llvm-project/llvm/lib/CodeGen/CodeGenCommonISel.cpp
Serge Pavlov 7f81dd4dd6 [NFC] Make FPClassTest a bitmask enumeration
This is recommit of 2e416cdd52, fixed to be accepatble by GCC.
The original commit message is below.

With this change bitwise operations are allowed for FPClassTest
enumeration, it must simplify using this type. Also some functions
changed to get argument of type FPClassTest instead of unsigned.

Differential Revision: https://reviews.llvm.org/D144241
2023-02-24 15:12:16 +07:00

288 lines
9.8 KiB
C++

//===-- CodeGenCommonISel.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common utilies that are shared between SelectionDAG and
// GlobalISel frameworks.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CodeGenCommonISel.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#define DEBUG_TYPE "codegen-common"
using namespace llvm;
/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
/// is 0.
MachineBasicBlock *
StackProtectorDescriptor::addSuccessorMBB(
const BasicBlock *BB, MachineBasicBlock *ParentMBB, bool IsLikely,
MachineBasicBlock *SuccMBB) {
// If SuccBB has not been created yet, create it.
if (!SuccMBB) {
MachineFunction *MF = ParentMBB->getParent();
MachineFunction::iterator BBI(ParentMBB);
SuccMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(++BBI, SuccMBB);
}
// Add it as a successor of ParentMBB.
ParentMBB->addSuccessor(
SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
return SuccMBB;
}
/// Given that the input MI is before a partial terminator sequence TSeq, return
/// true if M + TSeq also a partial terminator sequence.
///
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
/// lowering copy vregs into physical registers, which are then passed into
/// terminator instructors so we can satisfy ABI constraints. A partial
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
/// may be the whole terminator sequence).
static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
// If we do not have a copy or an implicit def, we return true if and only if
// MI is a debug value.
if (!MI.isCopy() && !MI.isImplicitDef()) {
// Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
// physical registers if there is debug info associated with the terminator
// of our mbb. We want to include said debug info in our terminator
// sequence, so we return true in that case.
if (MI.isDebugInstr())
return true;
// For GlobalISel, we may have extension instructions for arguments within
// copy sequences. Allow these.
switch (MI.getOpcode()) {
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_UNMERGE_VALUES:
case TargetOpcode::G_CONCAT_VECTORS:
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_EXTRACT:
return true;
default:
return false;
}
}
// We have left the terminator sequence if we are not doing one of the
// following:
//
// 1. Copying a vreg into a physical register.
// 2. Copying a vreg into a vreg.
// 3. Defining a register via an implicit def.
// OPI should always be a register definition...
MachineInstr::const_mop_iterator OPI = MI.operands_begin();
if (!OPI->isReg() || !OPI->isDef())
return false;
// Defining any register via an implicit def is always ok.
if (MI.isImplicitDef())
return true;
// Grab the copy source...
MachineInstr::const_mop_iterator OPI2 = OPI;
++OPI2;
assert(OPI2 != MI.operands_end()
&& "Should have a copy implying we should have 2 arguments.");
// Make sure that the copy dest is not a vreg when the copy source is a
// physical register.
if (!OPI2->isReg() ||
(!OPI->getReg().isPhysical() && OPI2->getReg().isPhysical()))
return false;
return true;
}
/// Find the split point at which to splice the end of BB into its success stack
/// protector check machine basic block.
///
/// On many platforms, due to ABI constraints, terminators, even before register
/// allocation, use physical registers. This creates an issue for us since
/// physical registers at this point can not travel across basic
/// blocks. Luckily, selectiondag always moves physical registers into vregs
/// when they enter functions and moves them through a sequence of copies back
/// into the physical registers right before the terminator creating a
/// ``Terminator Sequence''. This function is searching for the beginning of the
/// terminator sequence so that we can ensure that we splice off not just the
/// terminator, but additionally the copies that move the vregs into the
/// physical registers.
MachineBasicBlock::iterator
llvm::findSplitPointForStackProtector(MachineBasicBlock *BB,
const TargetInstrInfo &TII) {
MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
if (SplitPoint == BB->begin())
return SplitPoint;
MachineBasicBlock::iterator Start = BB->begin();
MachineBasicBlock::iterator Previous = SplitPoint;
do {
--Previous;
} while (Previous != Start && Previous->isDebugInstr());
if (TII.isTailCall(*SplitPoint) &&
Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
// Call frames cannot be nested, so if this frame is describing the tail
// call itself, then we must insert before the sequence even starts. For
// example:
// <split point>
// ADJCALLSTACKDOWN ...
// <Moves>
// ADJCALLSTACKUP ...
// TAILJMP somewhere
// On the other hand, it could be an unrelated call in which case this tail
// call has no register moves of its own and should be the split point. For
// example:
// ADJCALLSTACKDOWN
// CALL something_else
// ADJCALLSTACKUP
// <split point>
// TAILJMP somewhere
do {
--Previous;
if (Previous->isCall())
return SplitPoint;
} while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
return Previous;
}
while (MIIsInTerminatorSequence(*Previous)) {
SplitPoint = Previous;
if (Previous == Start)
break;
--Previous;
}
return SplitPoint;
}
FPClassTest llvm::getInvertedFPClassTest(FPClassTest Test) {
FPClassTest InvertedTest = ~Test & fcAllFlags;
switch (InvertedTest) {
default:
break;
case fcNan:
case fcSNan:
case fcQNan:
case fcInf:
case fcPosInf:
case fcNegInf:
case fcNormal:
case fcPosNormal:
case fcNegNormal:
case fcSubnormal:
case fcPosSubnormal:
case fcNegSubnormal:
case fcZero:
case fcPosZero:
case fcNegZero:
case fcFinite:
case fcPosFinite:
case fcNegFinite:
return InvertedTest;
}
return fcNone;
}
static MachineOperand *getSalvageOpsForCopy(const MachineRegisterInfo &MRI,
MachineInstr &Copy) {
assert(Copy.getOpcode() == TargetOpcode::COPY && "Must be a COPY");
return &Copy.getOperand(1);
}
static MachineOperand *getSalvageOpsForTrunc(const MachineRegisterInfo &MRI,
MachineInstr &Trunc,
SmallVectorImpl<uint64_t> &Ops) {
assert(Trunc.getOpcode() == TargetOpcode::G_TRUNC && "Must be a G_TRUNC");
const auto FromLLT = MRI.getType(Trunc.getOperand(1).getReg());
const auto ToLLT = MRI.getType(Trunc.defs().begin()->getReg());
// TODO: Support non-scalar types.
if (!FromLLT.isScalar()) {
return nullptr;
}
auto ExtOps = DIExpression::getExtOps(FromLLT.getSizeInBits(),
ToLLT.getSizeInBits(), false);
Ops.append(ExtOps.begin(), ExtOps.end());
return &Trunc.getOperand(1);
}
static MachineOperand *salvageDebugInfoImpl(const MachineRegisterInfo &MRI,
MachineInstr &MI,
SmallVectorImpl<uint64_t> &Ops) {
switch (MI.getOpcode()) {
case TargetOpcode::G_TRUNC:
return getSalvageOpsForTrunc(MRI, MI, Ops);
case TargetOpcode::COPY:
return getSalvageOpsForCopy(MRI, MI);
default:
return nullptr;
}
}
void llvm::salvageDebugInfoForDbgValue(const MachineRegisterInfo &MRI,
MachineInstr &MI,
ArrayRef<MachineOperand *> DbgUsers) {
// These are arbitrary chosen limits on the maximum number of values and the
// maximum size of a debug expression we can salvage up to, used for
// performance reasons.
const unsigned MaxExpressionSize = 128;
for (auto *DefMO : DbgUsers) {
MachineInstr *DbgMI = DefMO->getParent();
if (DbgMI->isIndirectDebugValue()) {
continue;
}
int UseMOIdx = DbgMI->findRegisterUseOperandIdx(DefMO->getReg());
assert(UseMOIdx != -1 && DbgMI->hasDebugOperandForReg(DefMO->getReg()) &&
"Must use salvaged instruction as its location");
// TODO: Support DBG_VALUE_LIST.
if (DbgMI->getOpcode() != TargetOpcode::DBG_VALUE) {
assert(DbgMI->getOpcode() == TargetOpcode::DBG_VALUE_LIST &&
"Must be either DBG_VALUE or DBG_VALUE_LIST");
continue;
}
const DIExpression *SalvagedExpr = DbgMI->getDebugExpression();
SmallVector<uint64_t, 16> Ops;
auto Op0 = salvageDebugInfoImpl(MRI, MI, Ops);
if (!Op0)
continue;
SalvagedExpr = DIExpression::appendOpsToArg(SalvagedExpr, Ops, 0, true);
bool IsValidSalvageExpr =
SalvagedExpr->getNumElements() <= MaxExpressionSize;
if (IsValidSalvageExpr) {
auto &UseMO = DbgMI->getOperand(UseMOIdx);
UseMO.setReg(Op0->getReg());
UseMO.setSubReg(Op0->getSubReg());
DbgMI->getDebugExpressionOp().setMetadata(SalvagedExpr);
LLVM_DEBUG(dbgs() << "SALVAGE: " << *DbgMI << '\n');
}
}
}