llvm-project/lld/COFF/SymbolTable.cpp
Amy Huang 5a58b19f9c [LLD] Remove global state in lld/COFF
Remove globals from the lldCOFF library, by moving globals into a context class.
This patch mostly moves the config object into COFFLinkerContext.

See https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html for
context about removing globals from LLD.

Reviewed By: aganea

Differential Revision: https://reviews.llvm.org/D110450
2023-01-09 23:39:30 -05:00

878 lines
29 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "COFFLinkerContext.h"
#include "Config.h"
#include "Driver.h"
#include "LTO.h"
#include "PDB.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Timer.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Object/WindowsMachineFlag.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <utility>
using namespace llvm;
namespace lld::coff {
StringRef ltrim1(StringRef s, const char *chars) {
if (!s.empty() && strchr(chars, s[0]))
return s.substr(1);
return s;
}
void SymbolTable::addFile(InputFile *file) {
log("Reading " + toString(file));
if (file->lazy) {
if (auto *f = dyn_cast<BitcodeFile>(file))
f->parseLazy();
else
cast<ObjFile>(file)->parseLazy();
} else {
file->parse();
if (auto *f = dyn_cast<ObjFile>(file)) {
ctx.objFileInstances.push_back(f);
} else if (auto *f = dyn_cast<BitcodeFile>(file)) {
ctx.bitcodeFileInstances.push_back(f);
} else if (auto *f = dyn_cast<ImportFile>(file)) {
ctx.importFileInstances.push_back(f);
}
}
MachineTypes mt = file->getMachineType();
if (ctx.config.machine == IMAGE_FILE_MACHINE_UNKNOWN) {
ctx.config.machine = mt;
ctx.driver.addWinSysRootLibSearchPaths();
} else if (mt != IMAGE_FILE_MACHINE_UNKNOWN && ctx.config.machine != mt) {
error(toString(file) + ": machine type " + machineToStr(mt) +
" conflicts with " + machineToStr(ctx.config.machine));
return;
}
ctx.driver.parseDirectives(file);
}
static void errorOrWarn(const Twine &s, bool forceUnresolved) {
if (forceUnresolved)
warn(s);
else
error(s);
}
// Causes the file associated with a lazy symbol to be linked in.
static void forceLazy(Symbol *s) {
s->pendingArchiveLoad = true;
switch (s->kind()) {
case Symbol::Kind::LazyArchiveKind: {
auto *l = cast<LazyArchive>(s);
l->file->addMember(l->sym);
break;
}
case Symbol::Kind::LazyObjectKind: {
InputFile *file = cast<LazyObject>(s)->file;
file->ctx.symtab.addFile(file);
break;
}
case Symbol::Kind::LazyDLLSymbolKind: {
auto *l = cast<LazyDLLSymbol>(s);
l->file->makeImport(l->sym);
break;
}
default:
llvm_unreachable(
"symbol passed to forceLazy is not a LazyArchive or LazyObject");
}
}
// Returns the symbol in SC whose value is <= Addr that is closest to Addr.
// This is generally the global variable or function whose definition contains
// Addr.
static Symbol *getSymbol(SectionChunk *sc, uint32_t addr) {
DefinedRegular *candidate = nullptr;
for (Symbol *s : sc->file->getSymbols()) {
auto *d = dyn_cast_or_null<DefinedRegular>(s);
if (!d || !d->data || d->file != sc->file || d->getChunk() != sc ||
d->getValue() > addr ||
(candidate && d->getValue() < candidate->getValue()))
continue;
candidate = d;
}
return candidate;
}
static std::vector<std::string> getSymbolLocations(BitcodeFile *file) {
std::string res("\n>>> referenced by ");
StringRef source = file->obj->getSourceFileName();
if (!source.empty())
res += source.str() + "\n>>> ";
res += toString(file);
return {res};
}
static std::optional<std::pair<StringRef, uint32_t>>
getFileLineDwarf(const SectionChunk *c, uint32_t addr) {
std::optional<DILineInfo> optionalLineInfo =
c->file->getDILineInfo(addr, c->getSectionNumber() - 1);
if (!optionalLineInfo)
return std::nullopt;
const DILineInfo &lineInfo = *optionalLineInfo;
if (lineInfo.FileName == DILineInfo::BadString)
return std::nullopt;
return std::make_pair(saver().save(lineInfo.FileName), lineInfo.Line);
}
static std::optional<std::pair<StringRef, uint32_t>>
getFileLine(const SectionChunk *c, uint32_t addr) {
// MinGW can optionally use codeview, even if the default is dwarf.
std::optional<std::pair<StringRef, uint32_t>> fileLine =
getFileLineCodeView(c, addr);
// If codeview didn't yield any result, check dwarf in MinGW mode.
if (!fileLine && c->file->ctx.config.mingw)
fileLine = getFileLineDwarf(c, addr);
return fileLine;
}
// Given a file and the index of a symbol in that file, returns a description
// of all references to that symbol from that file. If no debug information is
// available, returns just the name of the file, else one string per actual
// reference as described in the debug info.
// Returns up to maxStrings string descriptions, along with the total number of
// locations found.
static std::pair<std::vector<std::string>, size_t>
getSymbolLocations(ObjFile *file, uint32_t symIndex, size_t maxStrings) {
struct Location {
Symbol *sym;
std::pair<StringRef, uint32_t> fileLine;
};
std::vector<Location> locations;
size_t numLocations = 0;
for (Chunk *c : file->getChunks()) {
auto *sc = dyn_cast<SectionChunk>(c);
if (!sc)
continue;
for (const coff_relocation &r : sc->getRelocs()) {
if (r.SymbolTableIndex != symIndex)
continue;
numLocations++;
if (locations.size() >= maxStrings)
continue;
std::optional<std::pair<StringRef, uint32_t>> fileLine =
getFileLine(sc, r.VirtualAddress);
Symbol *sym = getSymbol(sc, r.VirtualAddress);
if (fileLine)
locations.push_back({sym, *fileLine});
else if (sym)
locations.push_back({sym, {"", 0}});
}
}
if (maxStrings == 0)
return std::make_pair(std::vector<std::string>(), numLocations);
if (numLocations == 0)
return std::make_pair(
std::vector<std::string>{"\n>>> referenced by " + toString(file)}, 1);
std::vector<std::string> symbolLocations(locations.size());
size_t i = 0;
for (Location loc : locations) {
llvm::raw_string_ostream os(symbolLocations[i++]);
os << "\n>>> referenced by ";
if (!loc.fileLine.first.empty())
os << loc.fileLine.first << ":" << loc.fileLine.second
<< "\n>>> ";
os << toString(file);
if (loc.sym)
os << ":(" << toString(file->ctx, *loc.sym) << ')';
}
return std::make_pair(symbolLocations, numLocations);
}
std::vector<std::string> getSymbolLocations(ObjFile *file, uint32_t symIndex) {
return getSymbolLocations(file, symIndex, SIZE_MAX).first;
}
static std::pair<std::vector<std::string>, size_t>
getSymbolLocations(InputFile *file, uint32_t symIndex, size_t maxStrings) {
if (auto *o = dyn_cast<ObjFile>(file))
return getSymbolLocations(o, symIndex, maxStrings);
if (auto *b = dyn_cast<BitcodeFile>(file)) {
std::vector<std::string> symbolLocations = getSymbolLocations(b);
size_t numLocations = symbolLocations.size();
if (symbolLocations.size() > maxStrings)
symbolLocations.resize(maxStrings);
return std::make_pair(symbolLocations, numLocations);
}
llvm_unreachable("unsupported file type passed to getSymbolLocations");
return std::make_pair(std::vector<std::string>(), (size_t)0);
}
// For an undefined symbol, stores all files referencing it and the index of
// the undefined symbol in each file.
struct UndefinedDiag {
Symbol *sym;
struct File {
InputFile *file;
uint32_t symIndex;
};
std::vector<File> files;
};
static void reportUndefinedSymbol(const COFFLinkerContext &ctx,
const UndefinedDiag &undefDiag) {
std::string out;
llvm::raw_string_ostream os(out);
os << "undefined symbol: " << toString(ctx, *undefDiag.sym);
const size_t maxUndefReferences = 3;
size_t numDisplayedRefs = 0, numRefs = 0;
for (const UndefinedDiag::File &ref : undefDiag.files) {
auto [symbolLocations, totalLocations] = getSymbolLocations(
ref.file, ref.symIndex, maxUndefReferences - numDisplayedRefs);
numRefs += totalLocations;
numDisplayedRefs += symbolLocations.size();
for (const std::string &s : symbolLocations) {
os << s;
}
}
if (numDisplayedRefs < numRefs)
os << "\n>>> referenced " << numRefs - numDisplayedRefs << " more times";
errorOrWarn(os.str(), ctx.config.forceUnresolved);
}
void SymbolTable::loadMinGWSymbols() {
for (auto &i : symMap) {
Symbol *sym = i.second;
auto *undef = dyn_cast<Undefined>(sym);
if (!undef)
continue;
if (undef->getWeakAlias())
continue;
StringRef name = undef->getName();
if (ctx.config.machine == I386 && ctx.config.stdcallFixup) {
// Check if we can resolve an undefined decorated symbol by finding
// the intended target as an undecorated symbol (only with a leading
// underscore).
StringRef origName = name;
StringRef baseName = name;
// Trim down stdcall/fastcall/vectorcall symbols to the base name.
baseName = ltrim1(baseName, "_@");
baseName = baseName.substr(0, baseName.find('@'));
// Add a leading underscore, as it would be in cdecl form.
std::string newName = ("_" + baseName).str();
Symbol *l;
if (newName != origName && (l = find(newName)) != nullptr) {
// If we found a symbol and it is lazy; load it.
if (l->isLazy() && !l->pendingArchiveLoad) {
log("Loading lazy " + l->getName() + " from " +
l->getFile()->getName() + " for stdcall fixup");
forceLazy(l);
}
// If it's lazy or already defined, hook it up as weak alias.
if (l->isLazy() || isa<Defined>(l)) {
if (ctx.config.warnStdcallFixup)
warn("Resolving " + origName + " by linking to " + newName);
else
log("Resolving " + origName + " by linking to " + newName);
undef->weakAlias = l;
continue;
}
}
}
if (ctx.config.autoImport) {
if (name.startswith("__imp_"))
continue;
// If we have an undefined symbol, but we have a lazy symbol we could
// load, load it.
Symbol *l = find(("__imp_" + name).str());
if (!l || l->pendingArchiveLoad || !l->isLazy())
continue;
log("Loading lazy " + l->getName() + " from " + l->getFile()->getName() +
" for automatic import");
forceLazy(l);
}
}
}
Defined *SymbolTable::impSymbol(StringRef name) {
if (name.startswith("__imp_"))
return nullptr;
return dyn_cast_or_null<Defined>(find(("__imp_" + name).str()));
}
bool SymbolTable::handleMinGWAutomaticImport(Symbol *sym, StringRef name) {
Defined *imp = impSymbol(name);
if (!imp)
return false;
// Replace the reference directly to a variable with a reference
// to the import address table instead. This obviously isn't right,
// but we mark the symbol as isRuntimePseudoReloc, and a later pass
// will add runtime pseudo relocations for every relocation against
// this Symbol. The runtime pseudo relocation framework expects the
// reference itself to point at the IAT entry.
size_t impSize = 0;
if (isa<DefinedImportData>(imp)) {
log("Automatically importing " + name + " from " +
cast<DefinedImportData>(imp)->getDLLName());
impSize = sizeof(DefinedImportData);
} else if (isa<DefinedRegular>(imp)) {
log("Automatically importing " + name + " from " +
toString(cast<DefinedRegular>(imp)->file));
impSize = sizeof(DefinedRegular);
} else {
warn("unable to automatically import " + name + " from " + imp->getName() +
" from " + toString(cast<DefinedRegular>(imp)->file) +
"; unexpected symbol type");
return false;
}
sym->replaceKeepingName(imp, impSize);
sym->isRuntimePseudoReloc = true;
// There may exist symbols named .refptr.<name> which only consist
// of a single pointer to <name>. If it turns out <name> is
// automatically imported, we don't need to keep the .refptr.<name>
// pointer at all, but redirect all accesses to it to the IAT entry
// for __imp_<name> instead, and drop the whole .refptr.<name> chunk.
DefinedRegular *refptr =
dyn_cast_or_null<DefinedRegular>(find((".refptr." + name).str()));
if (refptr && refptr->getChunk()->getSize() == ctx.config.wordsize) {
SectionChunk *sc = dyn_cast_or_null<SectionChunk>(refptr->getChunk());
if (sc && sc->getRelocs().size() == 1 && *sc->symbols().begin() == sym) {
log("Replacing .refptr." + name + " with " + imp->getName());
refptr->getChunk()->live = false;
refptr->replaceKeepingName(imp, impSize);
}
}
return true;
}
/// Helper function for reportUnresolvable and resolveRemainingUndefines.
/// This function emits an "undefined symbol" diagnostic for each symbol in
/// undefs. If localImports is not nullptr, it also emits a "locally
/// defined symbol imported" diagnostic for symbols in localImports.
/// objFiles and bitcodeFiles (if not nullptr) are used to report where
/// undefined symbols are referenced.
static void reportProblemSymbols(
const COFFLinkerContext &ctx, const SmallPtrSetImpl<Symbol *> &undefs,
const DenseMap<Symbol *, Symbol *> *localImports, bool needBitcodeFiles) {
// Return early if there is nothing to report (which should be
// the common case).
if (undefs.empty() && (!localImports || localImports->empty()))
return;
for (Symbol *b : ctx.config.gcroot) {
if (undefs.count(b))
errorOrWarn("<root>: undefined symbol: " + toString(ctx, *b),
ctx.config.forceUnresolved);
if (localImports)
if (Symbol *imp = localImports->lookup(b))
warn("<root>: locally defined symbol imported: " + toString(ctx, *imp) +
" (defined in " + toString(imp->getFile()) + ") [LNK4217]");
}
std::vector<UndefinedDiag> undefDiags;
DenseMap<Symbol *, int> firstDiag;
auto processFile = [&](InputFile *file, ArrayRef<Symbol *> symbols) {
uint32_t symIndex = (uint32_t)-1;
for (Symbol *sym : symbols) {
++symIndex;
if (!sym)
continue;
if (undefs.count(sym)) {
auto it = firstDiag.find(sym);
if (it == firstDiag.end()) {
firstDiag[sym] = undefDiags.size();
undefDiags.push_back({sym, {{file, symIndex}}});
} else {
undefDiags[it->second].files.push_back({file, symIndex});
}
}
if (localImports)
if (Symbol *imp = localImports->lookup(sym))
warn(toString(file) +
": locally defined symbol imported: " + toString(ctx, *imp) +
" (defined in " + toString(imp->getFile()) + ") [LNK4217]");
}
};
for (ObjFile *file : ctx.objFileInstances)
processFile(file, file->getSymbols());
if (needBitcodeFiles)
for (BitcodeFile *file : ctx.bitcodeFileInstances)
processFile(file, file->getSymbols());
for (const UndefinedDiag &undefDiag : undefDiags)
reportUndefinedSymbol(ctx, undefDiag);
}
void SymbolTable::reportUnresolvable() {
SmallPtrSet<Symbol *, 8> undefs;
for (auto &i : symMap) {
Symbol *sym = i.second;
auto *undef = dyn_cast<Undefined>(sym);
if (!undef || sym->deferUndefined)
continue;
if (undef->getWeakAlias())
continue;
StringRef name = undef->getName();
if (name.startswith("__imp_")) {
Symbol *imp = find(name.substr(strlen("__imp_")));
if (imp && isa<Defined>(imp))
continue;
}
if (name.contains("_PchSym_"))
continue;
if (ctx.config.autoImport && impSymbol(name))
continue;
undefs.insert(sym);
}
reportProblemSymbols(ctx, undefs,
/* localImports */ nullptr, true);
}
void SymbolTable::resolveRemainingUndefines() {
SmallPtrSet<Symbol *, 8> undefs;
DenseMap<Symbol *, Symbol *> localImports;
for (auto &i : symMap) {
Symbol *sym = i.second;
auto *undef = dyn_cast<Undefined>(sym);
if (!undef)
continue;
if (!sym->isUsedInRegularObj)
continue;
StringRef name = undef->getName();
// A weak alias may have been resolved, so check for that.
if (Defined *d = undef->getWeakAlias()) {
// We want to replace Sym with D. However, we can't just blindly
// copy sizeof(SymbolUnion) bytes from D to Sym because D may be an
// internal symbol, and internal symbols are stored as "unparented"
// Symbols. For that reason we need to check which type of symbol we
// are dealing with and copy the correct number of bytes.
if (isa<DefinedRegular>(d))
memcpy(sym, d, sizeof(DefinedRegular));
else if (isa<DefinedAbsolute>(d))
memcpy(sym, d, sizeof(DefinedAbsolute));
else
memcpy(sym, d, sizeof(SymbolUnion));
continue;
}
// If we can resolve a symbol by removing __imp_ prefix, do that.
// This odd rule is for compatibility with MSVC linker.
if (name.startswith("__imp_")) {
Symbol *imp = find(name.substr(strlen("__imp_")));
if (imp && isa<Defined>(imp)) {
auto *d = cast<Defined>(imp);
replaceSymbol<DefinedLocalImport>(sym, ctx, name, d);
localImportChunks.push_back(cast<DefinedLocalImport>(sym)->getChunk());
localImports[sym] = d;
continue;
}
}
// We don't want to report missing Microsoft precompiled headers symbols.
// A proper message will be emitted instead in PDBLinker::aquirePrecompObj
if (name.contains("_PchSym_"))
continue;
if (ctx.config.autoImport && handleMinGWAutomaticImport(sym, name))
continue;
// Remaining undefined symbols are not fatal if /force is specified.
// They are replaced with dummy defined symbols.
if (ctx.config.forceUnresolved)
replaceSymbol<DefinedAbsolute>(sym, ctx, name, 0);
undefs.insert(sym);
}
reportProblemSymbols(
ctx, undefs,
ctx.config.warnLocallyDefinedImported ? &localImports : nullptr, false);
}
std::pair<Symbol *, bool> SymbolTable::insert(StringRef name) {
bool inserted = false;
Symbol *&sym = symMap[CachedHashStringRef(name)];
if (!sym) {
sym = reinterpret_cast<Symbol *>(make<SymbolUnion>());
sym->isUsedInRegularObj = false;
sym->pendingArchiveLoad = false;
sym->canInline = true;
inserted = true;
}
return {sym, inserted};
}
std::pair<Symbol *, bool> SymbolTable::insert(StringRef name, InputFile *file) {
std::pair<Symbol *, bool> result = insert(name);
if (!file || !isa<BitcodeFile>(file))
result.first->isUsedInRegularObj = true;
return result;
}
Symbol *SymbolTable::addUndefined(StringRef name, InputFile *f,
bool isWeakAlias) {
auto [s, wasInserted] = insert(name, f);
if (wasInserted || (s->isLazy() && isWeakAlias)) {
replaceSymbol<Undefined>(s, name);
return s;
}
if (s->isLazy())
forceLazy(s);
return s;
}
void SymbolTable::addLazyArchive(ArchiveFile *f, const Archive::Symbol &sym) {
StringRef name = sym.getName();
auto [s, wasInserted] = insert(name);
if (wasInserted) {
replaceSymbol<LazyArchive>(s, f, sym);
return;
}
auto *u = dyn_cast<Undefined>(s);
if (!u || u->weakAlias || s->pendingArchiveLoad)
return;
s->pendingArchiveLoad = true;
f->addMember(sym);
}
void SymbolTable::addLazyObject(InputFile *f, StringRef n) {
assert(f->lazy);
auto [s, wasInserted] = insert(n, f);
if (wasInserted) {
replaceSymbol<LazyObject>(s, f, n);
return;
}
auto *u = dyn_cast<Undefined>(s);
if (!u || u->weakAlias || s->pendingArchiveLoad)
return;
s->pendingArchiveLoad = true;
f->lazy = false;
addFile(f);
}
void SymbolTable::addLazyDLLSymbol(DLLFile *f, DLLFile::Symbol *sym,
StringRef n) {
auto [s, wasInserted] = insert(n);
if (wasInserted) {
replaceSymbol<LazyDLLSymbol>(s, f, sym, n);
return;
}
auto *u = dyn_cast<Undefined>(s);
if (!u || u->weakAlias || s->pendingArchiveLoad)
return;
s->pendingArchiveLoad = true;
f->makeImport(sym);
}
static std::string getSourceLocationBitcode(BitcodeFile *file) {
std::string res("\n>>> defined at ");
StringRef source = file->obj->getSourceFileName();
if (!source.empty())
res += source.str() + "\n>>> ";
res += toString(file);
return res;
}
static std::string getSourceLocationObj(ObjFile *file, SectionChunk *sc,
uint32_t offset, StringRef name) {
std::optional<std::pair<StringRef, uint32_t>> fileLine;
if (sc)
fileLine = getFileLine(sc, offset);
if (!fileLine)
fileLine = file->getVariableLocation(name);
std::string res;
llvm::raw_string_ostream os(res);
os << "\n>>> defined at ";
if (fileLine)
os << fileLine->first << ":" << fileLine->second << "\n>>> ";
os << toString(file);
return os.str();
}
static std::string getSourceLocation(InputFile *file, SectionChunk *sc,
uint32_t offset, StringRef name) {
if (!file)
return "";
if (auto *o = dyn_cast<ObjFile>(file))
return getSourceLocationObj(o, sc, offset, name);
if (auto *b = dyn_cast<BitcodeFile>(file))
return getSourceLocationBitcode(b);
return "\n>>> defined at " + toString(file);
}
// Construct and print an error message in the form of:
//
// lld-link: error: duplicate symbol: foo
// >>> defined at bar.c:30
// >>> bar.o
// >>> defined at baz.c:563
// >>> baz.o
void SymbolTable::reportDuplicate(Symbol *existing, InputFile *newFile,
SectionChunk *newSc,
uint32_t newSectionOffset) {
std::string msg;
llvm::raw_string_ostream os(msg);
os << "duplicate symbol: " << toString(ctx, *existing);
DefinedRegular *d = dyn_cast<DefinedRegular>(existing);
if (d && isa<ObjFile>(d->getFile())) {
os << getSourceLocation(d->getFile(), d->getChunk(), d->getValue(),
existing->getName());
} else {
os << getSourceLocation(existing->getFile(), nullptr, 0, "");
}
os << getSourceLocation(newFile, newSc, newSectionOffset,
existing->getName());
if (ctx.config.forceMultiple)
warn(os.str());
else
error(os.str());
}
Symbol *SymbolTable::addAbsolute(StringRef n, COFFSymbolRef sym) {
auto [s, wasInserted] = insert(n, nullptr);
s->isUsedInRegularObj = true;
if (wasInserted || isa<Undefined>(s) || s->isLazy())
replaceSymbol<DefinedAbsolute>(s, ctx, n, sym);
else if (auto *da = dyn_cast<DefinedAbsolute>(s)) {
if (da->getVA() != sym.getValue())
reportDuplicate(s, nullptr);
} else if (!isa<DefinedCOFF>(s))
reportDuplicate(s, nullptr);
return s;
}
Symbol *SymbolTable::addAbsolute(StringRef n, uint64_t va) {
auto [s, wasInserted] = insert(n, nullptr);
s->isUsedInRegularObj = true;
if (wasInserted || isa<Undefined>(s) || s->isLazy())
replaceSymbol<DefinedAbsolute>(s, ctx, n, va);
else if (auto *da = dyn_cast<DefinedAbsolute>(s)) {
if (da->getVA() != va)
reportDuplicate(s, nullptr);
} else if (!isa<DefinedCOFF>(s))
reportDuplicate(s, nullptr);
return s;
}
Symbol *SymbolTable::addSynthetic(StringRef n, Chunk *c) {
auto [s, wasInserted] = insert(n, nullptr);
s->isUsedInRegularObj = true;
if (wasInserted || isa<Undefined>(s) || s->isLazy())
replaceSymbol<DefinedSynthetic>(s, n, c);
else if (!isa<DefinedCOFF>(s))
reportDuplicate(s, nullptr);
return s;
}
Symbol *SymbolTable::addRegular(InputFile *f, StringRef n,
const coff_symbol_generic *sym, SectionChunk *c,
uint32_t sectionOffset, bool isWeak) {
auto [s, wasInserted] = insert(n, f);
if (wasInserted || !isa<DefinedRegular>(s) || s->isWeak)
replaceSymbol<DefinedRegular>(s, f, n, /*IsCOMDAT*/ false,
/*IsExternal*/ true, sym, c, isWeak);
else if (!isWeak)
reportDuplicate(s, f, c, sectionOffset);
return s;
}
std::pair<DefinedRegular *, bool>
SymbolTable::addComdat(InputFile *f, StringRef n,
const coff_symbol_generic *sym) {
auto [s, wasInserted] = insert(n, f);
if (wasInserted || !isa<DefinedRegular>(s)) {
replaceSymbol<DefinedRegular>(s, f, n, /*IsCOMDAT*/ true,
/*IsExternal*/ true, sym, nullptr);
return {cast<DefinedRegular>(s), true};
}
auto *existingSymbol = cast<DefinedRegular>(s);
if (!existingSymbol->isCOMDAT)
reportDuplicate(s, f);
return {existingSymbol, false};
}
Symbol *SymbolTable::addCommon(InputFile *f, StringRef n, uint64_t size,
const coff_symbol_generic *sym, CommonChunk *c) {
auto [s, wasInserted] = insert(n, f);
if (wasInserted || !isa<DefinedCOFF>(s))
replaceSymbol<DefinedCommon>(s, f, n, size, sym, c);
else if (auto *dc = dyn_cast<DefinedCommon>(s))
if (size > dc->getSize())
replaceSymbol<DefinedCommon>(s, f, n, size, sym, c);
return s;
}
Symbol *SymbolTable::addImportData(StringRef n, ImportFile *f) {
auto [s, wasInserted] = insert(n, nullptr);
s->isUsedInRegularObj = true;
if (wasInserted || isa<Undefined>(s) || s->isLazy()) {
replaceSymbol<DefinedImportData>(s, n, f);
return s;
}
reportDuplicate(s, f);
return nullptr;
}
Symbol *SymbolTable::addImportThunk(StringRef name, DefinedImportData *id,
uint16_t machine) {
auto [s, wasInserted] = insert(name, nullptr);
s->isUsedInRegularObj = true;
if (wasInserted || isa<Undefined>(s) || s->isLazy()) {
replaceSymbol<DefinedImportThunk>(s, ctx, name, id, machine);
return s;
}
reportDuplicate(s, id->file);
return nullptr;
}
void SymbolTable::addLibcall(StringRef name) {
Symbol *sym = findUnderscore(name);
if (!sym)
return;
if (auto *l = dyn_cast<LazyArchive>(sym)) {
MemoryBufferRef mb = l->getMemberBuffer();
if (isBitcode(mb))
addUndefined(sym->getName());
} else if (LazyObject *o = dyn_cast<LazyObject>(sym)) {
if (isBitcode(o->file->mb))
addUndefined(sym->getName());
}
}
std::vector<Chunk *> SymbolTable::getChunks() const {
std::vector<Chunk *> res;
for (ObjFile *file : ctx.objFileInstances) {
ArrayRef<Chunk *> v = file->getChunks();
res.insert(res.end(), v.begin(), v.end());
}
return res;
}
Symbol *SymbolTable::find(StringRef name) const {
return symMap.lookup(CachedHashStringRef(name));
}
Symbol *SymbolTable::findUnderscore(StringRef name) const {
if (ctx.config.machine == I386)
return find(("_" + name).str());
return find(name);
}
// Return all symbols that start with Prefix, possibly ignoring the first
// character of Prefix or the first character symbol.
std::vector<Symbol *> SymbolTable::getSymsWithPrefix(StringRef prefix) {
std::vector<Symbol *> syms;
for (auto pair : symMap) {
StringRef name = pair.first.val();
if (name.startswith(prefix) || name.startswith(prefix.drop_front()) ||
name.drop_front().startswith(prefix) ||
name.drop_front().startswith(prefix.drop_front())) {
syms.push_back(pair.second);
}
}
return syms;
}
Symbol *SymbolTable::findMangle(StringRef name) {
if (Symbol *sym = find(name)) {
if (auto *u = dyn_cast<Undefined>(sym)) {
// We're specifically looking for weak aliases that ultimately resolve to
// defined symbols, hence the call to getWeakAlias() instead of just using
// the weakAlias member variable. This matches link.exe's behavior.
if (Symbol *weakAlias = u->getWeakAlias())
return weakAlias;
} else {
return sym;
}
}
// Efficient fuzzy string lookup is impossible with a hash table, so iterate
// the symbol table once and collect all possibly matching symbols into this
// vector. Then compare each possibly matching symbol with each possible
// mangling.
std::vector<Symbol *> syms = getSymsWithPrefix(name);
auto findByPrefix = [&syms](const Twine &t) -> Symbol * {
std::string prefix = t.str();
for (auto *s : syms)
if (s->getName().startswith(prefix))
return s;
return nullptr;
};
// For non-x86, just look for C++ functions.
if (ctx.config.machine != I386)
return findByPrefix("?" + name + "@@Y");
if (!name.startswith("_"))
return nullptr;
// Search for x86 stdcall function.
if (Symbol *s = findByPrefix(name + "@"))
return s;
// Search for x86 fastcall function.
if (Symbol *s = findByPrefix("@" + name.substr(1) + "@"))
return s;
// Search for x86 vectorcall function.
if (Symbol *s = findByPrefix(name.substr(1) + "@@"))
return s;
// Search for x86 C++ non-member function.
return findByPrefix("?" + name.substr(1) + "@@Y");
}
Symbol *SymbolTable::addUndefined(StringRef name) {
return addUndefined(name, nullptr, false);
}
void SymbolTable::compileBitcodeFiles() {
if (ctx.bitcodeFileInstances.empty())
return;
ScopedTimer t(ctx.ltoTimer);
lto.reset(new BitcodeCompiler(ctx));
for (BitcodeFile *f : ctx.bitcodeFileInstances)
lto->add(*f);
for (InputFile *newObj : lto->compile()) {
ObjFile *obj = cast<ObjFile>(newObj);
obj->parse();
ctx.objFileInstances.push_back(obj);
}
}
} // namespace lld::coff