFn at most once.
AESFixupLocation NewLoc{&MBB, &MI, &MOp};
// In small functions with loops, this operand may be both a live-in and
// have definitions within the function itself. These will need a fixup.
bool IsLiveIn = MF.front().isLiveIn(MOp.getReg());
// If the register doesn't have defining instructions, and is not a
// live-in, then something is wrong and the fixup must always be
// inserted to be safe.
if (!IsLiveIn && AllDefs.size() == 0) {
LLVM_DEBUG(dbgs()
<< "Fixup Planned: No Defining Instrs found, not live-in: "
<< printReg(MOp.getReg(), TRI) << "\n");
FixupLocsForFn.emplace_back(NewLoc);
continue;
}
auto IsUnsafe = [](MachineInstr *MI) -> bool {
return !isSafeAESInput(*MI);
};
size_t UnsafeCount = llvm::count_if(AllDefs, IsUnsafe);
// If there are no unsafe definitions...
if (UnsafeCount == 0) {
// ... and the register is not live-in ...
if (!IsLiveIn) {
// ... then skip the fixup.
LLVM_DEBUG(dbgs() << "No Fixup: Defining instrs are all safe: "
<< printReg(MOp.getReg(), TRI) << "\n");
continue;
}
// Otherwise, the only unsafe "definition" is a live-in, so insert the
// fixup at the start of the function.
LLVM_DEBUG(dbgs()
<< "Fixup Planned: Live-In (with safe defining instrs): "
<< printReg(MOp.getReg(), TRI) << "\n");
NewLoc.Block = &MF.front();
NewLoc.InsertionPt = &*NewLoc.Block->begin();
LLVM_DEBUG(dbgs() << "Moving Fixup for Live-In to immediately before "
<< *NewLoc.InsertionPt);
FixupLocsForFn.emplace_back(NewLoc);
continue;
}
// If a fixup is needed in more than one place, then the best place to
// insert it is adjacent to the use rather than introducing a fixup
// adjacent to each def.
//
// FIXME: It might be better to hoist this to the start of the BB, if
// possible.
if (IsLiveIn || UnsafeCount > 1) {
LLVM_DEBUG(dbgs() << "Fixup Planned: Multiple unsafe defining instrs "
"(including live-ins): "
<< printReg(MOp.getReg(), TRI) << "\n");
FixupLocsForFn.emplace_back(NewLoc);
continue;
}
assert(UnsafeCount == 1 && !IsLiveIn &&
"At this point, there should be one unsafe defining instrs "
"and the defined register should not be a live-in.");
SmallPtrSetIterator<MachineInstr *> It =
llvm::find_if(AllDefs, IsUnsafe);
assert(It != AllDefs.end() &&
"UnsafeCount == 1 but No Unsafe MachineInstr found.");
MachineInstr *DefMI = *It;
LLVM_DEBUG(
dbgs() << "Fixup Planned: Found single unsafe defining instrs for "
<< printReg(MOp.getReg(), TRI) << ": " << *DefMI);
// There is one unsafe defining instruction, which needs a fixup. It is
// generally good to hoist the fixup to be adjacent to the defining
// instruction rather than the using instruction, as the using
// instruction may be inside a loop when the defining instruction is
// not.
MachineBasicBlock::iterator DefIt = DefMI;
++DefIt;
if (DefIt != DefMI->getParent()->end()) {
LLVM_DEBUG(dbgs() << "Moving Fixup to immediately after " << *DefMI
<< "And immediately before " << *DefIt);
NewLoc.Block = DefIt->getParent();
NewLoc.InsertionPt = &*DefIt;
}
FixupLocsForFn.emplace_back(NewLoc);
}
}
}
assert(FixupLocsForFn.size() <= MaxAllowedFixups &&
"Inserted too many fixups for this function.");
(void)MaxAllowedFixups;
}
void ARMFixCortexA57AES1742098::insertAESFixup(
AESFixupLocation &FixupLoc, const ARMBaseInstrInfo *TII,
const ARMBaseRegisterInfo *TRI) const {
MachineOperand *OperandToFixup = FixupLoc.MOp;
assert(OperandToFixup->isReg() && "OperandToFixup must be a register");
Register RegToFixup = OperandToFixup->getReg();
LLVM_DEBUG(dbgs() << "Inserting VORRq of " << printReg(RegToFixup, TRI)
<< " before: " << *FixupLoc.InsertionPt);
// Insert the new `VORRq qN, qN, qN`. There are a few details here:
//
// The uses are marked as killed, even if the original use of OperandToFixup
// is not killed, as the new instruction is clobbering the register. This is
// safe even if there are other uses of `qN`, as the VORRq value-wise a no-op
// (it is inserted for microarchitectural reasons).
//
// The def and the uses are still marked as Renamable if the original register
// was, to avoid having to rummage through all the other uses and defs and
// unset their renamable bits.
unsigned Renamable = OperandToFixup->isRenamable() ? RegState::Renamable : 0;
BuildMI(*FixupLoc.Block, FixupLoc.InsertionPt, DebugLoc(),
TII->get(ARM::VORRq))
.addReg(RegToFixup, RegState::Define | Renamable)
.addReg(RegToFixup, RegState::Kill | Renamable)
.addReg(RegToFixup, RegState::Kill | Renamable)
.addImm((uint64_t)ARMCC::AL)
.addReg(ARM::NoRegister);
}
// Factory function used by AArch64TargetMachine to add the pass to
// the passmanager.
FunctionPass *llvm::createARMFixCortexA57AES1742098Pass() {
return new ARMFixCortexA57AES1742098();
}