1791 lines
66 KiB
C++
1791 lines
66 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Config.h"
|
|
#include "DWARF.h"
|
|
#include "Driver.h"
|
|
#include "InputSection.h"
|
|
#include "LinkerScript.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm/ADT/CachedHashString.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Object/IRObjectFile.h"
|
|
#include "llvm/Support/ARMAttributeParser.h"
|
|
#include "llvm/Support/ARMBuildAttributes.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/RISCVAttributeParser.h"
|
|
#include "llvm/Support/TarWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::sys;
|
|
using namespace llvm::sys::fs;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
bool InputFile::isInGroup;
|
|
uint32_t InputFile::nextGroupId;
|
|
|
|
std::unique_ptr<TarWriter> elf::tar;
|
|
|
|
// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
|
|
std::string lld::toString(const InputFile *f) {
|
|
static std::mutex mu;
|
|
if (!f)
|
|
return "<internal>";
|
|
|
|
{
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
if (f->toStringCache.empty()) {
|
|
if (f->archiveName.empty())
|
|
f->toStringCache = f->getName();
|
|
else
|
|
(f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
|
|
}
|
|
}
|
|
return std::string(f->toStringCache);
|
|
}
|
|
|
|
static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
|
|
unsigned char size;
|
|
unsigned char endian;
|
|
std::tie(size, endian) = getElfArchType(mb.getBuffer());
|
|
|
|
auto report = [&](StringRef msg) {
|
|
StringRef filename = mb.getBufferIdentifier();
|
|
if (archiveName.empty())
|
|
fatal(filename + ": " + msg);
|
|
else
|
|
fatal(archiveName + "(" + filename + "): " + msg);
|
|
};
|
|
|
|
if (!mb.getBuffer().startswith(ElfMagic))
|
|
report("not an ELF file");
|
|
if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
|
|
report("corrupted ELF file: invalid data encoding");
|
|
if (size != ELFCLASS32 && size != ELFCLASS64)
|
|
report("corrupted ELF file: invalid file class");
|
|
|
|
size_t bufSize = mb.getBuffer().size();
|
|
if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
|
|
(size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
|
|
report("corrupted ELF file: file is too short");
|
|
|
|
if (size == ELFCLASS32)
|
|
return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
|
|
return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
|
|
}
|
|
|
|
// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
|
|
// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
|
|
// the input objects have been compiled.
|
|
static void updateARMVFPArgs(const ARMAttributeParser &attributes,
|
|
const InputFile *f) {
|
|
std::optional<unsigned> attr =
|
|
attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
|
|
if (!attr)
|
|
// If an ABI tag isn't present then it is implicitly given the value of 0
|
|
// which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
|
|
// including some in glibc that don't use FP args (and should have value 3)
|
|
// don't have the attribute so we do not consider an implicit value of 0
|
|
// as a clash.
|
|
return;
|
|
|
|
unsigned vfpArgs = *attr;
|
|
ARMVFPArgKind arg;
|
|
switch (vfpArgs) {
|
|
case ARMBuildAttrs::BaseAAPCS:
|
|
arg = ARMVFPArgKind::Base;
|
|
break;
|
|
case ARMBuildAttrs::HardFPAAPCS:
|
|
arg = ARMVFPArgKind::VFP;
|
|
break;
|
|
case ARMBuildAttrs::ToolChainFPPCS:
|
|
// Tool chain specific convention that conforms to neither AAPCS variant.
|
|
arg = ARMVFPArgKind::ToolChain;
|
|
break;
|
|
case ARMBuildAttrs::CompatibleFPAAPCS:
|
|
// Object compatible with all conventions.
|
|
return;
|
|
default:
|
|
error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
|
|
return;
|
|
}
|
|
// Follow ld.bfd and error if there is a mix of calling conventions.
|
|
if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
|
|
error(toString(f) + ": incompatible Tag_ABI_VFP_args");
|
|
else
|
|
config->armVFPArgs = arg;
|
|
}
|
|
|
|
// The ARM support in lld makes some use of instructions that are not available
|
|
// on all ARM architectures. Namely:
|
|
// - Use of BLX instruction for interworking between ARM and Thumb state.
|
|
// - Use of the extended Thumb branch encoding in relocation.
|
|
// - Use of the MOVT/MOVW instructions in Thumb Thunks.
|
|
// The ARM Attributes section contains information about the architecture chosen
|
|
// at compile time. We follow the convention that if at least one input object
|
|
// is compiled with an architecture that supports these features then lld is
|
|
// permitted to use them.
|
|
static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
|
|
std::optional<unsigned> attr =
|
|
attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
|
|
if (!attr)
|
|
return;
|
|
auto arch = *attr;
|
|
switch (arch) {
|
|
case ARMBuildAttrs::Pre_v4:
|
|
case ARMBuildAttrs::v4:
|
|
case ARMBuildAttrs::v4T:
|
|
// Architectures prior to v5 do not support BLX instruction
|
|
break;
|
|
case ARMBuildAttrs::v5T:
|
|
case ARMBuildAttrs::v5TE:
|
|
case ARMBuildAttrs::v5TEJ:
|
|
case ARMBuildAttrs::v6:
|
|
case ARMBuildAttrs::v6KZ:
|
|
case ARMBuildAttrs::v6K:
|
|
config->armHasBlx = true;
|
|
// Architectures used in pre-Cortex processors do not support
|
|
// The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
|
|
// of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
|
|
break;
|
|
default:
|
|
// All other Architectures have BLX and extended branch encoding
|
|
config->armHasBlx = true;
|
|
config->armJ1J2BranchEncoding = true;
|
|
if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
|
|
// All Architectures used in Cortex processors with the exception
|
|
// of v6-M and v6S-M have the MOVT and MOVW instructions.
|
|
config->armHasMovtMovw = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
InputFile::InputFile(Kind k, MemoryBufferRef m)
|
|
: mb(m), groupId(nextGroupId), fileKind(k) {
|
|
// All files within the same --{start,end}-group get the same group ID.
|
|
// Otherwise, a new file will get a new group ID.
|
|
if (!isInGroup)
|
|
++nextGroupId;
|
|
}
|
|
|
|
std::optional<MemoryBufferRef> elf::readFile(StringRef path) {
|
|
llvm::TimeTraceScope timeScope("Load input files", path);
|
|
|
|
// The --chroot option changes our virtual root directory.
|
|
// This is useful when you are dealing with files created by --reproduce.
|
|
if (!config->chroot.empty() && path.startswith("/"))
|
|
path = saver().save(config->chroot + path);
|
|
|
|
log(path);
|
|
config->dependencyFiles.insert(llvm::CachedHashString(path));
|
|
|
|
auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
|
|
/*RequiresNullTerminator=*/false);
|
|
if (auto ec = mbOrErr.getError()) {
|
|
error("cannot open " + path + ": " + ec.message());
|
|
return std::nullopt;
|
|
}
|
|
|
|
MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
|
|
ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
|
|
|
|
if (tar)
|
|
tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return mbref;
|
|
}
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
static bool isCompatible(InputFile *file) {
|
|
if (!file->isElf() && !isa<BitcodeFile>(file))
|
|
return true;
|
|
|
|
if (file->ekind == config->ekind && file->emachine == config->emachine) {
|
|
if (config->emachine != EM_MIPS)
|
|
return true;
|
|
if (isMipsN32Abi(file) == config->mipsN32Abi)
|
|
return true;
|
|
}
|
|
|
|
StringRef target =
|
|
!config->bfdname.empty() ? config->bfdname : config->emulation;
|
|
if (!target.empty()) {
|
|
error(toString(file) + " is incompatible with " + target);
|
|
return false;
|
|
}
|
|
|
|
InputFile *existing = nullptr;
|
|
if (!ctx.objectFiles.empty())
|
|
existing = ctx.objectFiles[0];
|
|
else if (!ctx.sharedFiles.empty())
|
|
existing = ctx.sharedFiles[0];
|
|
else if (!ctx.bitcodeFiles.empty())
|
|
existing = ctx.bitcodeFiles[0];
|
|
std::string with;
|
|
if (existing)
|
|
with = " with " + toString(existing);
|
|
error(toString(file) + " is incompatible" + with);
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT> static void doParseFile(InputFile *file) {
|
|
if (!isCompatible(file))
|
|
return;
|
|
|
|
// Binary file
|
|
if (auto *f = dyn_cast<BinaryFile>(file)) {
|
|
ctx.binaryFiles.push_back(f);
|
|
f->parse();
|
|
return;
|
|
}
|
|
|
|
// Lazy object file
|
|
if (file->lazy) {
|
|
if (auto *f = dyn_cast<BitcodeFile>(file)) {
|
|
ctx.lazyBitcodeFiles.push_back(f);
|
|
f->parseLazy();
|
|
} else {
|
|
cast<ObjFile<ELFT>>(file)->parseLazy();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (config->trace)
|
|
message(toString(file));
|
|
|
|
// .so file
|
|
if (auto *f = dyn_cast<SharedFile>(file)) {
|
|
f->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file
|
|
if (auto *f = dyn_cast<BitcodeFile>(file)) {
|
|
ctx.bitcodeFiles.push_back(f);
|
|
f->parse();
|
|
return;
|
|
}
|
|
|
|
// Regular object file
|
|
ctx.objectFiles.push_back(cast<ELFFileBase>(file));
|
|
cast<ObjFile<ELFT>>(file)->parse();
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
|
|
|
|
// Concatenates arguments to construct a string representing an error location.
|
|
static std::string createFileLineMsg(StringRef path, unsigned line) {
|
|
std::string filename = std::string(path::filename(path));
|
|
std::string lineno = ":" + std::to_string(line);
|
|
if (filename == path)
|
|
return filename + lineno;
|
|
return filename + lineno + " (" + path.str() + lineno + ")";
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
|
|
InputSectionBase &sec, uint64_t offset) {
|
|
// In DWARF, functions and variables are stored to different places.
|
|
// First, look up a function for a given offset.
|
|
if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
|
|
return createFileLineMsg(info->FileName, info->Line);
|
|
|
|
// If it failed, look up again as a variable.
|
|
if (std::optional<std::pair<std::string, unsigned>> fileLine =
|
|
file.getVariableLoc(sym.getName()))
|
|
return createFileLineMsg(fileLine->first, fileLine->second);
|
|
|
|
// File.sourceFile contains STT_FILE symbol, and that is a last resort.
|
|
return std::string(file.sourceFile);
|
|
}
|
|
|
|
std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
|
|
uint64_t offset) {
|
|
if (kind() != ObjKind)
|
|
return "";
|
|
switch (ekind) {
|
|
default:
|
|
llvm_unreachable("Invalid kind");
|
|
case ELF32LEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
|
|
case ELF32BEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
|
|
case ELF64LEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
|
|
case ELF64BEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
|
|
}
|
|
}
|
|
|
|
StringRef InputFile::getNameForScript() const {
|
|
if (archiveName.empty())
|
|
return getName();
|
|
|
|
if (nameForScriptCache.empty())
|
|
nameForScriptCache = (archiveName + Twine(':') + getName()).str();
|
|
|
|
return nameForScriptCache;
|
|
}
|
|
|
|
// An ELF object file may contain a `.deplibs` section. If it exists, the
|
|
// section contains a list of library specifiers such as `m` for libm. This
|
|
// function resolves a given name by finding the first matching library checking
|
|
// the various ways that a library can be specified to LLD. This ELF extension
|
|
// is a form of autolinking and is called `dependent libraries`. It is currently
|
|
// unique to LLVM and lld.
|
|
static void addDependentLibrary(StringRef specifier, const InputFile *f) {
|
|
if (!config->dependentLibraries)
|
|
return;
|
|
if (std::optional<std::string> s = searchLibraryBaseName(specifier))
|
|
ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
|
|
else if (std::optional<std::string> s = findFromSearchPaths(specifier))
|
|
ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
|
|
else if (fs::exists(specifier))
|
|
ctx.driver.addFile(specifier, /*withLOption=*/false);
|
|
else
|
|
error(toString(f) +
|
|
": unable to find library from dependent library specifier: " +
|
|
specifier);
|
|
}
|
|
|
|
// Record the membership of a section group so that in the garbage collection
|
|
// pass, section group members are kept or discarded as a unit.
|
|
template <class ELFT>
|
|
static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
|
|
ArrayRef<typename ELFT::Word> entries) {
|
|
bool hasAlloc = false;
|
|
for (uint32_t index : entries.slice(1)) {
|
|
if (index >= sections.size())
|
|
return;
|
|
if (InputSectionBase *s = sections[index])
|
|
if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
|
|
hasAlloc = true;
|
|
}
|
|
|
|
// If any member has the SHF_ALLOC flag, the whole group is subject to garbage
|
|
// collection. See the comment in markLive(). This rule retains .debug_types
|
|
// and .rela.debug_types.
|
|
if (!hasAlloc)
|
|
return;
|
|
|
|
// Connect the members in a circular doubly-linked list via
|
|
// nextInSectionGroup.
|
|
InputSectionBase *head;
|
|
InputSectionBase *prev = nullptr;
|
|
for (uint32_t index : entries.slice(1)) {
|
|
InputSectionBase *s = sections[index];
|
|
if (!s || s == &InputSection::discarded)
|
|
continue;
|
|
if (prev)
|
|
prev->nextInSectionGroup = s;
|
|
else
|
|
head = s;
|
|
prev = s;
|
|
}
|
|
if (prev)
|
|
prev->nextInSectionGroup = head;
|
|
}
|
|
|
|
template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
|
|
llvm::call_once(initDwarf, [this]() {
|
|
dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
|
|
std::make_unique<LLDDwarfObj<ELFT>>(this), "",
|
|
[&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
|
|
[&](Error warning) {
|
|
warn(getName() + ": " + toString(std::move(warning)));
|
|
}));
|
|
});
|
|
|
|
return dwarf.get();
|
|
}
|
|
|
|
// Returns the pair of file name and line number describing location of data
|
|
// object (variable, array, etc) definition.
|
|
template <class ELFT>
|
|
std::optional<std::pair<std::string, unsigned>>
|
|
ObjFile<ELFT>::getVariableLoc(StringRef name) {
|
|
return getDwarf()->getVariableLoc(name);
|
|
}
|
|
|
|
// Returns source line information for a given offset
|
|
// using DWARF debug info.
|
|
template <class ELFT>
|
|
std::optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
|
|
uint64_t offset) {
|
|
// Detect SectionIndex for specified section.
|
|
uint64_t sectionIndex = object::SectionedAddress::UndefSection;
|
|
ArrayRef<InputSectionBase *> sections = s->file->getSections();
|
|
for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
|
|
if (s == sections[curIndex]) {
|
|
sectionIndex = curIndex;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return getDwarf()->getDILineInfo(offset, sectionIndex);
|
|
}
|
|
|
|
ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb)
|
|
: InputFile(k, mb) {
|
|
this->ekind = ekind;
|
|
}
|
|
|
|
template <typename Elf_Shdr>
|
|
static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
|
|
for (const Elf_Shdr &sec : sections)
|
|
if (sec.sh_type == type)
|
|
return &sec;
|
|
return nullptr;
|
|
}
|
|
|
|
void ELFFileBase::init() {
|
|
switch (ekind) {
|
|
case ELF32LEKind:
|
|
init<ELF32LE>(fileKind);
|
|
break;
|
|
case ELF32BEKind:
|
|
init<ELF32BE>(fileKind);
|
|
break;
|
|
case ELF64LEKind:
|
|
init<ELF64LE>(fileKind);
|
|
break;
|
|
case ELF64BEKind:
|
|
init<ELF64BE>(fileKind);
|
|
break;
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
|
|
// Initialize trivial attributes.
|
|
const ELFFile<ELFT> &obj = getObj<ELFT>();
|
|
emachine = obj.getHeader().e_machine;
|
|
osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
|
|
abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
|
|
|
|
ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
|
|
elfShdrs = sections.data();
|
|
numELFShdrs = sections.size();
|
|
|
|
// Find a symbol table.
|
|
const Elf_Shdr *symtabSec =
|
|
findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
|
|
|
|
if (!symtabSec)
|
|
return;
|
|
|
|
// Initialize members corresponding to a symbol table.
|
|
firstGlobal = symtabSec->sh_info;
|
|
|
|
ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
|
|
if (firstGlobal == 0 || firstGlobal > eSyms.size())
|
|
fatal(toString(this) + ": invalid sh_info in symbol table");
|
|
|
|
elfSyms = reinterpret_cast<const void *>(eSyms.data());
|
|
numELFSyms = uint32_t(eSyms.size());
|
|
stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
|
|
return CHECK(
|
|
this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
|
|
this);
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
|
|
object::ELFFile<ELFT> obj = this->getObj();
|
|
// Read a section table. justSymbols is usually false.
|
|
if (this->justSymbols) {
|
|
initializeJustSymbols();
|
|
initializeSymbols(obj);
|
|
return;
|
|
}
|
|
|
|
// Handle dependent libraries and selection of section groups as these are not
|
|
// done in parallel.
|
|
ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
|
|
StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
|
|
uint64_t size = objSections.size();
|
|
sections.resize(size);
|
|
for (size_t i = 0; i != size; ++i) {
|
|
const Elf_Shdr &sec = objSections[i];
|
|
if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
|
|
StringRef name = check(obj.getSectionName(sec, shstrtab));
|
|
ArrayRef<char> data = CHECK(
|
|
this->getObj().template getSectionContentsAsArray<char>(sec), this);
|
|
if (!data.empty() && data.back() != '\0') {
|
|
error(
|
|
toString(this) +
|
|
": corrupted dependent libraries section (unterminated string): " +
|
|
name);
|
|
} else {
|
|
for (const char *d = data.begin(), *e = data.end(); d < e;) {
|
|
StringRef s(d);
|
|
addDependentLibrary(s, this);
|
|
d += s.size() + 1;
|
|
}
|
|
}
|
|
this->sections[i] = &InputSection::discarded;
|
|
continue;
|
|
}
|
|
|
|
if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
|
|
ARMAttributeParser attributes;
|
|
ArrayRef<uint8_t> contents =
|
|
check(this->getObj().getSectionContents(sec));
|
|
StringRef name = check(obj.getSectionName(sec, shstrtab));
|
|
this->sections[i] = &InputSection::discarded;
|
|
if (Error e =
|
|
attributes.parse(contents, ekind == ELF32LEKind ? support::little
|
|
: support::big)) {
|
|
InputSection isec(*this, sec, name);
|
|
warn(toString(&isec) + ": " + llvm::toString(std::move(e)));
|
|
} else {
|
|
updateSupportedARMFeatures(attributes);
|
|
updateARMVFPArgs(attributes, this);
|
|
|
|
// FIXME: Retain the first attribute section we see. The eglibc ARM
|
|
// dynamic loaders require the presence of an attribute section for
|
|
// dlopen to work. In a full implementation we would merge all attribute
|
|
// sections.
|
|
if (in.attributes == nullptr) {
|
|
in.attributes = std::make_unique<InputSection>(*this, sec, name);
|
|
this->sections[i] = in.attributes.get();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sec.sh_type != SHT_GROUP)
|
|
continue;
|
|
StringRef signature = getShtGroupSignature(objSections, sec);
|
|
ArrayRef<Elf_Word> entries =
|
|
CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
|
|
if (entries.empty())
|
|
fatal(toString(this) + ": empty SHT_GROUP");
|
|
|
|
Elf_Word flag = entries[0];
|
|
if (flag && flag != GRP_COMDAT)
|
|
fatal(toString(this) + ": unsupported SHT_GROUP format");
|
|
|
|
bool keepGroup =
|
|
(flag & GRP_COMDAT) == 0 || ignoreComdats ||
|
|
symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this)
|
|
.second;
|
|
if (keepGroup) {
|
|
if (config->relocatable)
|
|
this->sections[i] = createInputSection(
|
|
i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, discard group members.
|
|
for (uint32_t secIndex : entries.slice(1)) {
|
|
if (secIndex >= size)
|
|
fatal(toString(this) +
|
|
": invalid section index in group: " + Twine(secIndex));
|
|
this->sections[secIndex] = &InputSection::discarded;
|
|
}
|
|
}
|
|
|
|
// Read a symbol table.
|
|
initializeSymbols(obj);
|
|
}
|
|
|
|
// Sections with SHT_GROUP and comdat bits define comdat section groups.
|
|
// They are identified and deduplicated by group name. This function
|
|
// returns a group name.
|
|
template <class ELFT>
|
|
StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
|
|
const Elf_Shdr &sec) {
|
|
typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
|
|
if (sec.sh_info >= symbols.size())
|
|
fatal(toString(this) + ": invalid symbol index");
|
|
const typename ELFT::Sym &sym = symbols[sec.sh_info];
|
|
return CHECK(sym.getName(this->stringTable), this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
|
|
// On a regular link we don't merge sections if -O0 (default is -O1). This
|
|
// sometimes makes the linker significantly faster, although the output will
|
|
// be bigger.
|
|
//
|
|
// Doing the same for -r would create a problem as it would combine sections
|
|
// with different sh_entsize. One option would be to just copy every SHF_MERGE
|
|
// section as is to the output. While this would produce a valid ELF file with
|
|
// usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
|
|
// they see two .debug_str. We could have separate logic for combining
|
|
// SHF_MERGE sections based both on their name and sh_entsize, but that seems
|
|
// to be more trouble than it is worth. Instead, we just use the regular (-O1)
|
|
// logic for -r.
|
|
if (config->optimize == 0 && !config->relocatable)
|
|
return false;
|
|
|
|
// A mergeable section with size 0 is useless because they don't have
|
|
// any data to merge. A mergeable string section with size 0 can be
|
|
// argued as invalid because it doesn't end with a null character.
|
|
// We'll avoid a mess by handling them as if they were non-mergeable.
|
|
if (sec.sh_size == 0)
|
|
return false;
|
|
|
|
// Check for sh_entsize. The ELF spec is not clear about the zero
|
|
// sh_entsize. It says that "the member [sh_entsize] contains 0 if
|
|
// the section does not hold a table of fixed-size entries". We know
|
|
// that Rust 1.13 produces a string mergeable section with a zero
|
|
// sh_entsize. Here we just accept it rather than being picky about it.
|
|
uint64_t entSize = sec.sh_entsize;
|
|
if (entSize == 0)
|
|
return false;
|
|
if (sec.sh_size % entSize)
|
|
fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
|
|
Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
|
|
Twine(entSize) + ")");
|
|
|
|
if (sec.sh_flags & SHF_WRITE)
|
|
fatal(toString(this) + ":(" + name +
|
|
"): writable SHF_MERGE section is not supported");
|
|
|
|
return true;
|
|
}
|
|
|
|
// This is for --just-symbols.
|
|
//
|
|
// --just-symbols is a very minor feature that allows you to link your
|
|
// output against other existing program, so that if you load both your
|
|
// program and the other program into memory, your output can refer the
|
|
// other program's symbols.
|
|
//
|
|
// When the option is given, we link "just symbols". The section table is
|
|
// initialized with null pointers.
|
|
template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
|
|
sections.resize(numELFShdrs);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
|
|
const llvm::object::ELFFile<ELFT> &obj) {
|
|
ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
|
|
StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
|
|
uint64_t size = objSections.size();
|
|
SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
|
|
for (size_t i = 0; i != size; ++i) {
|
|
if (this->sections[i] == &InputSection::discarded)
|
|
continue;
|
|
const Elf_Shdr &sec = objSections[i];
|
|
|
|
// SHF_EXCLUDE'ed sections are discarded by the linker. However,
|
|
// if -r is given, we'll let the final link discard such sections.
|
|
// This is compatible with GNU.
|
|
if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
|
|
if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
|
|
cgProfileSectionIndex = i;
|
|
if (sec.sh_type == SHT_LLVM_ADDRSIG) {
|
|
// We ignore the address-significance table if we know that the object
|
|
// file was created by objcopy or ld -r. This is because these tools
|
|
// will reorder the symbols in the symbol table, invalidating the data
|
|
// in the address-significance table, which refers to symbols by index.
|
|
if (sec.sh_link != 0)
|
|
this->addrsigSec = &sec;
|
|
else if (config->icf == ICFLevel::Safe)
|
|
warn(toString(this) +
|
|
": --icf=safe conservatively ignores "
|
|
"SHT_LLVM_ADDRSIG [index " +
|
|
Twine(i) +
|
|
"] with sh_link=0 "
|
|
"(likely created using objcopy or ld -r)");
|
|
}
|
|
this->sections[i] = &InputSection::discarded;
|
|
continue;
|
|
}
|
|
|
|
switch (sec.sh_type) {
|
|
case SHT_GROUP: {
|
|
if (!config->relocatable)
|
|
sections[i] = &InputSection::discarded;
|
|
StringRef signature =
|
|
cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
|
|
ArrayRef<Elf_Word> entries =
|
|
cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
|
|
if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
|
|
symtab.comdatGroups.find(CachedHashStringRef(signature))->second ==
|
|
this)
|
|
selectedGroups.push_back(entries);
|
|
break;
|
|
}
|
|
case SHT_SYMTAB_SHNDX:
|
|
shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
|
|
break;
|
|
case SHT_SYMTAB:
|
|
case SHT_STRTAB:
|
|
case SHT_REL:
|
|
case SHT_RELA:
|
|
case SHT_NULL:
|
|
break;
|
|
case SHT_LLVM_SYMPART:
|
|
ctx.hasSympart.store(true, std::memory_order_relaxed);
|
|
[[fallthrough]];
|
|
default:
|
|
this->sections[i] =
|
|
createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
}
|
|
}
|
|
|
|
// We have a second loop. It is used to:
|
|
// 1) handle SHF_LINK_ORDER sections.
|
|
// 2) create SHT_REL[A] sections. In some cases the section header index of a
|
|
// relocation section may be smaller than that of the relocated section. In
|
|
// such cases, the relocation section would attempt to reference a target
|
|
// section that has not yet been created. For simplicity, delay creation of
|
|
// relocation sections until now.
|
|
for (size_t i = 0; i != size; ++i) {
|
|
if (this->sections[i] == &InputSection::discarded)
|
|
continue;
|
|
const Elf_Shdr &sec = objSections[i];
|
|
|
|
if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
|
|
// Find a relocation target section and associate this section with that.
|
|
// Target may have been discarded if it is in a different section group
|
|
// and the group is discarded, even though it's a violation of the spec.
|
|
// We handle that situation gracefully by discarding dangling relocation
|
|
// sections.
|
|
const uint32_t info = sec.sh_info;
|
|
InputSectionBase *s = getRelocTarget(i, sec, info);
|
|
if (!s)
|
|
continue;
|
|
|
|
// ELF spec allows mergeable sections with relocations, but they are rare,
|
|
// and it is in practice hard to merge such sections by contents, because
|
|
// applying relocations at end of linking changes section contents. So, we
|
|
// simply handle such sections as non-mergeable ones. Degrading like this
|
|
// is acceptable because section merging is optional.
|
|
if (auto *ms = dyn_cast<MergeInputSection>(s)) {
|
|
s = makeThreadLocal<InputSection>(
|
|
ms->file, ms->flags, ms->type, ms->addralign,
|
|
ms->contentMaybeDecompress(), ms->name);
|
|
sections[info] = s;
|
|
}
|
|
|
|
if (s->relSecIdx != 0)
|
|
error(
|
|
toString(s) +
|
|
": multiple relocation sections to one section are not supported");
|
|
s->relSecIdx = i;
|
|
|
|
// Relocation sections are usually removed from the output, so return
|
|
// `nullptr` for the normal case. However, if -r or --emit-relocs is
|
|
// specified, we need to copy them to the output. (Some post link analysis
|
|
// tools specify --emit-relocs to obtain the information.)
|
|
if (config->copyRelocs) {
|
|
auto *isec = makeThreadLocal<InputSection>(
|
|
*this, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
// If the relocated section is discarded (due to /DISCARD/ or
|
|
// --gc-sections), the relocation section should be discarded as well.
|
|
s->dependentSections.push_back(isec);
|
|
sections[i] = isec;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
|
|
// the flag.
|
|
if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
|
|
continue;
|
|
|
|
InputSectionBase *linkSec = nullptr;
|
|
if (sec.sh_link < size)
|
|
linkSec = this->sections[sec.sh_link];
|
|
if (!linkSec)
|
|
fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
|
|
|
|
// A SHF_LINK_ORDER section is discarded if its linked-to section is
|
|
// discarded.
|
|
InputSection *isec = cast<InputSection>(this->sections[i]);
|
|
linkSec->dependentSections.push_back(isec);
|
|
if (!isa<InputSection>(linkSec))
|
|
error("a section " + isec->name +
|
|
" with SHF_LINK_ORDER should not refer a non-regular section: " +
|
|
toString(linkSec));
|
|
}
|
|
|
|
for (ArrayRef<Elf_Word> entries : selectedGroups)
|
|
handleSectionGroup<ELFT>(this->sections, entries);
|
|
}
|
|
|
|
// If a source file is compiled with x86 hardware-assisted call flow control
|
|
// enabled, the generated object file contains feature flags indicating that
|
|
// fact. This function reads the feature flags and returns it.
|
|
//
|
|
// Essentially we want to read a single 32-bit value in this function, but this
|
|
// function is rather complicated because the value is buried deep inside a
|
|
// .note.gnu.property section.
|
|
//
|
|
// The section consists of one or more NOTE records. Each NOTE record consists
|
|
// of zero or more type-length-value fields. We want to find a field of a
|
|
// certain type. It seems a bit too much to just store a 32-bit value, perhaps
|
|
// the ABI is unnecessarily complicated.
|
|
template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
|
|
using Elf_Nhdr = typename ELFT::Nhdr;
|
|
using Elf_Note = typename ELFT::Note;
|
|
|
|
uint32_t featuresSet = 0;
|
|
ArrayRef<uint8_t> data = sec.content();
|
|
auto reportFatal = [&](const uint8_t *place, const char *msg) {
|
|
fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
|
|
Twine::utohexstr(place - sec.content().data()) + "): " + msg);
|
|
};
|
|
while (!data.empty()) {
|
|
// Read one NOTE record.
|
|
auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
|
|
if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
|
|
reportFatal(data.data(), "data is too short");
|
|
|
|
Elf_Note note(*nhdr);
|
|
if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
|
|
data = data.slice(nhdr->getSize());
|
|
continue;
|
|
}
|
|
|
|
uint32_t featureAndType = config->emachine == EM_AARCH64
|
|
? GNU_PROPERTY_AARCH64_FEATURE_1_AND
|
|
: GNU_PROPERTY_X86_FEATURE_1_AND;
|
|
|
|
// Read a body of a NOTE record, which consists of type-length-value fields.
|
|
ArrayRef<uint8_t> desc = note.getDesc();
|
|
while (!desc.empty()) {
|
|
const uint8_t *place = desc.data();
|
|
if (desc.size() < 8)
|
|
reportFatal(place, "program property is too short");
|
|
uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
|
|
uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
|
|
desc = desc.slice(8);
|
|
if (desc.size() < size)
|
|
reportFatal(place, "program property is too short");
|
|
|
|
if (type == featureAndType) {
|
|
// We found a FEATURE_1_AND field. There may be more than one of these
|
|
// in a .note.gnu.property section, for a relocatable object we
|
|
// accumulate the bits set.
|
|
if (size < 4)
|
|
reportFatal(place, "FEATURE_1_AND entry is too short");
|
|
featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
|
|
}
|
|
|
|
// Padding is present in the note descriptor, if necessary.
|
|
desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
|
|
}
|
|
|
|
// Go to next NOTE record to look for more FEATURE_1_AND descriptions.
|
|
data = data.slice(nhdr->getSize());
|
|
}
|
|
|
|
return featuresSet;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
|
|
const Elf_Shdr &sec,
|
|
uint32_t info) {
|
|
if (info < this->sections.size()) {
|
|
InputSectionBase *target = this->sections[info];
|
|
|
|
// Strictly speaking, a relocation section must be included in the
|
|
// group of the section it relocates. However, LLVM 3.3 and earlier
|
|
// would fail to do so, so we gracefully handle that case.
|
|
if (target == &InputSection::discarded)
|
|
return nullptr;
|
|
|
|
if (target != nullptr)
|
|
return target;
|
|
}
|
|
|
|
error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
|
|
") has invalid sh_info (" + Twine(info) + ")");
|
|
return nullptr;
|
|
}
|
|
|
|
// The function may be called concurrently for different input files. For
|
|
// allocation, prefer makeThreadLocal which does not require holding a lock.
|
|
template <class ELFT>
|
|
InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
|
|
const Elf_Shdr &sec,
|
|
StringRef name) {
|
|
if (name.startswith(".n")) {
|
|
// The GNU linker uses .note.GNU-stack section as a marker indicating
|
|
// that the code in the object file does not expect that the stack is
|
|
// executable (in terms of NX bit). If all input files have the marker,
|
|
// the GNU linker adds a PT_GNU_STACK segment to tells the loader to
|
|
// make the stack non-executable. Most object files have this section as
|
|
// of 2017.
|
|
//
|
|
// But making the stack non-executable is a norm today for security
|
|
// reasons. Failure to do so may result in a serious security issue.
|
|
// Therefore, we make LLD always add PT_GNU_STACK unless it is
|
|
// explicitly told to do otherwise (by -z execstack). Because the stack
|
|
// executable-ness is controlled solely by command line options,
|
|
// .note.GNU-stack sections are simply ignored.
|
|
if (name == ".note.GNU-stack")
|
|
return &InputSection::discarded;
|
|
|
|
// Object files that use processor features such as Intel Control-Flow
|
|
// Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
|
|
// .note.gnu.property section containing a bitfield of feature bits like the
|
|
// GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
|
|
//
|
|
// Since we merge bitmaps from multiple object files to create a new
|
|
// .note.gnu.property containing a single AND'ed bitmap, we discard an input
|
|
// file's .note.gnu.property section.
|
|
if (name == ".note.gnu.property") {
|
|
this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Split stacks is a feature to support a discontiguous stack,
|
|
// commonly used in the programming language Go. For the details,
|
|
// see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
|
|
// for split stack will include a .note.GNU-split-stack section.
|
|
if (name == ".note.GNU-split-stack") {
|
|
if (config->relocatable) {
|
|
error(
|
|
"cannot mix split-stack and non-split-stack in a relocatable link");
|
|
return &InputSection::discarded;
|
|
}
|
|
this->splitStack = true;
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// An object file compiled for split stack, but where some of the
|
|
// functions were compiled with the no_split_stack_attribute will
|
|
// include a .note.GNU-no-split-stack section.
|
|
if (name == ".note.GNU-no-split-stack") {
|
|
this->someNoSplitStack = true;
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Strip existing .note.gnu.build-id sections so that the output won't have
|
|
// more than one build-id. This is not usually a problem because input
|
|
// object files normally don't have .build-id sections, but you can create
|
|
// such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
|
|
// against it.
|
|
if (name == ".note.gnu.build-id")
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// The linker merges EH (exception handling) frames and creates a
|
|
// .eh_frame_hdr section for runtime. So we handle them with a special
|
|
// class. For relocatable outputs, they are just passed through.
|
|
if (name == ".eh_frame" && !config->relocatable)
|
|
return makeThreadLocal<EhInputSection>(*this, sec, name);
|
|
|
|
if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
|
|
return makeThreadLocal<MergeInputSection>(*this, sec, name);
|
|
return makeThreadLocal<InputSection>(*this, sec, name);
|
|
}
|
|
|
|
// Initialize this->Symbols. this->Symbols is a parallel array as
|
|
// its corresponding ELF symbol table.
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
if (numSymbols == 0) {
|
|
numSymbols = eSyms.size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
}
|
|
|
|
// Some entries have been filled by LazyObjFile.
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
|
|
if (!symbols[i])
|
|
symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
|
|
|
|
// Perform symbol resolution on non-local symbols.
|
|
SmallVector<unsigned, 32> undefineds;
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (secIdx == SHN_UNDEF) {
|
|
undefineds.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
uint8_t binding = eSym.getBinding();
|
|
uint8_t stOther = eSym.st_other;
|
|
uint8_t type = eSym.getType();
|
|
uint64_t value = eSym.st_value;
|
|
uint64_t size = eSym.st_size;
|
|
|
|
Symbol *sym = symbols[i];
|
|
sym->isUsedInRegularObj = true;
|
|
if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
|
|
if (value == 0 || value >= UINT32_MAX)
|
|
fatal(toString(this) + ": common symbol '" + sym->getName() +
|
|
"' has invalid alignment: " + Twine(value));
|
|
hasCommonSyms = true;
|
|
sym->resolve(
|
|
CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
|
|
continue;
|
|
}
|
|
|
|
// Handle global defined symbols. Defined::section will be set in postParse.
|
|
sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
|
|
nullptr});
|
|
}
|
|
|
|
// Undefined symbols (excluding those defined relative to non-prevailing
|
|
// sections) can trigger recursive extract. Process defined symbols first so
|
|
// that the relative order between a defined symbol and an undefined symbol
|
|
// does not change the symbol resolution behavior. In addition, a set of
|
|
// interconnected symbols will all be resolved to the same file, instead of
|
|
// being resolved to different files.
|
|
for (unsigned i : undefineds) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
Symbol *sym = symbols[i];
|
|
sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
|
|
eSym.getType()});
|
|
sym->isUsedInRegularObj = true;
|
|
sym->referenced = true;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
|
|
if (!justSymbols)
|
|
initializeSections(ignoreComdats, getObj());
|
|
|
|
if (!firstGlobal)
|
|
return;
|
|
SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
|
|
memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
|
|
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
for (size_t i = 0, end = firstGlobal; i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
|
|
secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else if (secIdx >= SHN_LORESERVE)
|
|
secIdx = 0;
|
|
if (LLVM_UNLIKELY(secIdx >= sections.size()))
|
|
fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
|
|
if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
|
|
error(toString(this) + ": non-local symbol (" + Twine(i) +
|
|
") found at index < .symtab's sh_info (" + Twine(end) + ")");
|
|
|
|
InputSectionBase *sec = sections[secIdx];
|
|
uint8_t type = eSym.getType();
|
|
if (type == STT_FILE)
|
|
sourceFile = CHECK(eSym.getName(stringTable), this);
|
|
if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
|
|
fatal(toString(this) + ": invalid symbol name offset");
|
|
StringRef name(stringTable.data() + eSym.st_name);
|
|
|
|
symbols[i] = reinterpret_cast<Symbol *>(locals + i);
|
|
if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
|
|
new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
|
|
/*discardedSecIdx=*/secIdx);
|
|
else
|
|
new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
|
|
eSym.st_value, eSym.st_size, sec);
|
|
symbols[i]->partition = 1;
|
|
symbols[i]->isUsedInRegularObj = true;
|
|
}
|
|
}
|
|
|
|
// Called after all ObjFile::parse is called for all ObjFiles. This checks
|
|
// duplicate symbols and may do symbol property merge in the future.
|
|
template <class ELFT> void ObjFile<ELFT>::postParse() {
|
|
static std::mutex mu;
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
Symbol &sym = *symbols[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
uint8_t binding = eSym.getBinding();
|
|
if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
|
|
binding != STB_GNU_UNIQUE))
|
|
errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
|
|
") has invalid binding: " + Twine((int)binding));
|
|
|
|
// st_value of STT_TLS represents the assigned offset, not the actual
|
|
// address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
|
|
// only be referenced by special TLS relocations. It is usually an error if
|
|
// a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
|
|
if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
|
|
eSym.getType() != STT_NOTYPE)
|
|
errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
|
|
toString(sym.file) + "\n>>> in " + toString(this));
|
|
|
|
// Handle non-COMMON defined symbol below. !sym.file allows a symbol
|
|
// assignment to redefine a symbol without an error.
|
|
if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
|
|
secIdx == SHN_COMMON)
|
|
continue;
|
|
|
|
if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
|
|
secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else if (secIdx >= SHN_LORESERVE)
|
|
secIdx = 0;
|
|
if (LLVM_UNLIKELY(secIdx >= sections.size()))
|
|
fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
|
|
InputSectionBase *sec = sections[secIdx];
|
|
if (sec == &InputSection::discarded) {
|
|
if (sym.traced) {
|
|
printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
|
|
sym.stOther, sym.type, secIdx},
|
|
sym.getName());
|
|
}
|
|
if (sym.file == this) {
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (sym.file == this) {
|
|
cast<Defined>(sym).section = sec;
|
|
continue;
|
|
}
|
|
|
|
if (sym.binding == STB_WEAK || binding == STB_WEAK)
|
|
continue;
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
|
|
}
|
|
}
|
|
|
|
// The handling of tentative definitions (COMMON symbols) in archives is murky.
|
|
// A tentative definition will be promoted to a global definition if there are
|
|
// no non-tentative definitions to dominate it. When we hold a tentative
|
|
// definition to a symbol and are inspecting archive members for inclusion
|
|
// there are 2 ways we can proceed:
|
|
//
|
|
// 1) Consider the tentative definition a 'real' definition (ie promotion from
|
|
// tentative to real definition has already happened) and not inspect
|
|
// archive members for Global/Weak definitions to replace the tentative
|
|
// definition. An archive member would only be included if it satisfies some
|
|
// other undefined symbol. This is the behavior Gold uses.
|
|
//
|
|
// 2) Consider the tentative definition as still undefined (ie the promotion to
|
|
// a real definition happens only after all symbol resolution is done).
|
|
// The linker searches archive members for STB_GLOBAL definitions to
|
|
// replace the tentative definition with. This is the behavior used by
|
|
// GNU ld.
|
|
//
|
|
// The second behavior is inherited from SysVR4, which based it on the FORTRAN
|
|
// COMMON BLOCK model. This behavior is needed for proper initialization in old
|
|
// (pre F90) FORTRAN code that is packaged into an archive.
|
|
//
|
|
// The following functions search archive members for definitions to replace
|
|
// tentative definitions (implementing behavior 2).
|
|
static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
IRSymtabFile symtabFile = check(readIRSymtab(mb));
|
|
for (const irsymtab::Reader::SymbolRef &sym :
|
|
symtabFile.TheReader.symbols()) {
|
|
if (sym.isGlobal() && sym.getName() == symName)
|
|
return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName);
|
|
obj->init();
|
|
StringRef stringtable = obj->getStringTable();
|
|
|
|
for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
|
|
Expected<StringRef> name = sym.getName(stringtable);
|
|
if (name && name.get() == symName)
|
|
return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
|
|
!sym.isCommon();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
switch (getELFKind(mb, archiveName)) {
|
|
case ELF32LEKind:
|
|
return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName);
|
|
case ELF32BEKind:
|
|
return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName);
|
|
case ELF64LEKind:
|
|
return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName);
|
|
case ELF64BEKind:
|
|
return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName);
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
unsigned SharedFile::vernauxNum;
|
|
|
|
SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName)
|
|
: ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName),
|
|
isNeeded(!config->asNeeded) {}
|
|
|
|
// Parse the version definitions in the object file if present, and return a
|
|
// vector whose nth element contains a pointer to the Elf_Verdef for version
|
|
// identifier n. Version identifiers that are not definitions map to nullptr.
|
|
template <typename ELFT>
|
|
static SmallVector<const void *, 0>
|
|
parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
|
|
if (!sec)
|
|
return {};
|
|
|
|
// Build the Verdefs array by following the chain of Elf_Verdef objects
|
|
// from the start of the .gnu.version_d section.
|
|
SmallVector<const void *, 0> verdefs;
|
|
const uint8_t *verdef = base + sec->sh_offset;
|
|
for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
|
|
auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
|
|
verdef += curVerdef->vd_next;
|
|
unsigned verdefIndex = curVerdef->vd_ndx;
|
|
if (verdefIndex >= verdefs.size())
|
|
verdefs.resize(verdefIndex + 1);
|
|
verdefs[verdefIndex] = curVerdef;
|
|
}
|
|
return verdefs;
|
|
}
|
|
|
|
// Parse SHT_GNU_verneed to properly set the name of a versioned undefined
|
|
// symbol. We detect fatal issues which would cause vulnerabilities, but do not
|
|
// implement sophisticated error checking like in llvm-readobj because the value
|
|
// of such diagnostics is low.
|
|
template <typename ELFT>
|
|
std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
|
|
const typename ELFT::Shdr *sec) {
|
|
if (!sec)
|
|
return {};
|
|
std::vector<uint32_t> verneeds;
|
|
ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
|
|
const uint8_t *verneedBuf = data.begin();
|
|
for (unsigned i = 0; i != sec->sh_info; ++i) {
|
|
if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
|
|
fatal(toString(this) + " has an invalid Verneed");
|
|
auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
|
|
const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
|
|
for (unsigned j = 0; j != vn->vn_cnt; ++j) {
|
|
if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
|
|
fatal(toString(this) + " has an invalid Vernaux");
|
|
auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
|
|
if (aux->vna_name >= this->stringTable.size())
|
|
fatal(toString(this) + " has a Vernaux with an invalid vna_name");
|
|
uint16_t version = aux->vna_other & VERSYM_VERSION;
|
|
if (version >= verneeds.size())
|
|
verneeds.resize(version + 1);
|
|
verneeds[version] = aux->vna_name;
|
|
vernauxBuf += aux->vna_next;
|
|
}
|
|
verneedBuf += vn->vn_next;
|
|
}
|
|
return verneeds;
|
|
}
|
|
|
|
// We do not usually care about alignments of data in shared object
|
|
// files because the loader takes care of it. However, if we promote a
|
|
// DSO symbol to point to .bss due to copy relocation, we need to keep
|
|
// the original alignment requirements. We infer it in this function.
|
|
template <typename ELFT>
|
|
static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
|
|
const typename ELFT::Sym &sym) {
|
|
uint64_t ret = UINT64_MAX;
|
|
if (sym.st_value)
|
|
ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value);
|
|
if (0 < sym.st_shndx && sym.st_shndx < sections.size())
|
|
ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
|
|
return (ret > UINT32_MAX) ? 0 : ret;
|
|
}
|
|
|
|
// Fully parse the shared object file.
|
|
//
|
|
// This function parses symbol versions. If a DSO has version information,
|
|
// the file has a ".gnu.version_d" section which contains symbol version
|
|
// definitions. Each symbol is associated to one version through a table in
|
|
// ".gnu.version" section. That table is a parallel array for the symbol
|
|
// table, and each table entry contains an index in ".gnu.version_d".
|
|
//
|
|
// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
|
|
// VER_NDX_GLOBAL. There's no table entry for these special versions in
|
|
// ".gnu.version_d".
|
|
//
|
|
// The file format for symbol versioning is perhaps a bit more complicated
|
|
// than necessary, but you can easily understand the code if you wrap your
|
|
// head around the data structure described above.
|
|
template <class ELFT> void SharedFile::parse() {
|
|
using Elf_Dyn = typename ELFT::Dyn;
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
using Elf_Verdef = typename ELFT::Verdef;
|
|
using Elf_Versym = typename ELFT::Versym;
|
|
|
|
ArrayRef<Elf_Dyn> dynamicTags;
|
|
const ELFFile<ELFT> obj = this->getObj<ELFT>();
|
|
ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
|
|
|
|
const Elf_Shdr *versymSec = nullptr;
|
|
const Elf_Shdr *verdefSec = nullptr;
|
|
const Elf_Shdr *verneedSec = nullptr;
|
|
|
|
// Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
|
|
for (const Elf_Shdr &sec : sections) {
|
|
switch (sec.sh_type) {
|
|
default:
|
|
continue;
|
|
case SHT_DYNAMIC:
|
|
dynamicTags =
|
|
CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
|
|
break;
|
|
case SHT_GNU_versym:
|
|
versymSec = &sec;
|
|
break;
|
|
case SHT_GNU_verdef:
|
|
verdefSec = &sec;
|
|
break;
|
|
case SHT_GNU_verneed:
|
|
verneedSec = &sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (versymSec && numELFSyms == 0) {
|
|
error("SHT_GNU_versym should be associated with symbol table");
|
|
return;
|
|
}
|
|
|
|
// Search for a DT_SONAME tag to initialize this->soName.
|
|
for (const Elf_Dyn &dyn : dynamicTags) {
|
|
if (dyn.d_tag == DT_NEEDED) {
|
|
uint64_t val = dyn.getVal();
|
|
if (val >= this->stringTable.size())
|
|
fatal(toString(this) + ": invalid DT_NEEDED entry");
|
|
dtNeeded.push_back(this->stringTable.data() + val);
|
|
} else if (dyn.d_tag == DT_SONAME) {
|
|
uint64_t val = dyn.getVal();
|
|
if (val >= this->stringTable.size())
|
|
fatal(toString(this) + ": invalid DT_SONAME entry");
|
|
soName = this->stringTable.data() + val;
|
|
}
|
|
}
|
|
|
|
// DSOs are uniquified not by filename but by soname.
|
|
DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
|
|
bool wasInserted;
|
|
std::tie(it, wasInserted) =
|
|
symtab.soNames.try_emplace(CachedHashStringRef(soName), this);
|
|
|
|
// If a DSO appears more than once on the command line with and without
|
|
// --as-needed, --no-as-needed takes precedence over --as-needed because a
|
|
// user can add an extra DSO with --no-as-needed to force it to be added to
|
|
// the dependency list.
|
|
it->second->isNeeded |= isNeeded;
|
|
if (!wasInserted)
|
|
return;
|
|
|
|
ctx.sharedFiles.push_back(this);
|
|
|
|
verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
|
|
std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
|
|
|
|
// Parse ".gnu.version" section which is a parallel array for the symbol
|
|
// table. If a given file doesn't have a ".gnu.version" section, we use
|
|
// VER_NDX_GLOBAL.
|
|
size_t size = numELFSyms - firstGlobal;
|
|
std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
|
|
if (versymSec) {
|
|
ArrayRef<Elf_Versym> versym =
|
|
CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
|
|
this)
|
|
.slice(firstGlobal);
|
|
for (size_t i = 0; i < size; ++i)
|
|
versyms[i] = versym[i].vs_index;
|
|
}
|
|
|
|
// System libraries can have a lot of symbols with versions. Using a
|
|
// fixed buffer for computing the versions name (foo@ver) can save a
|
|
// lot of allocations.
|
|
SmallString<0> versionedNameBuffer;
|
|
|
|
// Add symbols to the symbol table.
|
|
ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
|
|
for (size_t i = 0, e = syms.size(); i != e; ++i) {
|
|
const Elf_Sym &sym = syms[i];
|
|
|
|
// ELF spec requires that all local symbols precede weak or global
|
|
// symbols in each symbol table, and the index of first non-local symbol
|
|
// is stored to sh_info. If a local symbol appears after some non-local
|
|
// symbol, that's a violation of the spec.
|
|
StringRef name = CHECK(sym.getName(stringTable), this);
|
|
if (sym.getBinding() == STB_LOCAL) {
|
|
errorOrWarn(toString(this) + ": invalid local symbol '" + name +
|
|
"' in global part of symbol table");
|
|
continue;
|
|
}
|
|
|
|
const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
|
|
if (sym.isUndefined()) {
|
|
// For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
|
|
// as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
|
|
if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
|
|
if (idx >= verneeds.size()) {
|
|
error("corrupt input file: version need index " + Twine(idx) +
|
|
" for symbol " + name + " is out of bounds\n>>> defined in " +
|
|
toString(this));
|
|
continue;
|
|
}
|
|
StringRef verName = stringTable.data() + verneeds[idx];
|
|
versionedNameBuffer.clear();
|
|
name = saver().save(
|
|
(name + "@" + verName).toStringRef(versionedNameBuffer));
|
|
}
|
|
Symbol *s = symtab.addSymbol(
|
|
Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
|
|
s->exportDynamic = true;
|
|
if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
|
|
config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
|
|
requiredSymbols.push_back(s);
|
|
continue;
|
|
}
|
|
|
|
if (ver == VER_NDX_LOCAL ||
|
|
(ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
|
|
// In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
|
|
// MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
|
|
// VER_NDX_LOCAL. Workaround this bug.
|
|
if (config->emachine == EM_MIPS && name == "_gp_disp")
|
|
continue;
|
|
error("corrupt input file: version definition index " + Twine(idx) +
|
|
" for symbol " + name + " is out of bounds\n>>> defined in " +
|
|
toString(this));
|
|
continue;
|
|
}
|
|
|
|
uint32_t alignment = getAlignment<ELFT>(sections, sym);
|
|
if (ver == idx) {
|
|
auto *s = symtab.addSymbol(
|
|
SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
|
|
sym.getType(), sym.st_value, sym.st_size, alignment});
|
|
if (s->file == this)
|
|
s->verdefIndex = ver;
|
|
}
|
|
|
|
// Also add the symbol with the versioned name to handle undefined symbols
|
|
// with explicit versions.
|
|
if (ver == VER_NDX_GLOBAL)
|
|
continue;
|
|
|
|
StringRef verName =
|
|
stringTable.data() +
|
|
reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
|
|
versionedNameBuffer.clear();
|
|
name = (name + "@" + verName).toStringRef(versionedNameBuffer);
|
|
auto *s = symtab.addSymbol(
|
|
SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
|
|
sym.getType(), sym.st_value, sym.st_size, alignment});
|
|
if (s->file == this)
|
|
s->verdefIndex = idx;
|
|
}
|
|
}
|
|
|
|
static ELFKind getBitcodeELFKind(const Triple &t) {
|
|
if (t.isLittleEndian())
|
|
return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
|
|
return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
|
|
}
|
|
|
|
static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
|
|
switch (t.getArch()) {
|
|
case Triple::aarch64:
|
|
case Triple::aarch64_be:
|
|
return EM_AARCH64;
|
|
case Triple::amdgcn:
|
|
case Triple::r600:
|
|
return EM_AMDGPU;
|
|
case Triple::arm:
|
|
case Triple::thumb:
|
|
return EM_ARM;
|
|
case Triple::avr:
|
|
return EM_AVR;
|
|
case Triple::hexagon:
|
|
return EM_HEXAGON;
|
|
case Triple::mips:
|
|
case Triple::mipsel:
|
|
case Triple::mips64:
|
|
case Triple::mips64el:
|
|
return EM_MIPS;
|
|
case Triple::msp430:
|
|
return EM_MSP430;
|
|
case Triple::ppc:
|
|
case Triple::ppcle:
|
|
return EM_PPC;
|
|
case Triple::ppc64:
|
|
case Triple::ppc64le:
|
|
return EM_PPC64;
|
|
case Triple::riscv32:
|
|
case Triple::riscv64:
|
|
return EM_RISCV;
|
|
case Triple::x86:
|
|
return t.isOSIAMCU() ? EM_IAMCU : EM_386;
|
|
case Triple::x86_64:
|
|
return EM_X86_64;
|
|
default:
|
|
error(path + ": could not infer e_machine from bitcode target triple " +
|
|
t.str());
|
|
return EM_NONE;
|
|
}
|
|
}
|
|
|
|
static uint8_t getOsAbi(const Triple &t) {
|
|
switch (t.getOS()) {
|
|
case Triple::AMDHSA:
|
|
return ELF::ELFOSABI_AMDGPU_HSA;
|
|
case Triple::AMDPAL:
|
|
return ELF::ELFOSABI_AMDGPU_PAL;
|
|
case Triple::Mesa3D:
|
|
return ELF::ELFOSABI_AMDGPU_MESA3D;
|
|
default:
|
|
return ELF::ELFOSABI_NONE;
|
|
}
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
|
|
uint64_t offsetInArchive, bool lazy)
|
|
: InputFile(BitcodeKind, mb) {
|
|
this->archiveName = archiveName;
|
|
this->lazy = lazy;
|
|
|
|
std::string path = mb.getBufferIdentifier().str();
|
|
if (config->thinLTOIndexOnly)
|
|
path = replaceThinLTOSuffix(mb.getBufferIdentifier());
|
|
|
|
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
|
|
// name. If two archives define two members with the same name, this
|
|
// causes a collision which result in only one of the objects being taken
|
|
// into consideration at LTO time (which very likely causes undefined
|
|
// symbols later in the link stage). So we append file offset to make
|
|
// filename unique.
|
|
StringRef name = archiveName.empty()
|
|
? saver().save(path)
|
|
: saver().save(archiveName + "(" + path::filename(path) +
|
|
" at " + utostr(offsetInArchive) + ")");
|
|
MemoryBufferRef mbref(mb.getBuffer(), name);
|
|
|
|
obj = CHECK(lto::InputFile::create(mbref), this);
|
|
|
|
Triple t(obj->getTargetTriple());
|
|
ekind = getBitcodeELFKind(t);
|
|
emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
|
|
osabi = getOsAbi(t);
|
|
}
|
|
|
|
static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
|
|
switch (gvVisibility) {
|
|
case GlobalValue::DefaultVisibility:
|
|
return STV_DEFAULT;
|
|
case GlobalValue::HiddenVisibility:
|
|
return STV_HIDDEN;
|
|
case GlobalValue::ProtectedVisibility:
|
|
return STV_PROTECTED;
|
|
}
|
|
llvm_unreachable("unknown visibility");
|
|
}
|
|
|
|
static void
|
|
createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
|
|
const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
|
|
uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
|
|
uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
|
|
uint8_t visibility = mapVisibility(objSym.getVisibility());
|
|
|
|
if (!sym)
|
|
sym = symtab.insert(saver().save(objSym.getName()));
|
|
|
|
int c = objSym.getComdatIndex();
|
|
if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
|
|
Undefined newSym(&f, StringRef(), binding, visibility, type);
|
|
sym->resolve(newSym);
|
|
sym->referenced = true;
|
|
return;
|
|
}
|
|
|
|
if (objSym.isCommon()) {
|
|
sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
|
|
objSym.getCommonAlignment(),
|
|
objSym.getCommonSize()});
|
|
} else {
|
|
Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
|
|
if (objSym.canBeOmittedFromSymbolTable())
|
|
newSym.exportDynamic = false;
|
|
sym->resolve(newSym);
|
|
}
|
|
}
|
|
|
|
void BitcodeFile::parse() {
|
|
for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
|
|
keptComdats.push_back(
|
|
s.second == Comdat::NoDeduplicate ||
|
|
symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
|
|
.second);
|
|
}
|
|
|
|
if (numSymbols == 0) {
|
|
numSymbols = obj->symbols().size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
}
|
|
// Process defined symbols first. See the comment in
|
|
// ObjFile<ELFT>::initializeSymbols.
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
|
|
if (!irSym.isUndefined())
|
|
createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
|
|
if (irSym.isUndefined())
|
|
createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
|
|
|
|
for (auto l : obj->getDependentLibraries())
|
|
addDependentLibrary(l, this);
|
|
}
|
|
|
|
void BitcodeFile::parseLazy() {
|
|
numSymbols = obj->symbols().size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
|
|
if (!irSym.isUndefined()) {
|
|
auto *sym = symtab.insert(saver().save(irSym.getName()));
|
|
sym->resolve(LazyObject{*this});
|
|
symbols[i] = sym;
|
|
}
|
|
}
|
|
|
|
void BitcodeFile::postParse() {
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
|
|
const Symbol &sym = *symbols[i];
|
|
if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
|
|
irSym.isCommon() || irSym.isWeak())
|
|
continue;
|
|
int c = irSym.getComdatIndex();
|
|
if (c != -1 && !keptComdats[c])
|
|
continue;
|
|
reportDuplicate(sym, this, nullptr, 0);
|
|
}
|
|
}
|
|
|
|
void BinaryFile::parse() {
|
|
ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
|
|
auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
|
|
8, data, ".data");
|
|
sections.push_back(section);
|
|
|
|
// For each input file foo that is embedded to a result as a binary
|
|
// blob, we define _binary_foo_{start,end,size} symbols, so that
|
|
// user programs can access blobs by name. Non-alphanumeric
|
|
// characters in a filename are replaced with underscore.
|
|
std::string s = "_binary_" + mb.getBufferIdentifier().str();
|
|
for (char &c : s)
|
|
if (!isAlnum(c))
|
|
c = '_';
|
|
|
|
llvm::StringSaver &saver = lld::saver();
|
|
|
|
symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"),
|
|
STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0,
|
|
section});
|
|
symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"),
|
|
STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
|
|
data.size(), 0, section});
|
|
symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"),
|
|
STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
|
|
data.size(), 0, nullptr});
|
|
}
|
|
|
|
ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
|
|
bool lazy) {
|
|
ELFFileBase *f;
|
|
switch (getELFKind(mb, archiveName)) {
|
|
case ELF32LEKind:
|
|
f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName);
|
|
break;
|
|
case ELF32BEKind:
|
|
f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName);
|
|
break;
|
|
case ELF64LEKind:
|
|
f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName);
|
|
break;
|
|
case ELF64BEKind:
|
|
f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName);
|
|
break;
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
f->init();
|
|
f->lazy = lazy;
|
|
return f;
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::parseLazy() {
|
|
const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
|
|
numSymbols = eSyms.size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
|
|
// resolve() may trigger this->extract() if an existing symbol is an undefined
|
|
// symbol. If that happens, this function has served its purpose, and we can
|
|
// exit from the loop early.
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
if (eSyms[i].st_shndx == SHN_UNDEF)
|
|
continue;
|
|
symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
|
|
symbols[i]->resolve(LazyObject{*this});
|
|
if (!lazy)
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool InputFile::shouldExtractForCommon(StringRef name) {
|
|
if (isa<BitcodeFile>(this))
|
|
return isBitcodeNonCommonDef(mb, name, archiveName);
|
|
|
|
return isNonCommonDef(mb, name, archiveName);
|
|
}
|
|
|
|
std::string elf::replaceThinLTOSuffix(StringRef path) {
|
|
auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
|
|
if (path.consume_back(suffix))
|
|
return (path + repl).str();
|
|
return std::string(path);
|
|
}
|
|
|
|
template class elf::ObjFile<ELF32LE>;
|
|
template class elf::ObjFile<ELF32BE>;
|
|
template class elf::ObjFile<ELF64LE>;
|
|
template class elf::ObjFile<ELF64BE>;
|
|
|
|
template void SharedFile::parse<ELF32LE>();
|
|
template void SharedFile::parse<ELF32BE>();
|
|
template void SharedFile::parse<ELF64LE>();
|
|
template void SharedFile::parse<ELF64BE>();
|