[mlir][tosa] Add check if the operand of the operations is constant.

Some uses of TOSA rely on the constant operands of particular operations,
e.g. paddings and pad_const in pad op. Add a verification pattern in the
validation pass, and this is optionally enabled.

Change-Id: I1628c0840a27ab06ef91150eee56ad4f5ac9543d

Reviewed By: rsuderman

Differential Revision: https://reviews.llvm.org/D145412
This commit is contained in:
TatWai Chong 2023-03-21 20:50:13 +00:00 committed by Robert Suderman
parent a2c63d7f0b
commit 08b0977a19
3 changed files with 110 additions and 6 deletions

View File

@ -85,7 +85,11 @@ def TosaValidation : Pass<"tosa-validate", "func::FuncOp"> {
let options = [
Option<"profileName", "profile", "std::string",
/*default=*/"\"undefined\"",
"Validation if ops match for given profile">];
"Validate if operations match for the given profile">,
Option<"StrictOperationSpecAlignment", "strict-op-spec-alignment", "bool",
/*default=*/"false",
"Verify if the properties of certain operations align the spec requirement">,
];
}
#endif // MLIR_DIALECT_TOSA_TRANSFORMS_PASSES

View File

@ -35,17 +35,68 @@ using namespace mlir::tosa;
namespace {
static LogicalResult checkConstantOperandPad(Operation *op) {
if (auto pad_op = dyn_cast<tosa::PadOp>(op)) {
DenseElementsAttr paddings;
if (!matchPattern(pad_op.getPadding(), m_Constant(&paddings)))
return op->emitOpError("padding of pad is not constant");
DenseElementsAttr pad_const;
// Assume this op is zero-padding if pad_const is not presented.
if (pad_op.getPadConst() &&
!matchPattern(pad_op.getPadConst(), m_Constant(&pad_const)))
return op->emitOpError("pad_const of pad is not constant");
}
return success();
}
static LogicalResult checkConstantOperandTranspose(Operation *op) {
if (auto transpose_op = dyn_cast<tosa::TransposeOp>(op)) {
DenseElementsAttr perms;
if (!matchPattern(transpose_op.getPerms(), m_Constant(&perms)))
return op->emitOpError("perms of transpose is not constant");
}
return success();
}
static LogicalResult checkConstantOperandFullyConnected(Operation *op) {
if (auto fc_op = dyn_cast<tosa::FullyConnectedOp>(op)) {
DenseElementsAttr weight;
if (!matchPattern(fc_op.getWeight(), m_Constant(&weight)))
return op->emitOpError("weight of fully_connected is not constant");
DenseElementsAttr bias;
if (!matchPattern(fc_op.getBias(), m_Constant(&bias)))
return op->emitOpError("bias of fully_connected is not constant");
}
return success();
}
//===----------------------------------------------------------------------===//
// TOSA Validation Pass.
//===----------------------------------------------------------------------===//
struct TosaValidation : public tosa::impl::TosaValidationBase<TosaValidation> {
public:
explicit TosaValidation() = default;
private:
explicit TosaValidation() { populateConstantOperandChecks(); }
void runOnOperation() override;
LogicalResult applyConstantOperandCheck(Operation *op) {
for (auto &checker : const_checkers) {
if (failed(checker(op)))
return failure();
}
return success();
}
private:
void populateConstantOperandChecks() {
const_checkers.emplace_back(checkConstantOperandPad);
const_checkers.emplace_back(checkConstantOperandTranspose);
const_checkers.emplace_back(checkConstantOperandFullyConnected);
}
SmallVector<std::function<LogicalResult(Operation *)>> const_checkers;
std::optional<TosaProfileEnum> profileType;
};
@ -62,6 +113,10 @@ void TosaValidation::runOnOperation() {
return signalPassFailure();
}
}
// Some uses of TOSA rely on the constant operands of particular operations.
if (StrictOperationSpecAlignment && failed(applyConstantOperandCheck(op)))
signalPassFailure();
});
}
} // namespace

View File

@ -1,4 +1,4 @@
// RUN: mlir-opt %s -split-input-file -verify-diagnostics
// RUN: mlir-opt %s -split-input-file -verify-diagnostics --tosa-validate=strict-op-spec-alignment
func.func @test_conv2d(%arg0: tensor<1x29x29x4xf32>, %arg1: tensor<16x3x3x4xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
@ -43,3 +43,48 @@ func.func @test_concat(%arg0 : tensor<2x1xf32>, %arg1 : tensor<2x2xf32>) -> tens
%0 = "tosa.concat"(%arg0, %arg1) {axis = 0 : i64} : (tensor<2x1xf32>, tensor<2x2xf32>) -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
// -----
func.func @test_pad_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<3x2xi32>) -> tensor<13x21x3xf32> {
// expected-error@+1 {{'tosa.pad' op padding of pad is not constant}}
%0 = "tosa.pad"(%arg0, %arg1) : (tensor<13x21x3xf32>, tensor<3x2xi32>) -> tensor<13x21x3xf32>
return %0 : tensor<13x21x3xf32>
}
// -----
func.func @test_pad_non_const(%arg0: tensor<13x21x3xi8>, %arg1: tensor<i8>) -> tensor<13x21x3xi8> {
%0 = "tosa.const"() {value = dense<[[0, 0], [0, 1], [0, 1]]> : tensor<3x2xi32>} : () -> tensor<3x2xi32>
// expected-error@+1 {{'tosa.pad' op pad_const of pad is not constant}}
%1 = "tosa.pad"(%arg0, %0, %arg1) : (tensor<13x21x3xi8>, tensor<3x2xi32>, tensor<i8>) -> tensor<13x21x3xi8>
return %1 : tensor<13x21x3xi8>
}
// -----
func.func @test_transpose_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<3xi32>) -> tensor<3x13x21xf32> {
// expected-error@+1 {{'tosa.transpose' op perms of transpose is not constant}}
%0 = "tosa.transpose"(%arg0, %arg1) : (tensor<13x21x3xf32>, tensor<3xi32>) -> tensor<3x13x21xf32>
return %0 : tensor<3x13x21xf32>
}
// -----
func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2x3xf32>) -> tensor<273x2xf32> {
%0 = "tosa.const"() {value = dense<0.000000e+00> : tensor<2xf32>} : () -> tensor<2xf32>
%1 = "tosa.reshape"(%arg0) {new_shape = array<i64: 273, 3>} : (tensor<13x21x3xf32>) -> tensor<273x3xf32>
// expected-error@+1 {{'tosa.fully_connected' op weight of fully_connected is not constant}}
%2 = "tosa.fully_connected"(%1, %arg1, %0) : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
return %2 : tensor<273x2xf32>
}
// -----
func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2xf32>) -> tensor<273x2xf32> {
%0 = "tosa.const"() {value = dense<[[-0.613216758, -0.63714242, -0.73500061], [0.180762768, 0.773053169, -0.933686495]]> : tensor<2x3xf32>} : () -> tensor<2x3xf32>
%1 = "tosa.reshape"(%arg0) {new_shape = array<i64: 273, 3>} : (tensor<13x21x3xf32>) -> tensor<273x3xf32>
// expected-error@+1 {{'tosa.fully_connected' op bias of fully_connected is not constant}}
%2 = "tosa.fully_connected"(%1, %0, %arg1) : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
return %2 : tensor<273x2xf32>
}