a28b252d85
Note that getMinSignedBits has been soft-deprecated in favor of getSignificantBits.
1232 lines
42 KiB
C++
1232 lines
42 KiB
C++
//===-- Value.cpp - Implement the Value class -----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Value, ValueHandle, and User classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Value.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DerivedUser.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/TypedPointerType.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> UseDerefAtPointSemantics(
|
|
"use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
|
|
cl::desc("Deref attributes and metadata infer facts at definition only"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value Class
|
|
//===----------------------------------------------------------------------===//
|
|
static inline Type *checkType(Type *Ty) {
|
|
assert(Ty && "Value defined with a null type: Error!");
|
|
assert(!isa<TypedPointerType>(Ty->getScalarType()) &&
|
|
"Cannot have values with typed pointer types");
|
|
return Ty;
|
|
}
|
|
|
|
Value::Value(Type *ty, unsigned scid)
|
|
: VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
|
|
SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
|
|
IsUsedByMD(false), HasName(false), HasMetadata(false) {
|
|
static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
|
|
// FIXME: Why isn't this in the subclass gunk??
|
|
// Note, we cannot call isa<CallInst> before the CallInst has been
|
|
// constructed.
|
|
unsigned OpCode = 0;
|
|
if (SubclassID >= InstructionVal)
|
|
OpCode = SubclassID - InstructionVal;
|
|
if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
|
|
OpCode == Instruction::CallBr)
|
|
assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
|
|
"invalid CallBase type!");
|
|
else if (SubclassID != BasicBlockVal &&
|
|
(/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
|
|
assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
|
|
"Cannot create non-first-class values except for constants!");
|
|
static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
|
|
"Value too big");
|
|
}
|
|
|
|
Value::~Value() {
|
|
// Notify all ValueHandles (if present) that this value is going away.
|
|
if (HasValueHandle)
|
|
ValueHandleBase::ValueIsDeleted(this);
|
|
if (isUsedByMetadata())
|
|
ValueAsMetadata::handleDeletion(this);
|
|
|
|
// Remove associated metadata from context.
|
|
if (HasMetadata)
|
|
clearMetadata();
|
|
|
|
#ifndef NDEBUG // Only in -g mode...
|
|
// Check to make sure that there are no uses of this value that are still
|
|
// around when the value is destroyed. If there are, then we have a dangling
|
|
// reference and something is wrong. This code is here to print out where
|
|
// the value is still being referenced.
|
|
//
|
|
// Note that use_empty() cannot be called here, as it eventually downcasts
|
|
// 'this' to GlobalValue (derived class of Value), but GlobalValue has already
|
|
// been destructed, so accessing it is UB.
|
|
//
|
|
if (!materialized_use_empty()) {
|
|
dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
|
|
for (auto *U : users())
|
|
dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
|
|
}
|
|
#endif
|
|
assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
|
|
|
|
// If this value is named, destroy the name. This should not be in a symtab
|
|
// at this point.
|
|
destroyValueName();
|
|
}
|
|
|
|
void Value::deleteValue() {
|
|
switch (getValueID()) {
|
|
#define HANDLE_VALUE(Name) \
|
|
case Value::Name##Val: \
|
|
delete static_cast<Name *>(this); \
|
|
break;
|
|
#define HANDLE_MEMORY_VALUE(Name) \
|
|
case Value::Name##Val: \
|
|
static_cast<DerivedUser *>(this)->DeleteValue( \
|
|
static_cast<DerivedUser *>(this)); \
|
|
break;
|
|
#define HANDLE_CONSTANT(Name) \
|
|
case Value::Name##Val: \
|
|
llvm_unreachable("constants should be destroyed with destroyConstant"); \
|
|
break;
|
|
#define HANDLE_INSTRUCTION(Name) /* nothing */
|
|
#include "llvm/IR/Value.def"
|
|
|
|
#define HANDLE_INST(N, OPC, CLASS) \
|
|
case Value::InstructionVal + Instruction::OPC: \
|
|
delete static_cast<CLASS *>(this); \
|
|
break;
|
|
#define HANDLE_USER_INST(N, OPC, CLASS)
|
|
#include "llvm/IR/Instruction.def"
|
|
|
|
default:
|
|
llvm_unreachable("attempting to delete unknown value kind");
|
|
}
|
|
}
|
|
|
|
void Value::destroyValueName() {
|
|
ValueName *Name = getValueName();
|
|
if (Name) {
|
|
MallocAllocator Allocator;
|
|
Name->Destroy(Allocator);
|
|
}
|
|
setValueName(nullptr);
|
|
}
|
|
|
|
bool Value::hasNUses(unsigned N) const {
|
|
return hasNItems(use_begin(), use_end(), N);
|
|
}
|
|
|
|
bool Value::hasNUsesOrMore(unsigned N) const {
|
|
return hasNItemsOrMore(use_begin(), use_end(), N);
|
|
}
|
|
|
|
bool Value::hasOneUser() const {
|
|
if (use_empty())
|
|
return false;
|
|
if (hasOneUse())
|
|
return true;
|
|
return std::equal(++user_begin(), user_end(), user_begin());
|
|
}
|
|
|
|
static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
|
|
|
|
Use *Value::getSingleUndroppableUse() {
|
|
Use *Result = nullptr;
|
|
for (Use &U : uses()) {
|
|
if (!U.getUser()->isDroppable()) {
|
|
if (Result)
|
|
return nullptr;
|
|
Result = &U;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
User *Value::getUniqueUndroppableUser() {
|
|
User *Result = nullptr;
|
|
for (auto *U : users()) {
|
|
if (!U->isDroppable()) {
|
|
if (Result && Result != U)
|
|
return nullptr;
|
|
Result = U;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
bool Value::hasNUndroppableUses(unsigned int N) const {
|
|
return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
|
|
}
|
|
|
|
bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
|
|
return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
|
|
}
|
|
|
|
void Value::dropDroppableUses(
|
|
llvm::function_ref<bool(const Use *)> ShouldDrop) {
|
|
SmallVector<Use *, 8> ToBeEdited;
|
|
for (Use &U : uses())
|
|
if (U.getUser()->isDroppable() && ShouldDrop(&U))
|
|
ToBeEdited.push_back(&U);
|
|
for (Use *U : ToBeEdited)
|
|
dropDroppableUse(*U);
|
|
}
|
|
|
|
void Value::dropDroppableUsesIn(User &Usr) {
|
|
assert(Usr.isDroppable() && "Expected a droppable user!");
|
|
for (Use &UsrOp : Usr.operands()) {
|
|
if (UsrOp.get() == this)
|
|
dropDroppableUse(UsrOp);
|
|
}
|
|
}
|
|
|
|
void Value::dropDroppableUse(Use &U) {
|
|
U.removeFromList();
|
|
if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
|
|
unsigned OpNo = U.getOperandNo();
|
|
if (OpNo == 0)
|
|
U.set(ConstantInt::getTrue(Assume->getContext()));
|
|
else {
|
|
U.set(UndefValue::get(U.get()->getType()));
|
|
CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
|
|
BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
|
|
}
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unkown droppable use");
|
|
}
|
|
|
|
bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
|
|
// This can be computed either by scanning the instructions in BB, or by
|
|
// scanning the use list of this Value. Both lists can be very long, but
|
|
// usually one is quite short.
|
|
//
|
|
// Scan both lists simultaneously until one is exhausted. This limits the
|
|
// search to the shorter list.
|
|
BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
|
|
const_user_iterator UI = user_begin(), UE = user_end();
|
|
for (; BI != BE && UI != UE; ++BI, ++UI) {
|
|
// Scan basic block: Check if this Value is used by the instruction at BI.
|
|
if (is_contained(BI->operands(), this))
|
|
return true;
|
|
// Scan use list: Check if the use at UI is in BB.
|
|
const auto *User = dyn_cast<Instruction>(*UI);
|
|
if (User && User->getParent() == BB)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned Value::getNumUses() const {
|
|
return (unsigned)std::distance(use_begin(), use_end());
|
|
}
|
|
|
|
static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
|
|
ST = nullptr;
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (BasicBlock *P = I->getParent())
|
|
if (Function *PP = P->getParent())
|
|
ST = PP->getValueSymbolTable();
|
|
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
|
if (Function *P = BB->getParent())
|
|
ST = P->getValueSymbolTable();
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
if (Module *P = GV->getParent())
|
|
ST = &P->getValueSymbolTable();
|
|
} else if (Argument *A = dyn_cast<Argument>(V)) {
|
|
if (Function *P = A->getParent())
|
|
ST = P->getValueSymbolTable();
|
|
} else {
|
|
assert(isa<Constant>(V) && "Unknown value type!");
|
|
return true; // no name is setable for this.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ValueName *Value::getValueName() const {
|
|
if (!HasName) return nullptr;
|
|
|
|
LLVMContext &Ctx = getContext();
|
|
auto I = Ctx.pImpl->ValueNames.find(this);
|
|
assert(I != Ctx.pImpl->ValueNames.end() &&
|
|
"No name entry found!");
|
|
|
|
return I->second;
|
|
}
|
|
|
|
void Value::setValueName(ValueName *VN) {
|
|
LLVMContext &Ctx = getContext();
|
|
|
|
assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
|
|
"HasName bit out of sync!");
|
|
|
|
if (!VN) {
|
|
if (HasName)
|
|
Ctx.pImpl->ValueNames.erase(this);
|
|
HasName = false;
|
|
return;
|
|
}
|
|
|
|
HasName = true;
|
|
Ctx.pImpl->ValueNames[this] = VN;
|
|
}
|
|
|
|
StringRef Value::getName() const {
|
|
// Make sure the empty string is still a C string. For historical reasons,
|
|
// some clients want to call .data() on the result and expect it to be null
|
|
// terminated.
|
|
if (!hasName())
|
|
return StringRef("", 0);
|
|
return getValueName()->getKey();
|
|
}
|
|
|
|
void Value::setNameImpl(const Twine &NewName) {
|
|
// Fast-path: LLVMContext can be set to strip out non-GlobalValue names
|
|
if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
|
|
return;
|
|
|
|
// Fast path for common IRBuilder case of setName("") when there is no name.
|
|
if (NewName.isTriviallyEmpty() && !hasName())
|
|
return;
|
|
|
|
SmallString<256> NameData;
|
|
StringRef NameRef = NewName.toStringRef(NameData);
|
|
assert(NameRef.find_first_of(0) == StringRef::npos &&
|
|
"Null bytes are not allowed in names");
|
|
|
|
// Name isn't changing?
|
|
if (getName() == NameRef)
|
|
return;
|
|
|
|
assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
|
|
|
|
// Get the symbol table to update for this object.
|
|
ValueSymbolTable *ST;
|
|
if (getSymTab(this, ST))
|
|
return; // Cannot set a name on this value (e.g. constant).
|
|
|
|
if (!ST) { // No symbol table to update? Just do the change.
|
|
if (NameRef.empty()) {
|
|
// Free the name for this value.
|
|
destroyValueName();
|
|
return;
|
|
}
|
|
|
|
// NOTE: Could optimize for the case the name is shrinking to not deallocate
|
|
// then reallocated.
|
|
destroyValueName();
|
|
|
|
// Create the new name.
|
|
MallocAllocator Allocator;
|
|
setValueName(ValueName::create(NameRef, Allocator));
|
|
getValueName()->setValue(this);
|
|
return;
|
|
}
|
|
|
|
// NOTE: Could optimize for the case the name is shrinking to not deallocate
|
|
// then reallocated.
|
|
if (hasName()) {
|
|
// Remove old name.
|
|
ST->removeValueName(getValueName());
|
|
destroyValueName();
|
|
|
|
if (NameRef.empty())
|
|
return;
|
|
}
|
|
|
|
// Name is changing to something new.
|
|
setValueName(ST->createValueName(NameRef, this));
|
|
}
|
|
|
|
void Value::setName(const Twine &NewName) {
|
|
setNameImpl(NewName);
|
|
if (Function *F = dyn_cast<Function>(this))
|
|
F->recalculateIntrinsicID();
|
|
}
|
|
|
|
void Value::takeName(Value *V) {
|
|
assert(V != this && "Illegal call to this->takeName(this)!");
|
|
ValueSymbolTable *ST = nullptr;
|
|
// If this value has a name, drop it.
|
|
if (hasName()) {
|
|
// Get the symtab this is in.
|
|
if (getSymTab(this, ST)) {
|
|
// We can't set a name on this value, but we need to clear V's name if
|
|
// it has one.
|
|
if (V->hasName()) V->setName("");
|
|
return; // Cannot set a name on this value (e.g. constant).
|
|
}
|
|
|
|
// Remove old name.
|
|
if (ST)
|
|
ST->removeValueName(getValueName());
|
|
destroyValueName();
|
|
}
|
|
|
|
// Now we know that this has no name.
|
|
|
|
// If V has no name either, we're done.
|
|
if (!V->hasName()) return;
|
|
|
|
// Get this's symtab if we didn't before.
|
|
if (!ST) {
|
|
if (getSymTab(this, ST)) {
|
|
// Clear V's name.
|
|
V->setName("");
|
|
return; // Cannot set a name on this value (e.g. constant).
|
|
}
|
|
}
|
|
|
|
// Get V's ST, this should always succeed, because V has a name.
|
|
ValueSymbolTable *VST;
|
|
bool Failure = getSymTab(V, VST);
|
|
assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
|
|
|
|
// If these values are both in the same symtab, we can do this very fast.
|
|
// This works even if both values have no symtab yet.
|
|
if (ST == VST) {
|
|
// Take the name!
|
|
setValueName(V->getValueName());
|
|
V->setValueName(nullptr);
|
|
getValueName()->setValue(this);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, things are slightly more complex. Remove V's name from VST and
|
|
// then reinsert it into ST.
|
|
|
|
if (VST)
|
|
VST->removeValueName(V->getValueName());
|
|
setValueName(V->getValueName());
|
|
V->setValueName(nullptr);
|
|
getValueName()->setValue(this);
|
|
|
|
if (ST)
|
|
ST->reinsertValue(this);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
std::string Value::getNameOrAsOperand() const {
|
|
if (!getName().empty())
|
|
return std::string(getName());
|
|
|
|
std::string BBName;
|
|
raw_string_ostream OS(BBName);
|
|
printAsOperand(OS, false);
|
|
return OS.str();
|
|
}
|
|
#endif
|
|
|
|
void Value::assertModuleIsMaterializedImpl() const {
|
|
#ifndef NDEBUG
|
|
const GlobalValue *GV = dyn_cast<GlobalValue>(this);
|
|
if (!GV)
|
|
return;
|
|
const Module *M = GV->getParent();
|
|
if (!M)
|
|
return;
|
|
assert(M->isMaterialized());
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
|
|
Constant *C) {
|
|
if (!Cache.insert(Expr).second)
|
|
return false;
|
|
|
|
for (auto &O : Expr->operands()) {
|
|
if (O == C)
|
|
return true;
|
|
auto *CE = dyn_cast<ConstantExpr>(O);
|
|
if (!CE)
|
|
continue;
|
|
if (contains(Cache, CE, C))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool contains(Value *Expr, Value *V) {
|
|
if (Expr == V)
|
|
return true;
|
|
|
|
auto *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return false;
|
|
|
|
auto *CE = dyn_cast<ConstantExpr>(Expr);
|
|
if (!CE)
|
|
return false;
|
|
|
|
SmallPtrSet<ConstantExpr *, 4> Cache;
|
|
return contains(Cache, CE, C);
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
|
|
assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
|
|
assert(!contains(New, this) &&
|
|
"this->replaceAllUsesWith(expr(this)) is NOT valid!");
|
|
assert(New->getType() == getType() &&
|
|
"replaceAllUses of value with new value of different type!");
|
|
|
|
// Notify all ValueHandles (if present) that this value is going away.
|
|
if (HasValueHandle)
|
|
ValueHandleBase::ValueIsRAUWd(this, New);
|
|
if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
|
|
ValueAsMetadata::handleRAUW(this, New);
|
|
|
|
while (!materialized_use_empty()) {
|
|
Use &U = *UseList;
|
|
// Must handle Constants specially, we cannot call replaceUsesOfWith on a
|
|
// constant because they are uniqued.
|
|
if (auto *C = dyn_cast<Constant>(U.getUser())) {
|
|
if (!isa<GlobalValue>(C)) {
|
|
C->handleOperandChange(this, New);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
U.set(New);
|
|
}
|
|
|
|
if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
|
|
BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
|
|
}
|
|
|
|
void Value::replaceAllUsesWith(Value *New) {
|
|
doRAUW(New, ReplaceMetadataUses::Yes);
|
|
}
|
|
|
|
void Value::replaceNonMetadataUsesWith(Value *New) {
|
|
doRAUW(New, ReplaceMetadataUses::No);
|
|
}
|
|
|
|
void Value::replaceUsesWithIf(Value *New,
|
|
llvm::function_ref<bool(Use &U)> ShouldReplace) {
|
|
assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
|
|
assert(New->getType() == getType() &&
|
|
"replaceUses of value with new value of different type!");
|
|
|
|
SmallVector<TrackingVH<Constant>, 8> Consts;
|
|
SmallPtrSet<Constant *, 8> Visited;
|
|
|
|
for (Use &U : llvm::make_early_inc_range(uses())) {
|
|
if (!ShouldReplace(U))
|
|
continue;
|
|
// Must handle Constants specially, we cannot call replaceUsesOfWith on a
|
|
// constant because they are uniqued.
|
|
if (auto *C = dyn_cast<Constant>(U.getUser())) {
|
|
if (!isa<GlobalValue>(C)) {
|
|
if (Visited.insert(C).second)
|
|
Consts.push_back(TrackingVH<Constant>(C));
|
|
continue;
|
|
}
|
|
}
|
|
U.set(New);
|
|
}
|
|
|
|
while (!Consts.empty()) {
|
|
// FIXME: handleOperandChange() updates all the uses in a given Constant,
|
|
// not just the one passed to ShouldReplace
|
|
Consts.pop_back_val()->handleOperandChange(this, New);
|
|
}
|
|
}
|
|
|
|
/// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
|
|
/// with New.
|
|
static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
|
|
SmallVector<DbgVariableIntrinsic *> DbgUsers;
|
|
findDbgUsers(DbgUsers, V);
|
|
for (auto *DVI : DbgUsers) {
|
|
if (DVI->getParent() != BB)
|
|
DVI->replaceVariableLocationOp(V, New);
|
|
}
|
|
}
|
|
|
|
// Like replaceAllUsesWith except it does not handle constants or basic blocks.
|
|
// This routine leaves uses within BB.
|
|
void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
|
|
assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
|
|
assert(!contains(New, this) &&
|
|
"this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
|
|
assert(New->getType() == getType() &&
|
|
"replaceUses of value with new value of different type!");
|
|
assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
|
|
|
|
replaceDbgUsesOutsideBlock(this, New, BB);
|
|
replaceUsesWithIf(New, [BB](Use &U) {
|
|
auto *I = dyn_cast<Instruction>(U.getUser());
|
|
// Don't replace if it's an instruction in the BB basic block.
|
|
return !I || I->getParent() != BB;
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
// Various metrics for how much to strip off of pointers.
|
|
enum PointerStripKind {
|
|
PSK_ZeroIndices,
|
|
PSK_ZeroIndicesAndAliases,
|
|
PSK_ZeroIndicesSameRepresentation,
|
|
PSK_ForAliasAnalysis,
|
|
PSK_InBoundsConstantIndices,
|
|
PSK_InBounds
|
|
};
|
|
|
|
template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
|
|
|
|
template <PointerStripKind StripKind>
|
|
static const Value *stripPointerCastsAndOffsets(
|
|
const Value *V,
|
|
function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
|
|
if (!V->getType()->isPointerTy())
|
|
return V;
|
|
|
|
// Even though we don't look through PHI nodes, we could be called on an
|
|
// instruction in an unreachable block, which may be on a cycle.
|
|
SmallPtrSet<const Value *, 4> Visited;
|
|
|
|
Visited.insert(V);
|
|
do {
|
|
Func(V);
|
|
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
|
|
switch (StripKind) {
|
|
case PSK_ZeroIndices:
|
|
case PSK_ZeroIndicesAndAliases:
|
|
case PSK_ZeroIndicesSameRepresentation:
|
|
case PSK_ForAliasAnalysis:
|
|
if (!GEP->hasAllZeroIndices())
|
|
return V;
|
|
break;
|
|
case PSK_InBoundsConstantIndices:
|
|
if (!GEP->hasAllConstantIndices())
|
|
return V;
|
|
[[fallthrough]];
|
|
case PSK_InBounds:
|
|
if (!GEP->isInBounds())
|
|
return V;
|
|
break;
|
|
}
|
|
V = GEP->getPointerOperand();
|
|
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
|
|
V = cast<Operator>(V)->getOperand(0);
|
|
if (!V->getType()->isPointerTy())
|
|
return V;
|
|
} else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
|
|
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
|
|
// TODO: If we know an address space cast will not change the
|
|
// representation we could look through it here as well.
|
|
V = cast<Operator>(V)->getOperand(0);
|
|
} else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
|
|
V = cast<GlobalAlias>(V)->getAliasee();
|
|
} else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
|
|
cast<PHINode>(V)->getNumIncomingValues() == 1) {
|
|
V = cast<PHINode>(V)->getIncomingValue(0);
|
|
} else {
|
|
if (const auto *Call = dyn_cast<CallBase>(V)) {
|
|
if (const Value *RV = Call->getReturnedArgOperand()) {
|
|
V = RV;
|
|
continue;
|
|
}
|
|
// The result of launder.invariant.group must alias it's argument,
|
|
// but it can't be marked with returned attribute, that's why it needs
|
|
// special case.
|
|
if (StripKind == PSK_ForAliasAnalysis &&
|
|
(Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
|
|
Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
|
|
V = Call->getArgOperand(0);
|
|
continue;
|
|
}
|
|
}
|
|
return V;
|
|
}
|
|
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
|
|
} while (Visited.insert(V).second);
|
|
|
|
return V;
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
const Value *Value::stripPointerCasts() const {
|
|
return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
|
|
}
|
|
|
|
const Value *Value::stripPointerCastsAndAliases() const {
|
|
return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
|
|
}
|
|
|
|
const Value *Value::stripPointerCastsSameRepresentation() const {
|
|
return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
|
|
}
|
|
|
|
const Value *Value::stripInBoundsConstantOffsets() const {
|
|
return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
|
|
}
|
|
|
|
const Value *Value::stripPointerCastsForAliasAnalysis() const {
|
|
return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
|
|
}
|
|
|
|
const Value *Value::stripAndAccumulateConstantOffsets(
|
|
const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
|
|
bool AllowInvariantGroup,
|
|
function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
|
|
if (!getType()->isPtrOrPtrVectorTy())
|
|
return this;
|
|
|
|
unsigned BitWidth = Offset.getBitWidth();
|
|
assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
|
|
"The offset bit width does not match the DL specification.");
|
|
|
|
// Even though we don't look through PHI nodes, we could be called on an
|
|
// instruction in an unreachable block, which may be on a cycle.
|
|
SmallPtrSet<const Value *, 4> Visited;
|
|
Visited.insert(this);
|
|
const Value *V = this;
|
|
do {
|
|
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
|
|
// If in-bounds was requested, we do not strip non-in-bounds GEPs.
|
|
if (!AllowNonInbounds && !GEP->isInBounds())
|
|
return V;
|
|
|
|
// If one of the values we have visited is an addrspacecast, then
|
|
// the pointer type of this GEP may be different from the type
|
|
// of the Ptr parameter which was passed to this function. This
|
|
// means when we construct GEPOffset, we need to use the size
|
|
// of GEP's pointer type rather than the size of the original
|
|
// pointer type.
|
|
APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
|
|
if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
|
|
return V;
|
|
|
|
// Stop traversal if the pointer offset wouldn't fit in the bit-width
|
|
// provided by the Offset argument. This can happen due to AddrSpaceCast
|
|
// stripping.
|
|
if (GEPOffset.getSignificantBits() > BitWidth)
|
|
return V;
|
|
|
|
// External Analysis can return a result higher/lower than the value
|
|
// represents. We need to detect overflow/underflow.
|
|
APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
|
|
if (!ExternalAnalysis) {
|
|
Offset += GEPOffsetST;
|
|
} else {
|
|
bool Overflow = false;
|
|
APInt OldOffset = Offset;
|
|
Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
|
|
if (Overflow) {
|
|
Offset = OldOffset;
|
|
return V;
|
|
}
|
|
}
|
|
V = GEP->getPointerOperand();
|
|
} else if (Operator::getOpcode(V) == Instruction::BitCast ||
|
|
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
|
|
V = cast<Operator>(V)->getOperand(0);
|
|
} else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
|
|
if (!GA->isInterposable())
|
|
V = GA->getAliasee();
|
|
} else if (const auto *Call = dyn_cast<CallBase>(V)) {
|
|
if (const Value *RV = Call->getReturnedArgOperand())
|
|
V = RV;
|
|
if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup())
|
|
V = Call->getArgOperand(0);
|
|
}
|
|
assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
|
|
} while (Visited.insert(V).second);
|
|
|
|
return V;
|
|
}
|
|
|
|
const Value *
|
|
Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
|
|
return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
|
|
}
|
|
|
|
bool Value::canBeFreed() const {
|
|
assert(getType()->isPointerTy());
|
|
|
|
// Cases that can simply never be deallocated
|
|
// *) Constants aren't allocated per se, thus not deallocated either.
|
|
if (isa<Constant>(this))
|
|
return false;
|
|
|
|
// Handle byval/byref/sret/inalloca/preallocated arguments. The storage
|
|
// lifetime is guaranteed to be longer than the callee's lifetime.
|
|
if (auto *A = dyn_cast<Argument>(this)) {
|
|
if (A->hasPointeeInMemoryValueAttr())
|
|
return false;
|
|
// A pointer to an object in a function which neither frees, nor can arrange
|
|
// for another thread to free on its behalf, can not be freed in the scope
|
|
// of the function. Note that this logic is restricted to memory
|
|
// allocations in existance before the call; a nofree function *is* allowed
|
|
// to free memory it allocated.
|
|
const Function *F = A->getParent();
|
|
if (F->doesNotFreeMemory() && F->hasNoSync())
|
|
return false;
|
|
}
|
|
|
|
const Function *F = nullptr;
|
|
if (auto *I = dyn_cast<Instruction>(this))
|
|
F = I->getFunction();
|
|
if (auto *A = dyn_cast<Argument>(this))
|
|
F = A->getParent();
|
|
|
|
if (!F)
|
|
return true;
|
|
|
|
// With garbage collection, deallocation typically occurs solely at or after
|
|
// safepoints. If we're compiling for a collector which uses the
|
|
// gc.statepoint infrastructure, safepoints aren't explicitly present
|
|
// in the IR until after lowering from abstract to physical machine model.
|
|
// The collector could chose to mix explicit deallocation and gc'd objects
|
|
// which is why we need the explicit opt in on a per collector basis.
|
|
if (!F->hasGC())
|
|
return true;
|
|
|
|
const auto &GCName = F->getGC();
|
|
if (GCName == "statepoint-example") {
|
|
auto *PT = cast<PointerType>(this->getType());
|
|
if (PT->getAddressSpace() != 1)
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as
|
|
// our GC managed heap. This must match the same check in
|
|
// RewriteStatepointsForGC (and probably needs better factored.)
|
|
return true;
|
|
|
|
// It is cheaper to scan for a declaration than to scan for a use in this
|
|
// function. Note that gc.statepoint is a type overloaded function so the
|
|
// usual trick of requesting declaration of the intrinsic from the module
|
|
// doesn't work.
|
|
for (auto &Fn : *F->getParent())
|
|
if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
|
|
return true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
|
|
bool &CanBeNull,
|
|
bool &CanBeFreed) const {
|
|
assert(getType()->isPointerTy() && "must be pointer");
|
|
|
|
uint64_t DerefBytes = 0;
|
|
CanBeNull = false;
|
|
CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
|
|
if (const Argument *A = dyn_cast<Argument>(this)) {
|
|
DerefBytes = A->getDereferenceableBytes();
|
|
if (DerefBytes == 0) {
|
|
// Handle byval/byref/inalloca/preallocated arguments
|
|
if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
|
|
if (ArgMemTy->isSized()) {
|
|
// FIXME: Why isn't this the type alloc size?
|
|
DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DerefBytes == 0) {
|
|
DerefBytes = A->getDereferenceableOrNullBytes();
|
|
CanBeNull = true;
|
|
}
|
|
} else if (const auto *Call = dyn_cast<CallBase>(this)) {
|
|
DerefBytes = Call->getRetDereferenceableBytes();
|
|
if (DerefBytes == 0) {
|
|
DerefBytes = Call->getRetDereferenceableOrNullBytes();
|
|
CanBeNull = true;
|
|
}
|
|
} else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
|
|
if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
|
|
DerefBytes = CI->getLimitedValue();
|
|
}
|
|
if (DerefBytes == 0) {
|
|
if (MDNode *MD =
|
|
LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
|
|
DerefBytes = CI->getLimitedValue();
|
|
}
|
|
CanBeNull = true;
|
|
}
|
|
} else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
|
|
if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
|
|
DerefBytes = CI->getLimitedValue();
|
|
}
|
|
if (DerefBytes == 0) {
|
|
if (MDNode *MD =
|
|
IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
|
|
DerefBytes = CI->getLimitedValue();
|
|
}
|
|
CanBeNull = true;
|
|
}
|
|
} else if (auto *AI = dyn_cast<AllocaInst>(this)) {
|
|
if (!AI->isArrayAllocation()) {
|
|
DerefBytes =
|
|
DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinValue();
|
|
CanBeNull = false;
|
|
CanBeFreed = false;
|
|
}
|
|
} else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
|
|
if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
|
|
// TODO: Don't outright reject hasExternalWeakLinkage but set the
|
|
// CanBeNull flag.
|
|
DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedValue();
|
|
CanBeNull = false;
|
|
CanBeFreed = false;
|
|
}
|
|
}
|
|
return DerefBytes;
|
|
}
|
|
|
|
Align Value::getPointerAlignment(const DataLayout &DL) const {
|
|
assert(getType()->isPointerTy() && "must be pointer");
|
|
if (auto *GO = dyn_cast<GlobalObject>(this)) {
|
|
if (isa<Function>(GO)) {
|
|
Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
|
|
switch (DL.getFunctionPtrAlignType()) {
|
|
case DataLayout::FunctionPtrAlignType::Independent:
|
|
return FunctionPtrAlign;
|
|
case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
|
|
return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
|
|
}
|
|
llvm_unreachable("Unhandled FunctionPtrAlignType");
|
|
}
|
|
const MaybeAlign Alignment(GO->getAlign());
|
|
if (!Alignment) {
|
|
if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
|
|
Type *ObjectType = GVar->getValueType();
|
|
if (ObjectType->isSized()) {
|
|
// If the object is defined in the current Module, we'll be giving
|
|
// it the preferred alignment. Otherwise, we have to assume that it
|
|
// may only have the minimum ABI alignment.
|
|
if (GVar->isStrongDefinitionForLinker())
|
|
return DL.getPreferredAlign(GVar);
|
|
else
|
|
return DL.getABITypeAlign(ObjectType);
|
|
}
|
|
}
|
|
}
|
|
return Alignment.valueOrOne();
|
|
} else if (const Argument *A = dyn_cast<Argument>(this)) {
|
|
const MaybeAlign Alignment = A->getParamAlign();
|
|
if (!Alignment && A->hasStructRetAttr()) {
|
|
// An sret parameter has at least the ABI alignment of the return type.
|
|
Type *EltTy = A->getParamStructRetType();
|
|
if (EltTy->isSized())
|
|
return DL.getABITypeAlign(EltTy);
|
|
}
|
|
return Alignment.valueOrOne();
|
|
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
|
|
return AI->getAlign();
|
|
} else if (const auto *Call = dyn_cast<CallBase>(this)) {
|
|
MaybeAlign Alignment = Call->getRetAlign();
|
|
if (!Alignment && Call->getCalledFunction())
|
|
Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
|
|
return Alignment.valueOrOne();
|
|
} else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
|
|
if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
|
|
return Align(CI->getLimitedValue());
|
|
}
|
|
} else if (auto *CstPtr = dyn_cast<Constant>(this)) {
|
|
// Strip pointer casts to avoid creating unnecessary ptrtoint expression
|
|
// if the only "reduction" is combining a bitcast + ptrtoint.
|
|
CstPtr = CstPtr->stripPointerCasts();
|
|
if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
|
|
const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
|
|
/*OnlyIfReduced=*/true))) {
|
|
size_t TrailingZeros = CstInt->getValue().countr_zero();
|
|
// While the actual alignment may be large, elsewhere we have
|
|
// an arbitrary upper alignmet limit, so let's clamp to it.
|
|
return Align(TrailingZeros < Value::MaxAlignmentExponent
|
|
? uint64_t(1) << TrailingZeros
|
|
: Value::MaximumAlignment);
|
|
}
|
|
}
|
|
return Align(1);
|
|
}
|
|
|
|
const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
|
|
const BasicBlock *PredBB) const {
|
|
auto *PN = dyn_cast<PHINode>(this);
|
|
if (PN && PN->getParent() == CurBB)
|
|
return PN->getIncomingValueForBlock(PredBB);
|
|
return this;
|
|
}
|
|
|
|
LLVMContext &Value::getContext() const { return VTy->getContext(); }
|
|
|
|
void Value::reverseUseList() {
|
|
if (!UseList || !UseList->Next)
|
|
// No need to reverse 0 or 1 uses.
|
|
return;
|
|
|
|
Use *Head = UseList;
|
|
Use *Current = UseList->Next;
|
|
Head->Next = nullptr;
|
|
while (Current) {
|
|
Use *Next = Current->Next;
|
|
Current->Next = Head;
|
|
Head->Prev = &Current->Next;
|
|
Head = Current;
|
|
Current = Next;
|
|
}
|
|
UseList = Head;
|
|
Head->Prev = &UseList;
|
|
}
|
|
|
|
bool Value::isSwiftError() const {
|
|
auto *Arg = dyn_cast<Argument>(this);
|
|
if (Arg)
|
|
return Arg->hasSwiftErrorAttr();
|
|
auto *Alloca = dyn_cast<AllocaInst>(this);
|
|
if (!Alloca)
|
|
return false;
|
|
return Alloca->isSwiftError();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueHandleBase Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
|
|
assert(List && "Handle list is null?");
|
|
|
|
// Splice ourselves into the list.
|
|
Next = *List;
|
|
*List = this;
|
|
setPrevPtr(List);
|
|
if (Next) {
|
|
Next->setPrevPtr(&Next);
|
|
assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
|
|
}
|
|
}
|
|
|
|
void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
|
|
assert(List && "Must insert after existing node");
|
|
|
|
Next = List->Next;
|
|
setPrevPtr(&List->Next);
|
|
List->Next = this;
|
|
if (Next)
|
|
Next->setPrevPtr(&Next);
|
|
}
|
|
|
|
void ValueHandleBase::AddToUseList() {
|
|
assert(getValPtr() && "Null pointer doesn't have a use list!");
|
|
|
|
LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
|
|
|
|
if (getValPtr()->HasValueHandle) {
|
|
// If this value already has a ValueHandle, then it must be in the
|
|
// ValueHandles map already.
|
|
ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
|
|
assert(Entry && "Value doesn't have any handles?");
|
|
AddToExistingUseList(&Entry);
|
|
return;
|
|
}
|
|
|
|
// Ok, it doesn't have any handles yet, so we must insert it into the
|
|
// DenseMap. However, doing this insertion could cause the DenseMap to
|
|
// reallocate itself, which would invalidate all of the PrevP pointers that
|
|
// point into the old table. Handle this by checking for reallocation and
|
|
// updating the stale pointers only if needed.
|
|
DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
|
|
const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
|
|
|
|
ValueHandleBase *&Entry = Handles[getValPtr()];
|
|
assert(!Entry && "Value really did already have handles?");
|
|
AddToExistingUseList(&Entry);
|
|
getValPtr()->HasValueHandle = true;
|
|
|
|
// If reallocation didn't happen or if this was the first insertion, don't
|
|
// walk the table.
|
|
if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
|
|
Handles.size() == 1) {
|
|
return;
|
|
}
|
|
|
|
// Okay, reallocation did happen. Fix the Prev Pointers.
|
|
for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
|
|
E = Handles.end(); I != E; ++I) {
|
|
assert(I->second && I->first == I->second->getValPtr() &&
|
|
"List invariant broken!");
|
|
I->second->setPrevPtr(&I->second);
|
|
}
|
|
}
|
|
|
|
void ValueHandleBase::RemoveFromUseList() {
|
|
assert(getValPtr() && getValPtr()->HasValueHandle &&
|
|
"Pointer doesn't have a use list!");
|
|
|
|
// Unlink this from its use list.
|
|
ValueHandleBase **PrevPtr = getPrevPtr();
|
|
assert(*PrevPtr == this && "List invariant broken");
|
|
|
|
*PrevPtr = Next;
|
|
if (Next) {
|
|
assert(Next->getPrevPtr() == &Next && "List invariant broken");
|
|
Next->setPrevPtr(PrevPtr);
|
|
return;
|
|
}
|
|
|
|
// If the Next pointer was null, then it is possible that this was the last
|
|
// ValueHandle watching VP. If so, delete its entry from the ValueHandles
|
|
// map.
|
|
LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
|
|
DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
|
|
if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
|
|
Handles.erase(getValPtr());
|
|
getValPtr()->HasValueHandle = false;
|
|
}
|
|
}
|
|
|
|
void ValueHandleBase::ValueIsDeleted(Value *V) {
|
|
assert(V->HasValueHandle && "Should only be called if ValueHandles present");
|
|
|
|
// Get the linked list base, which is guaranteed to exist since the
|
|
// HasValueHandle flag is set.
|
|
LLVMContextImpl *pImpl = V->getContext().pImpl;
|
|
ValueHandleBase *Entry = pImpl->ValueHandles[V];
|
|
assert(Entry && "Value bit set but no entries exist");
|
|
|
|
// We use a local ValueHandleBase as an iterator so that ValueHandles can add
|
|
// and remove themselves from the list without breaking our iteration. This
|
|
// is not really an AssertingVH; we just have to give ValueHandleBase a kind.
|
|
// Note that we deliberately do not the support the case when dropping a value
|
|
// handle results in a new value handle being permanently added to the list
|
|
// (as might occur in theory for CallbackVH's): the new value handle will not
|
|
// be processed and the checking code will mete out righteous punishment if
|
|
// the handle is still present once we have finished processing all the other
|
|
// value handles (it is fine to momentarily add then remove a value handle).
|
|
for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
|
|
Iterator.RemoveFromUseList();
|
|
Iterator.AddToExistingUseListAfter(Entry);
|
|
assert(Entry->Next == &Iterator && "Loop invariant broken.");
|
|
|
|
switch (Entry->getKind()) {
|
|
case Assert:
|
|
break;
|
|
case Weak:
|
|
case WeakTracking:
|
|
// WeakTracking and Weak just go to null, which unlinks them
|
|
// from the list.
|
|
Entry->operator=(nullptr);
|
|
break;
|
|
case Callback:
|
|
// Forward to the subclass's implementation.
|
|
static_cast<CallbackVH*>(Entry)->deleted();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// All callbacks, weak references, and assertingVHs should be dropped by now.
|
|
if (V->HasValueHandle) {
|
|
#ifndef NDEBUG // Only in +Asserts mode...
|
|
dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
|
|
<< "\n";
|
|
if (pImpl->ValueHandles[V]->getKind() == Assert)
|
|
llvm_unreachable("An asserting value handle still pointed to this"
|
|
" value!");
|
|
|
|
#endif
|
|
llvm_unreachable("All references to V were not removed?");
|
|
}
|
|
}
|
|
|
|
void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
|
|
assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
|
|
assert(Old != New && "Changing value into itself!");
|
|
assert(Old->getType() == New->getType() &&
|
|
"replaceAllUses of value with new value of different type!");
|
|
|
|
// Get the linked list base, which is guaranteed to exist since the
|
|
// HasValueHandle flag is set.
|
|
LLVMContextImpl *pImpl = Old->getContext().pImpl;
|
|
ValueHandleBase *Entry = pImpl->ValueHandles[Old];
|
|
|
|
assert(Entry && "Value bit set but no entries exist");
|
|
|
|
// We use a local ValueHandleBase as an iterator so that
|
|
// ValueHandles can add and remove themselves from the list without
|
|
// breaking our iteration. This is not really an AssertingVH; we
|
|
// just have to give ValueHandleBase some kind.
|
|
for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
|
|
Iterator.RemoveFromUseList();
|
|
Iterator.AddToExistingUseListAfter(Entry);
|
|
assert(Entry->Next == &Iterator && "Loop invariant broken.");
|
|
|
|
switch (Entry->getKind()) {
|
|
case Assert:
|
|
case Weak:
|
|
// Asserting and Weak handles do not follow RAUW implicitly.
|
|
break;
|
|
case WeakTracking:
|
|
// Weak goes to the new value, which will unlink it from Old's list.
|
|
Entry->operator=(New);
|
|
break;
|
|
case Callback:
|
|
// Forward to the subclass's implementation.
|
|
static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// If any new weak value handles were added while processing the
|
|
// list, then complain about it now.
|
|
if (Old->HasValueHandle)
|
|
for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
|
|
switch (Entry->getKind()) {
|
|
case WeakTracking:
|
|
dbgs() << "After RAUW from " << *Old->getType() << " %"
|
|
<< Old->getName() << " to " << *New->getType() << " %"
|
|
<< New->getName() << "\n";
|
|
llvm_unreachable(
|
|
"A weak tracking value handle still pointed to the old value!\n");
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Pin the vtable to this file.
|
|
void CallbackVH::anchor() {}
|