3df4c5a92f
By using emplace_back, as well as converting some loops to for-each, we can do more efficient vectorization. Make copy constructor for TemporaryFile noexcept. Reviewed By: #lld-macho, int3 Differential Revision: https://reviews.llvm.org/D139552
1042 lines
36 KiB
C++
1042 lines
36 KiB
C++
//===- Chunks.cpp ---------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Chunks.h"
|
|
#include "COFFLinkerContext.h"
|
|
#include "InputFiles.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "Writer.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/COFF.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::COFF;
|
|
using llvm::support::ulittle32_t;
|
|
|
|
namespace lld::coff {
|
|
|
|
SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
|
|
: Chunk(SectionKind), file(f), header(h), repl(this) {
|
|
// Initialize relocs.
|
|
if (file)
|
|
setRelocs(file->getCOFFObj()->getRelocations(header));
|
|
|
|
// Initialize sectionName.
|
|
StringRef sectionName;
|
|
if (file) {
|
|
if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
|
|
sectionName = *e;
|
|
}
|
|
sectionNameData = sectionName.data();
|
|
sectionNameSize = sectionName.size();
|
|
|
|
setAlignment(header->getAlignment());
|
|
|
|
hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
|
|
|
|
// If linker GC is disabled, every chunk starts out alive. If linker GC is
|
|
// enabled, treat non-comdat sections as roots. Generally optimized object
|
|
// files will be built with -ffunction-sections or /Gy, so most things worth
|
|
// stripping will be in a comdat.
|
|
if (file)
|
|
live = !file->ctx.config.doGC || !isCOMDAT();
|
|
else
|
|
live = true;
|
|
}
|
|
|
|
// SectionChunk is one of the most frequently allocated classes, so it is
|
|
// important to keep it as compact as possible. As of this writing, the number
|
|
// below is the size of this class on x64 platforms.
|
|
static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
|
|
|
|
static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
|
|
static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
|
|
static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
|
|
static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
|
|
static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
|
|
|
|
// Verify that given sections are appropriate targets for SECREL
|
|
// relocations. This check is relaxed because unfortunately debug
|
|
// sections have section-relative relocations against absolute symbols.
|
|
static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
|
|
if (os)
|
|
return true;
|
|
if (sec->isCodeView())
|
|
return false;
|
|
error("SECREL relocation cannot be applied to absolute symbols");
|
|
return false;
|
|
}
|
|
|
|
static void applySecRel(const SectionChunk *sec, uint8_t *off,
|
|
OutputSection *os, uint64_t s) {
|
|
if (!checkSecRel(sec, os))
|
|
return;
|
|
uint64_t secRel = s - os->getRVA();
|
|
if (secRel > UINT32_MAX) {
|
|
error("overflow in SECREL relocation in section: " + sec->getSectionName());
|
|
return;
|
|
}
|
|
add32(off, secRel);
|
|
}
|
|
|
|
static void applySecIdx(uint8_t *off, OutputSection *os,
|
|
unsigned numOutputSections) {
|
|
// numOutputSections is the largest valid section index. Make sure that
|
|
// it fits in 16 bits.
|
|
assert(numOutputSections <= 0xffff && "size of outputSections is too big");
|
|
|
|
// Absolute symbol doesn't have section index, but section index relocation
|
|
// against absolute symbol should be resolved to one plus the last output
|
|
// section index. This is required for compatibility with MSVC.
|
|
if (os)
|
|
add16(off, os->sectionIndex);
|
|
else
|
|
add16(off, numOutputSections + 1);
|
|
}
|
|
|
|
void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
|
|
uint64_t s, uint64_t p,
|
|
uint64_t imageBase) const {
|
|
switch (type) {
|
|
case IMAGE_REL_AMD64_ADDR32:
|
|
add32(off, s + imageBase);
|
|
break;
|
|
case IMAGE_REL_AMD64_ADDR64:
|
|
add64(off, s + imageBase);
|
|
break;
|
|
case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
|
|
case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break;
|
|
case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break;
|
|
case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break;
|
|
case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break;
|
|
case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break;
|
|
case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break;
|
|
case IMAGE_REL_AMD64_SECTION:
|
|
applySecIdx(off, os, file->ctx.outputSections.size());
|
|
break;
|
|
case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break;
|
|
default:
|
|
error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
|
|
toString(file));
|
|
}
|
|
}
|
|
|
|
void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
|
|
uint64_t s, uint64_t p,
|
|
uint64_t imageBase) const {
|
|
switch (type) {
|
|
case IMAGE_REL_I386_ABSOLUTE: break;
|
|
case IMAGE_REL_I386_DIR32:
|
|
add32(off, s + imageBase);
|
|
break;
|
|
case IMAGE_REL_I386_DIR32NB: add32(off, s); break;
|
|
case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break;
|
|
case IMAGE_REL_I386_SECTION:
|
|
applySecIdx(off, os, file->ctx.outputSections.size());
|
|
break;
|
|
case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break;
|
|
default:
|
|
error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
|
|
toString(file));
|
|
}
|
|
}
|
|
|
|
static void applyMOV(uint8_t *off, uint16_t v) {
|
|
write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
|
|
write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
|
|
}
|
|
|
|
static uint16_t readMOV(uint8_t *off, bool movt) {
|
|
uint16_t op1 = read16le(off);
|
|
if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
|
|
error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
|
|
" instruction in MOV32T relocation");
|
|
uint16_t op2 = read16le(off + 2);
|
|
if ((op2 & 0x8000) != 0)
|
|
error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
|
|
" instruction in MOV32T relocation");
|
|
return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
|
|
((op1 & 0x000f) << 12);
|
|
}
|
|
|
|
void applyMOV32T(uint8_t *off, uint32_t v) {
|
|
uint16_t immW = readMOV(off, false); // read MOVW operand
|
|
uint16_t immT = readMOV(off + 4, true); // read MOVT operand
|
|
uint32_t imm = immW | (immT << 16);
|
|
v += imm; // add the immediate offset
|
|
applyMOV(off, v); // set MOVW operand
|
|
applyMOV(off + 4, v >> 16); // set MOVT operand
|
|
}
|
|
|
|
static void applyBranch20T(uint8_t *off, int32_t v) {
|
|
if (!isInt<21>(v))
|
|
error("relocation out of range");
|
|
uint32_t s = v < 0 ? 1 : 0;
|
|
uint32_t j1 = (v >> 19) & 1;
|
|
uint32_t j2 = (v >> 18) & 1;
|
|
or16(off, (s << 10) | ((v >> 12) & 0x3f));
|
|
or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
|
|
}
|
|
|
|
void applyBranch24T(uint8_t *off, int32_t v) {
|
|
if (!isInt<25>(v))
|
|
error("relocation out of range");
|
|
uint32_t s = v < 0 ? 1 : 0;
|
|
uint32_t j1 = ((~v >> 23) & 1) ^ s;
|
|
uint32_t j2 = ((~v >> 22) & 1) ^ s;
|
|
or16(off, (s << 10) | ((v >> 12) & 0x3ff));
|
|
// Clear out the J1 and J2 bits which may be set.
|
|
write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
|
|
}
|
|
|
|
void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
|
|
uint64_t s, uint64_t p,
|
|
uint64_t imageBase) const {
|
|
// Pointer to thumb code must have the LSB set.
|
|
uint64_t sx = s;
|
|
if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
|
|
sx |= 1;
|
|
switch (type) {
|
|
case IMAGE_REL_ARM_ADDR32:
|
|
add32(off, sx + imageBase);
|
|
break;
|
|
case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break;
|
|
case IMAGE_REL_ARM_MOV32T:
|
|
applyMOV32T(off, sx + imageBase);
|
|
break;
|
|
case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
|
|
case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
|
|
case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break;
|
|
case IMAGE_REL_ARM_SECTION:
|
|
applySecIdx(off, os, file->ctx.outputSections.size());
|
|
break;
|
|
case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break;
|
|
case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break;
|
|
default:
|
|
error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
|
|
toString(file));
|
|
}
|
|
}
|
|
|
|
// Interpret the existing immediate value as a byte offset to the
|
|
// target symbol, then update the instruction with the immediate as
|
|
// the page offset from the current instruction to the target.
|
|
void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
|
|
uint32_t orig = read32le(off);
|
|
int64_t imm =
|
|
SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC));
|
|
s += imm;
|
|
imm = (s >> shift) - (p >> shift);
|
|
uint32_t immLo = (imm & 0x3) << 29;
|
|
uint32_t immHi = (imm & 0x1FFFFC) << 3;
|
|
uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
|
|
write32le(off, (orig & ~mask) | immLo | immHi);
|
|
}
|
|
|
|
// Update the immediate field in a AARCH64 ldr, str, and add instruction.
|
|
// Optionally limit the range of the written immediate by one or more bits
|
|
// (rangeLimit).
|
|
void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
|
|
uint32_t orig = read32le(off);
|
|
imm += (orig >> 10) & 0xFFF;
|
|
orig &= ~(0xFFF << 10);
|
|
write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
|
|
}
|
|
|
|
// Add the 12 bit page offset to the existing immediate.
|
|
// Ldr/str instructions store the opcode immediate scaled
|
|
// by the load/store size (giving a larger range for larger
|
|
// loads/stores). The immediate is always (both before and after
|
|
// fixing up the relocation) stored scaled similarly.
|
|
// Even if larger loads/stores have a larger range, limit the
|
|
// effective offset to 12 bit, since it is intended to be a
|
|
// page offset.
|
|
static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
|
|
uint32_t orig = read32le(off);
|
|
uint32_t size = orig >> 30;
|
|
// 0x04000000 indicates SIMD/FP registers
|
|
// 0x00800000 indicates 128 bit
|
|
if ((orig & 0x4800000) == 0x4800000)
|
|
size += 4;
|
|
if ((imm & ((1 << size) - 1)) != 0)
|
|
error("misaligned ldr/str offset");
|
|
applyArm64Imm(off, imm >> size, size);
|
|
}
|
|
|
|
static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
|
|
OutputSection *os, uint64_t s) {
|
|
if (checkSecRel(sec, os))
|
|
applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
|
|
}
|
|
|
|
static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
|
|
OutputSection *os, uint64_t s) {
|
|
if (!checkSecRel(sec, os))
|
|
return;
|
|
uint64_t secRel = (s - os->getRVA()) >> 12;
|
|
if (0xfff < secRel) {
|
|
error("overflow in SECREL_HIGH12A relocation in section: " +
|
|
sec->getSectionName());
|
|
return;
|
|
}
|
|
applyArm64Imm(off, secRel & 0xfff, 0);
|
|
}
|
|
|
|
static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
|
|
OutputSection *os, uint64_t s) {
|
|
if (checkSecRel(sec, os))
|
|
applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
|
|
}
|
|
|
|
void applyArm64Branch26(uint8_t *off, int64_t v) {
|
|
if (!isInt<28>(v))
|
|
error("relocation out of range");
|
|
or32(off, (v & 0x0FFFFFFC) >> 2);
|
|
}
|
|
|
|
static void applyArm64Branch19(uint8_t *off, int64_t v) {
|
|
if (!isInt<21>(v))
|
|
error("relocation out of range");
|
|
or32(off, (v & 0x001FFFFC) << 3);
|
|
}
|
|
|
|
static void applyArm64Branch14(uint8_t *off, int64_t v) {
|
|
if (!isInt<16>(v))
|
|
error("relocation out of range");
|
|
or32(off, (v & 0x0000FFFC) << 3);
|
|
}
|
|
|
|
void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
|
|
uint64_t s, uint64_t p,
|
|
uint64_t imageBase) const {
|
|
switch (type) {
|
|
case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
|
|
case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break;
|
|
case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
|
|
case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
|
|
case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break;
|
|
case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break;
|
|
case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break;
|
|
case IMAGE_REL_ARM64_ADDR32:
|
|
add32(off, s + imageBase);
|
|
break;
|
|
case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break;
|
|
case IMAGE_REL_ARM64_ADDR64:
|
|
add64(off, s + imageBase);
|
|
break;
|
|
case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break;
|
|
case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break;
|
|
case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
|
|
case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break;
|
|
case IMAGE_REL_ARM64_SECTION:
|
|
applySecIdx(off, os, file->ctx.outputSections.size());
|
|
break;
|
|
case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break;
|
|
default:
|
|
error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
|
|
toString(file));
|
|
}
|
|
}
|
|
|
|
static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
|
|
Defined *sym,
|
|
const coff_relocation &rel,
|
|
bool isMinGW) {
|
|
// Don't report these errors when the relocation comes from a debug info
|
|
// section or in mingw mode. MinGW mode object files (built by GCC) can
|
|
// have leftover sections with relocations against discarded comdat
|
|
// sections. Such sections are left as is, with relocations untouched.
|
|
if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW)
|
|
return;
|
|
|
|
// Get the name of the symbol. If it's null, it was discarded early, so we
|
|
// have to go back to the object file.
|
|
ObjFile *file = fromChunk->file;
|
|
StringRef name;
|
|
if (sym) {
|
|
name = sym->getName();
|
|
} else {
|
|
COFFSymbolRef coffSym =
|
|
check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
|
|
name = check(file->getCOFFObj()->getSymbolName(coffSym));
|
|
}
|
|
|
|
std::vector<std::string> symbolLocations =
|
|
getSymbolLocations(file, rel.SymbolTableIndex);
|
|
|
|
std::string out;
|
|
llvm::raw_string_ostream os(out);
|
|
os << "relocation against symbol in discarded section: " + name;
|
|
for (const std::string &s : symbolLocations)
|
|
os << s;
|
|
error(os.str());
|
|
}
|
|
|
|
void SectionChunk::writeTo(uint8_t *buf) const {
|
|
if (!hasData)
|
|
return;
|
|
// Copy section contents from source object file to output file.
|
|
ArrayRef<uint8_t> a = getContents();
|
|
if (!a.empty())
|
|
memcpy(buf, a.data(), a.size());
|
|
|
|
// Apply relocations.
|
|
size_t inputSize = getSize();
|
|
for (const coff_relocation &rel : getRelocs()) {
|
|
// Check for an invalid relocation offset. This check isn't perfect, because
|
|
// we don't have the relocation size, which is only known after checking the
|
|
// machine and relocation type. As a result, a relocation may overwrite the
|
|
// beginning of the following input section.
|
|
if (rel.VirtualAddress >= inputSize) {
|
|
error("relocation points beyond the end of its parent section");
|
|
continue;
|
|
}
|
|
|
|
applyRelocation(buf + rel.VirtualAddress, rel);
|
|
}
|
|
}
|
|
|
|
void SectionChunk::applyRelocation(uint8_t *off,
|
|
const coff_relocation &rel) const {
|
|
auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
|
|
|
|
// Get the output section of the symbol for this relocation. The output
|
|
// section is needed to compute SECREL and SECTION relocations used in debug
|
|
// info.
|
|
Chunk *c = sym ? sym->getChunk() : nullptr;
|
|
OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr;
|
|
|
|
// Skip the relocation if it refers to a discarded section, and diagnose it
|
|
// as an error if appropriate. If a symbol was discarded early, it may be
|
|
// null. If it was discarded late, the output section will be null, unless
|
|
// it was an absolute or synthetic symbol.
|
|
if (!sym ||
|
|
(!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
|
|
maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw);
|
|
return;
|
|
}
|
|
|
|
uint64_t s = sym->getRVA();
|
|
|
|
// Compute the RVA of the relocation for relative relocations.
|
|
uint64_t p = rva + rel.VirtualAddress;
|
|
uint64_t imageBase = file->ctx.config.imageBase;
|
|
switch (file->ctx.config.machine) {
|
|
case AMD64:
|
|
applyRelX64(off, rel.Type, os, s, p, imageBase);
|
|
break;
|
|
case I386:
|
|
applyRelX86(off, rel.Type, os, s, p, imageBase);
|
|
break;
|
|
case ARMNT:
|
|
applyRelARM(off, rel.Type, os, s, p, imageBase);
|
|
break;
|
|
case ARM64:
|
|
applyRelARM64(off, rel.Type, os, s, p, imageBase);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown machine type");
|
|
}
|
|
}
|
|
|
|
// Defend against unsorted relocations. This may be overly conservative.
|
|
void SectionChunk::sortRelocations() {
|
|
auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) {
|
|
return l.VirtualAddress < r.VirtualAddress;
|
|
};
|
|
if (llvm::is_sorted(getRelocs(), cmpByVa))
|
|
return;
|
|
warn("some relocations in " + file->getName() + " are not sorted");
|
|
MutableArrayRef<coff_relocation> newRelocs(
|
|
bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize);
|
|
memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation));
|
|
llvm::sort(newRelocs, cmpByVa);
|
|
setRelocs(newRelocs);
|
|
}
|
|
|
|
// Similar to writeTo, but suitable for relocating a subsection of the overall
|
|
// section.
|
|
void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
|
|
ArrayRef<uint8_t> subsec,
|
|
uint32_t &nextRelocIndex,
|
|
uint8_t *buf) const {
|
|
assert(!subsec.empty() && !sec.empty());
|
|
assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() &&
|
|
"subsection is not part of this section");
|
|
size_t vaBegin = std::distance(sec.begin(), subsec.begin());
|
|
size_t vaEnd = std::distance(sec.begin(), subsec.end());
|
|
memcpy(buf, subsec.data(), subsec.size());
|
|
for (; nextRelocIndex < relocsSize; ++nextRelocIndex) {
|
|
const coff_relocation &rel = relocsData[nextRelocIndex];
|
|
// Only apply relocations that apply to this subsection. These checks
|
|
// assume that all subsections completely contain their relocations.
|
|
// Relocations must not straddle the beginning or end of a subsection.
|
|
if (rel.VirtualAddress < vaBegin)
|
|
continue;
|
|
if (rel.VirtualAddress + 1 >= vaEnd)
|
|
break;
|
|
applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel);
|
|
}
|
|
}
|
|
|
|
void SectionChunk::addAssociative(SectionChunk *child) {
|
|
// Insert the child section into the list of associated children. Keep the
|
|
// list ordered by section name so that ICF does not depend on section order.
|
|
assert(child->assocChildren == nullptr &&
|
|
"associated sections cannot have their own associated children");
|
|
SectionChunk *prev = this;
|
|
SectionChunk *next = assocChildren;
|
|
for (; next != nullptr; prev = next, next = next->assocChildren) {
|
|
if (next->getSectionName() <= child->getSectionName())
|
|
break;
|
|
}
|
|
|
|
// Insert child between prev and next.
|
|
assert(prev->assocChildren == next);
|
|
prev->assocChildren = child;
|
|
child->assocChildren = next;
|
|
}
|
|
|
|
static uint8_t getBaserelType(const coff_relocation &rel,
|
|
llvm::COFF::MachineTypes machine) {
|
|
switch (machine) {
|
|
case AMD64:
|
|
if (rel.Type == IMAGE_REL_AMD64_ADDR64)
|
|
return IMAGE_REL_BASED_DIR64;
|
|
if (rel.Type == IMAGE_REL_AMD64_ADDR32)
|
|
return IMAGE_REL_BASED_HIGHLOW;
|
|
return IMAGE_REL_BASED_ABSOLUTE;
|
|
case I386:
|
|
if (rel.Type == IMAGE_REL_I386_DIR32)
|
|
return IMAGE_REL_BASED_HIGHLOW;
|
|
return IMAGE_REL_BASED_ABSOLUTE;
|
|
case ARMNT:
|
|
if (rel.Type == IMAGE_REL_ARM_ADDR32)
|
|
return IMAGE_REL_BASED_HIGHLOW;
|
|
if (rel.Type == IMAGE_REL_ARM_MOV32T)
|
|
return IMAGE_REL_BASED_ARM_MOV32T;
|
|
return IMAGE_REL_BASED_ABSOLUTE;
|
|
case ARM64:
|
|
if (rel.Type == IMAGE_REL_ARM64_ADDR64)
|
|
return IMAGE_REL_BASED_DIR64;
|
|
return IMAGE_REL_BASED_ABSOLUTE;
|
|
default:
|
|
llvm_unreachable("unknown machine type");
|
|
}
|
|
}
|
|
|
|
// Windows-specific.
|
|
// Collect all locations that contain absolute addresses, which need to be
|
|
// fixed by the loader if load-time relocation is needed.
|
|
// Only called when base relocation is enabled.
|
|
void SectionChunk::getBaserels(std::vector<Baserel> *res) {
|
|
for (const coff_relocation &rel : getRelocs()) {
|
|
uint8_t ty = getBaserelType(rel, file->ctx.config.machine);
|
|
if (ty == IMAGE_REL_BASED_ABSOLUTE)
|
|
continue;
|
|
Symbol *target = file->getSymbol(rel.SymbolTableIndex);
|
|
if (!target || isa<DefinedAbsolute>(target))
|
|
continue;
|
|
res->emplace_back(rva + rel.VirtualAddress, ty);
|
|
}
|
|
}
|
|
|
|
// MinGW specific.
|
|
// Check whether a static relocation of type Type can be deferred and
|
|
// handled at runtime as a pseudo relocation (for references to a module
|
|
// local variable, which turned out to actually need to be imported from
|
|
// another DLL) This returns the size the relocation is supposed to update,
|
|
// in bits, or 0 if the relocation cannot be handled as a runtime pseudo
|
|
// relocation.
|
|
static int getRuntimePseudoRelocSize(uint16_t type,
|
|
llvm::COFF::MachineTypes machine) {
|
|
// Relocations that either contain an absolute address, or a plain
|
|
// relative offset, since the runtime pseudo reloc implementation
|
|
// adds 8/16/32/64 bit values to a memory address.
|
|
//
|
|
// Given a pseudo relocation entry,
|
|
//
|
|
// typedef struct {
|
|
// DWORD sym;
|
|
// DWORD target;
|
|
// DWORD flags;
|
|
// } runtime_pseudo_reloc_item_v2;
|
|
//
|
|
// the runtime relocation performs this adjustment:
|
|
// *(base + .target) += *(base + .sym) - (base + .sym)
|
|
//
|
|
// This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
|
|
// IMAGE_REL_I386_DIR32, where the memory location initially contains
|
|
// the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
|
|
// where the memory location originally contains the relative offset to the
|
|
// IAT slot.
|
|
//
|
|
// This requires the target address to be writable, either directly out of
|
|
// the image, or temporarily changed at runtime with VirtualProtect.
|
|
// Since this only operates on direct address values, it doesn't work for
|
|
// ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
|
|
switch (machine) {
|
|
case AMD64:
|
|
switch (type) {
|
|
case IMAGE_REL_AMD64_ADDR64:
|
|
return 64;
|
|
case IMAGE_REL_AMD64_ADDR32:
|
|
case IMAGE_REL_AMD64_REL32:
|
|
case IMAGE_REL_AMD64_REL32_1:
|
|
case IMAGE_REL_AMD64_REL32_2:
|
|
case IMAGE_REL_AMD64_REL32_3:
|
|
case IMAGE_REL_AMD64_REL32_4:
|
|
case IMAGE_REL_AMD64_REL32_5:
|
|
return 32;
|
|
default:
|
|
return 0;
|
|
}
|
|
case I386:
|
|
switch (type) {
|
|
case IMAGE_REL_I386_DIR32:
|
|
case IMAGE_REL_I386_REL32:
|
|
return 32;
|
|
default:
|
|
return 0;
|
|
}
|
|
case ARMNT:
|
|
switch (type) {
|
|
case IMAGE_REL_ARM_ADDR32:
|
|
return 32;
|
|
default:
|
|
return 0;
|
|
}
|
|
case ARM64:
|
|
switch (type) {
|
|
case IMAGE_REL_ARM64_ADDR64:
|
|
return 64;
|
|
case IMAGE_REL_ARM64_ADDR32:
|
|
return 32;
|
|
default:
|
|
return 0;
|
|
}
|
|
default:
|
|
llvm_unreachable("unknown machine type");
|
|
}
|
|
}
|
|
|
|
// MinGW specific.
|
|
// Append information to the provided vector about all relocations that
|
|
// need to be handled at runtime as runtime pseudo relocations (references
|
|
// to a module local variable, which turned out to actually need to be
|
|
// imported from another DLL).
|
|
void SectionChunk::getRuntimePseudoRelocs(
|
|
std::vector<RuntimePseudoReloc> &res) {
|
|
for (const coff_relocation &rel : getRelocs()) {
|
|
auto *target =
|
|
dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
|
|
if (!target || !target->isRuntimePseudoReloc)
|
|
continue;
|
|
int sizeInBits =
|
|
getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine);
|
|
if (sizeInBits == 0) {
|
|
error("unable to automatically import from " + target->getName() +
|
|
" with relocation type " +
|
|
file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
|
|
toString(file));
|
|
continue;
|
|
}
|
|
// sizeInBits is used to initialize the Flags field; currently no
|
|
// other flags are defined.
|
|
res.emplace_back(target, this, rel.VirtualAddress, sizeInBits);
|
|
}
|
|
}
|
|
|
|
bool SectionChunk::isCOMDAT() const {
|
|
return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
|
|
}
|
|
|
|
void SectionChunk::printDiscardedMessage() const {
|
|
// Removed by dead-stripping. If it's removed by ICF, ICF already
|
|
// printed out the name, so don't repeat that here.
|
|
if (sym && this == repl)
|
|
log("Discarded " + sym->getName());
|
|
}
|
|
|
|
StringRef SectionChunk::getDebugName() const {
|
|
if (sym)
|
|
return sym->getName();
|
|
return "";
|
|
}
|
|
|
|
ArrayRef<uint8_t> SectionChunk::getContents() const {
|
|
ArrayRef<uint8_t> a;
|
|
cantFail(file->getCOFFObj()->getSectionContents(header, a));
|
|
return a;
|
|
}
|
|
|
|
ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
|
|
assert(isCodeView());
|
|
return consumeDebugMagic(getContents(), getSectionName());
|
|
}
|
|
|
|
ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
|
|
StringRef sectionName) {
|
|
if (data.empty())
|
|
return {};
|
|
|
|
// First 4 bytes are section magic.
|
|
if (data.size() < 4)
|
|
fatal("the section is too short: " + sectionName);
|
|
|
|
if (!sectionName.startswith(".debug$"))
|
|
fatal("invalid section: " + sectionName);
|
|
|
|
uint32_t magic = support::endian::read32le(data.data());
|
|
uint32_t expectedMagic = sectionName == ".debug$H"
|
|
? DEBUG_HASHES_SECTION_MAGIC
|
|
: DEBUG_SECTION_MAGIC;
|
|
if (magic != expectedMagic) {
|
|
warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
|
|
utohexstr(magic));
|
|
return {};
|
|
}
|
|
return data.slice(4);
|
|
}
|
|
|
|
SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
|
|
StringRef name) {
|
|
for (SectionChunk *c : sections)
|
|
if (c->getSectionName() == name)
|
|
return c;
|
|
return nullptr;
|
|
}
|
|
|
|
void SectionChunk::replace(SectionChunk *other) {
|
|
p2Align = std::max(p2Align, other->p2Align);
|
|
other->repl = repl;
|
|
other->live = false;
|
|
}
|
|
|
|
uint32_t SectionChunk::getSectionNumber() const {
|
|
DataRefImpl r;
|
|
r.p = reinterpret_cast<uintptr_t>(header);
|
|
SectionRef s(r, file->getCOFFObj());
|
|
return s.getIndex() + 1;
|
|
}
|
|
|
|
CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
|
|
// The value of a common symbol is its size. Align all common symbols smaller
|
|
// than 32 bytes naturally, i.e. round the size up to the next power of two.
|
|
// This is what MSVC link.exe does.
|
|
setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
|
|
hasData = false;
|
|
}
|
|
|
|
uint32_t CommonChunk::getOutputCharacteristics() const {
|
|
return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
|
|
IMAGE_SCN_MEM_WRITE;
|
|
}
|
|
|
|
void StringChunk::writeTo(uint8_t *buf) const {
|
|
memcpy(buf, str.data(), str.size());
|
|
buf[str.size()] = '\0';
|
|
}
|
|
|
|
ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s)
|
|
: ImportThunkChunk(ctx, s) {
|
|
// Intel Optimization Manual says that all branch targets
|
|
// should be 16-byte aligned. MSVC linker does this too.
|
|
setAlignment(16);
|
|
}
|
|
|
|
void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
|
|
memcpy(buf, importThunkX86, sizeof(importThunkX86));
|
|
// The first two bytes is a JMP instruction. Fill its operand.
|
|
write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
|
|
}
|
|
|
|
void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
|
|
res->emplace_back(getRVA() + 2, ctx.config.machine);
|
|
}
|
|
|
|
void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
|
|
memcpy(buf, importThunkX86, sizeof(importThunkX86));
|
|
// The first two bytes is a JMP instruction. Fill its operand.
|
|
write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase);
|
|
}
|
|
|
|
void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
|
|
res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
|
|
}
|
|
|
|
void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
|
|
memcpy(buf, importThunkARM, sizeof(importThunkARM));
|
|
// Fix mov.w and mov.t operands.
|
|
applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase);
|
|
}
|
|
|
|
void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
|
|
int64_t off = impSymbol->getRVA() & 0xfff;
|
|
memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
|
|
applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
|
|
applyArm64Ldr(buf + 4, off);
|
|
}
|
|
|
|
// A Thumb2, PIC, non-interworking range extension thunk.
|
|
const uint8_t armThunk[] = {
|
|
0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4)
|
|
0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4)
|
|
0xe7, 0x44, // L1: add pc, ip
|
|
};
|
|
|
|
size_t RangeExtensionThunkARM::getSize() const {
|
|
assert(ctx.config.machine == ARMNT);
|
|
(void)&ctx;
|
|
return sizeof(armThunk);
|
|
}
|
|
|
|
void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
|
|
assert(ctx.config.machine == ARMNT);
|
|
uint64_t offset = target->getRVA() - rva - 12;
|
|
memcpy(buf, armThunk, sizeof(armThunk));
|
|
applyMOV32T(buf, uint32_t(offset));
|
|
}
|
|
|
|
// A position independent ARM64 adrp+add thunk, with a maximum range of
|
|
// +/- 4 GB, which is enough for any PE-COFF.
|
|
const uint8_t arm64Thunk[] = {
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
|
|
0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest
|
|
0x00, 0x02, 0x1f, 0xd6, // br x16
|
|
};
|
|
|
|
size_t RangeExtensionThunkARM64::getSize() const {
|
|
assert(ctx.config.machine == ARM64);
|
|
(void)&ctx;
|
|
return sizeof(arm64Thunk);
|
|
}
|
|
|
|
void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
|
|
assert(ctx.config.machine == ARM64);
|
|
memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
|
|
applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
|
|
applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
|
|
}
|
|
|
|
LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s)
|
|
: sym(s), ctx(c) {
|
|
setAlignment(ctx.config.wordsize);
|
|
}
|
|
|
|
void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
|
|
res->emplace_back(getRVA(), ctx.config.machine);
|
|
}
|
|
|
|
size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; }
|
|
|
|
void LocalImportChunk::writeTo(uint8_t *buf) const {
|
|
if (ctx.config.is64()) {
|
|
write64le(buf, sym->getRVA() + ctx.config.imageBase);
|
|
} else {
|
|
write32le(buf, sym->getRVA() + ctx.config.imageBase);
|
|
}
|
|
}
|
|
|
|
void RVATableChunk::writeTo(uint8_t *buf) const {
|
|
ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
|
|
size_t cnt = 0;
|
|
for (const ChunkAndOffset &co : syms)
|
|
begin[cnt++] = co.inputChunk->getRVA() + co.offset;
|
|
llvm::sort(begin, begin + cnt);
|
|
assert(std::unique(begin, begin + cnt) == begin + cnt &&
|
|
"RVA tables should be de-duplicated");
|
|
}
|
|
|
|
void RVAFlagTableChunk::writeTo(uint8_t *buf) const {
|
|
struct RVAFlag {
|
|
ulittle32_t rva;
|
|
uint8_t flag;
|
|
};
|
|
auto flags =
|
|
MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size());
|
|
for (auto t : zip(syms, flags)) {
|
|
const auto &sym = std::get<0>(t);
|
|
auto &flag = std::get<1>(t);
|
|
flag.rva = sym.inputChunk->getRVA() + sym.offset;
|
|
flag.flag = 0;
|
|
}
|
|
llvm::sort(flags,
|
|
[](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; });
|
|
assert(llvm::unique(flags, [](const RVAFlag &a,
|
|
const RVAFlag &b) { return a.rva == b.rva; }) ==
|
|
flags.end() &&
|
|
"RVA tables should be de-duplicated");
|
|
}
|
|
|
|
// MinGW specific, for the "automatic import of variables from DLLs" feature.
|
|
size_t PseudoRelocTableChunk::getSize() const {
|
|
if (relocs.empty())
|
|
return 0;
|
|
return 12 + 12 * relocs.size();
|
|
}
|
|
|
|
// MinGW specific.
|
|
void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
|
|
if (relocs.empty())
|
|
return;
|
|
|
|
ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
|
|
// This is the list header, to signal the runtime pseudo relocation v2
|
|
// format.
|
|
table[0] = 0;
|
|
table[1] = 0;
|
|
table[2] = 1;
|
|
|
|
size_t idx = 3;
|
|
for (const RuntimePseudoReloc &rpr : relocs) {
|
|
table[idx + 0] = rpr.sym->getRVA();
|
|
table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
|
|
table[idx + 2] = rpr.flags;
|
|
idx += 3;
|
|
}
|
|
}
|
|
|
|
// Windows-specific. This class represents a block in .reloc section.
|
|
// The format is described here.
|
|
//
|
|
// On Windows, each DLL is linked against a fixed base address and
|
|
// usually loaded to that address. However, if there's already another
|
|
// DLL that overlaps, the loader has to relocate it. To do that, DLLs
|
|
// contain .reloc sections which contain offsets that need to be fixed
|
|
// up at runtime. If the loader finds that a DLL cannot be loaded to its
|
|
// desired base address, it loads it to somewhere else, and add <actual
|
|
// base address> - <desired base address> to each offset that is
|
|
// specified by the .reloc section. In ELF terms, .reloc sections
|
|
// contain relative relocations in REL format (as opposed to RELA.)
|
|
//
|
|
// This already significantly reduces the size of relocations compared
|
|
// to ELF .rel.dyn, but Windows does more to reduce it (probably because
|
|
// it was invented for PCs in the late '80s or early '90s.) Offsets in
|
|
// .reloc are grouped by page where the page size is 12 bits, and
|
|
// offsets sharing the same page address are stored consecutively to
|
|
// represent them with less space. This is very similar to the page
|
|
// table which is grouped by (multiple stages of) pages.
|
|
//
|
|
// For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
|
|
// 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
|
|
// bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
|
|
// are represented like this:
|
|
//
|
|
// 0x00000 -- page address (4 bytes)
|
|
// 16 -- size of this block (4 bytes)
|
|
// 0xA030 -- entries (2 bytes each)
|
|
// 0xA500
|
|
// 0xA700
|
|
// 0xAA00
|
|
// 0x20000 -- page address (4 bytes)
|
|
// 12 -- size of this block (4 bytes)
|
|
// 0xA004 -- entries (2 bytes each)
|
|
// 0xA008
|
|
//
|
|
// Usually we have a lot of relocations for each page, so the number of
|
|
// bytes for one .reloc entry is close to 2 bytes on average.
|
|
BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
|
|
// Block header consists of 4 byte page RVA and 4 byte block size.
|
|
// Each entry is 2 byte. Last entry may be padding.
|
|
data.resize(alignTo((end - begin) * 2 + 8, 4));
|
|
uint8_t *p = data.data();
|
|
write32le(p, page);
|
|
write32le(p + 4, data.size());
|
|
p += 8;
|
|
for (Baserel *i = begin; i != end; ++i) {
|
|
write16le(p, (i->type << 12) | (i->rva - page));
|
|
p += 2;
|
|
}
|
|
}
|
|
|
|
void BaserelChunk::writeTo(uint8_t *buf) const {
|
|
memcpy(buf, data.data(), data.size());
|
|
}
|
|
|
|
uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) {
|
|
switch (machine) {
|
|
case AMD64:
|
|
case ARM64:
|
|
return IMAGE_REL_BASED_DIR64;
|
|
case I386:
|
|
case ARMNT:
|
|
return IMAGE_REL_BASED_HIGHLOW;
|
|
default:
|
|
llvm_unreachable("unknown machine type");
|
|
}
|
|
}
|
|
|
|
MergeChunk::MergeChunk(uint32_t alignment)
|
|
: builder(StringTableBuilder::RAW, llvm::Align(alignment)) {
|
|
setAlignment(alignment);
|
|
}
|
|
|
|
void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) {
|
|
assert(isPowerOf2_32(c->getAlignment()));
|
|
uint8_t p2Align = llvm::Log2_32(c->getAlignment());
|
|
assert(p2Align < std::size(ctx.mergeChunkInstances));
|
|
auto *&mc = ctx.mergeChunkInstances[p2Align];
|
|
if (!mc)
|
|
mc = make<MergeChunk>(c->getAlignment());
|
|
mc->sections.push_back(c);
|
|
}
|
|
|
|
void MergeChunk::finalizeContents() {
|
|
assert(!finalized && "should only finalize once");
|
|
for (SectionChunk *c : sections)
|
|
if (c->live)
|
|
builder.add(toStringRef(c->getContents()));
|
|
builder.finalize();
|
|
finalized = true;
|
|
}
|
|
|
|
void MergeChunk::assignSubsectionRVAs() {
|
|
for (SectionChunk *c : sections) {
|
|
if (!c->live)
|
|
continue;
|
|
size_t off = builder.getOffset(toStringRef(c->getContents()));
|
|
c->setRVA(rva + off);
|
|
}
|
|
}
|
|
|
|
uint32_t MergeChunk::getOutputCharacteristics() const {
|
|
return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
|
|
}
|
|
|
|
size_t MergeChunk::getSize() const {
|
|
return builder.getSize();
|
|
}
|
|
|
|
void MergeChunk::writeTo(uint8_t *buf) const {
|
|
builder.write(buf);
|
|
}
|
|
|
|
// MinGW specific.
|
|
size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; }
|
|
|
|
void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
|
|
if (ctx.config.is64()) {
|
|
write64le(buf, value);
|
|
} else {
|
|
write32le(buf, value);
|
|
}
|
|
}
|
|
|
|
} // namespace lld::coff
|