llvm-project/llvm/lib/Target/ARM/MVELaneInterleavingPass.cpp
David Green f634096f6b [ARM] Perform lane interleaving from reductions.
We have a pass for MVE to perform lane interleaving to make use of top/bottom
instructions, that adds shuffles before extends and after truncates. This
extends it to also start from add reductions, where the order of lanes does not
matter so the shuffle is not needed. We need to be careful about not breaking
the form of existing reductions, but otherwise can save some instructions and
awkward extends.

Differential Revision: https://reviews.llvm.org/D143396
2023-02-07 14:12:51 +00:00

426 lines
14 KiB
C++

//===- MVELaneInterleaving.cpp - Inverleave for MVE instructions ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass interleaves around sext/zext/trunc instructions. MVE does not have
// a single sext/zext or trunc instruction that takes the bottom half of a
// vector and extends to a full width, like NEON has with MOVL. Instead it is
// expected that this happens through top/bottom instructions. So the MVE
// equivalent VMOVLT/B instructions take either the even or odd elements of the
// input and extend them to the larger type, producing a vector with half the
// number of elements each of double the bitwidth. As there is no simple
// instruction, we often have to turn sext/zext/trunc into a series of lane
// moves (or stack loads/stores, which we do not do yet).
//
// This pass takes vector code that starts at truncs, looks for interconnected
// blobs of operations that end with sext/zext (or constants/splats) of the
// form:
// %sa = sext v8i16 %a to v8i32
// %sb = sext v8i16 %b to v8i32
// %add = add v8i32 %sa, %sb
// %r = trunc %add to v8i16
// And adds shuffles to allow the use of VMOVL/VMOVN instrctions:
// %sha = shuffle v8i16 %a, undef, <0, 2, 4, 6, 1, 3, 5, 7>
// %sa = sext v8i16 %sha to v8i32
// %shb = shuffle v8i16 %b, undef, <0, 2, 4, 6, 1, 3, 5, 7>
// %sb = sext v8i16 %shb to v8i32
// %add = add v8i32 %sa, %sb
// %r = trunc %add to v8i16
// %shr = shuffle v8i16 %r, undef, <0, 4, 1, 5, 2, 6, 3, 7>
// Which can then be split and lowered to MVE instructions efficiently:
// %sa_b = VMOVLB.s16 %a
// %sa_t = VMOVLT.s16 %a
// %sb_b = VMOVLB.s16 %b
// %sb_t = VMOVLT.s16 %b
// %add_b = VADD.i32 %sa_b, %sb_b
// %add_t = VADD.i32 %sa_t, %sb_t
// %r = VMOVNT.i16 %add_b, %add_t
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMSubtarget.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "mve-laneinterleave"
cl::opt<bool> EnableInterleave(
"enable-mve-interleave", cl::Hidden, cl::init(true),
cl::desc("Enable interleave MVE vector operation lowering"));
namespace {
class MVELaneInterleaving : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
explicit MVELaneInterleaving() : FunctionPass(ID) {
initializeMVELaneInterleavingPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "MVE lane interleaving"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
FunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char MVELaneInterleaving::ID = 0;
INITIALIZE_PASS(MVELaneInterleaving, DEBUG_TYPE, "MVE lane interleaving", false,
false)
Pass *llvm::createMVELaneInterleavingPass() {
return new MVELaneInterleaving();
}
static bool isProfitableToInterleave(SmallSetVector<Instruction *, 4> &Exts,
SmallSetVector<Instruction *, 4> &Truncs) {
// This is not always beneficial to transform. Exts can be incorporated into
// loads, Truncs can be folded into stores.
// Truncs are usually the same number of instructions,
// VSTRH.32(A);VSTRH.32(B) vs VSTRH.16(VMOVNT A, B) with interleaving
// Exts are unfortunately more instructions in the general case:
// A=VLDRH.32; B=VLDRH.32;
// vs with interleaving:
// T=VLDRH.16; A=VMOVNB T; B=VMOVNT T
// But those VMOVL may be folded into a VMULL.
// But expensive extends/truncs are always good to remove. FPExts always
// involve extra VCVT's so are always considered to be beneficial to convert.
for (auto *E : Exts) {
if (isa<FPExtInst>(E) || !isa<LoadInst>(E->getOperand(0))) {
LLVM_DEBUG(dbgs() << "Beneficial due to " << *E << "\n");
return true;
}
}
for (auto *T : Truncs) {
if (T->hasOneUse() && !isa<StoreInst>(*T->user_begin())) {
LLVM_DEBUG(dbgs() << "Beneficial due to " << *T << "\n");
return true;
}
}
// Otherwise, we know we have a load(ext), see if any of the Extends are a
// vmull. This is a simple heuristic and certainly not perfect.
for (auto *E : Exts) {
if (!E->hasOneUse() ||
cast<Instruction>(*E->user_begin())->getOpcode() != Instruction::Mul) {
LLVM_DEBUG(dbgs() << "Not beneficial due to " << *E << "\n");
return false;
}
}
return true;
}
static bool tryInterleave(Instruction *Start,
SmallPtrSetImpl<Instruction *> &Visited) {
LLVM_DEBUG(dbgs() << "tryInterleave from " << *Start << "\n");
if (!isa<Instruction>(Start->getOperand(0)))
return false;
// Look for connected operations starting from Ext's, terminating at Truncs.
std::vector<Instruction *> Worklist;
Worklist.push_back(Start);
Worklist.push_back(cast<Instruction>(Start->getOperand(0)));
SmallSetVector<Instruction *, 4> Truncs;
SmallSetVector<Instruction *, 4> Reducts;
SmallSetVector<Instruction *, 4> Exts;
SmallSetVector<Use *, 4> OtherLeafs;
SmallSetVector<Instruction *, 4> Ops;
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
switch (I->getOpcode()) {
// Truncs
case Instruction::Trunc:
case Instruction::FPTrunc:
if (!Truncs.insert(I))
continue;
Visited.insert(I);
break;
// Extend leafs
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::FPExt:
if (Exts.count(I))
continue;
for (auto *Use : I->users())
Worklist.push_back(cast<Instruction>(Use));
Exts.insert(I);
break;
case Instruction::Call: {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
if (!II)
return false;
if (II->getIntrinsicID() == Intrinsic::vector_reduce_add) {
if (!Reducts.insert(I))
continue;
Visited.insert(I);
break;
}
switch (II->getIntrinsicID()) {
case Intrinsic::abs:
case Intrinsic::smin:
case Intrinsic::smax:
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::fabs:
case Intrinsic::fma:
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::rint:
case Intrinsic::round:
case Intrinsic::trunc:
break;
default:
return false;
}
[[fallthrough]]; // Fall through to treating these like an operator below.
}
// Binary/tertiary ops
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::FAdd:
case Instruction::FMul:
case Instruction::Select:
if (!Ops.insert(I))
continue;
for (Use &Op : I->operands()) {
if (!isa<FixedVectorType>(Op->getType()))
continue;
if (isa<Instruction>(Op))
Worklist.push_back(cast<Instruction>(&Op));
else
OtherLeafs.insert(&Op);
}
for (auto *Use : I->users())
Worklist.push_back(cast<Instruction>(Use));
break;
case Instruction::ShuffleVector:
// A shuffle of a splat is a splat.
if (cast<ShuffleVectorInst>(I)->isZeroEltSplat())
continue;
[[fallthrough]];
default:
LLVM_DEBUG(dbgs() << " Unhandled instruction: " << *I << "\n");
return false;
}
}
if (Exts.empty() && OtherLeafs.empty())
return false;
LLVM_DEBUG({
dbgs() << "Found group:\n Exts:\n";
for (auto *I : Exts)
dbgs() << " " << *I << "\n";
dbgs() << " Ops:\n";
for (auto *I : Ops)
dbgs() << " " << *I << "\n";
dbgs() << " OtherLeafs:\n";
for (auto *I : OtherLeafs)
dbgs() << " " << *I->get() << " of " << *I->getUser() << "\n";
dbgs() << " Truncs:\n";
for (auto *I : Truncs)
dbgs() << " " << *I << "\n";
dbgs() << " Reducts:\n";
for (auto *I : Reducts)
dbgs() << " " << *I << "\n";
});
assert((!Truncs.empty() || !Reducts.empty()) &&
"Expected some truncs or reductions");
if (Truncs.empty() && Exts.empty())
return false;
auto *VT = !Truncs.empty()
? cast<FixedVectorType>(Truncs[0]->getType())
: cast<FixedVectorType>(Exts[0]->getOperand(0)->getType());
LLVM_DEBUG(dbgs() << "Using VT:" << *VT << "\n");
// Check types
unsigned NumElts = VT->getNumElements();
unsigned BaseElts = VT->getScalarSizeInBits() == 16
? 8
: (VT->getScalarSizeInBits() == 8 ? 16 : 0);
if (BaseElts == 0 || NumElts % BaseElts != 0) {
LLVM_DEBUG(dbgs() << " Type is unsupported\n");
return false;
}
if (Start->getOperand(0)->getType()->getScalarSizeInBits() !=
VT->getScalarSizeInBits() * 2) {
LLVM_DEBUG(dbgs() << " Type not double sized\n");
return false;
}
for (Instruction *I : Exts)
if (I->getOperand(0)->getType() != VT) {
LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n");
return false;
}
for (Instruction *I : Truncs)
if (I->getType() != VT) {
LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n");
return false;
}
// Check that it looks beneficial
if (!isProfitableToInterleave(Exts, Truncs))
return false;
if (!Reducts.empty() && (Ops.empty() || all_of(Ops, [](Instruction *I) {
return I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::Select ||
I->getOpcode() == Instruction::ICmp;
}))) {
LLVM_DEBUG(dbgs() << "Reduction does not look profitable\n");
return false;
}
// Create new shuffles around the extends / truncs / other leaves.
IRBuilder<> Builder(Start);
SmallVector<int, 16> LeafMask;
SmallVector<int, 16> TruncMask;
// LeafMask : 0, 2, 4, 6, 1, 3, 5, 7 8, 10, 12, 14, 9, 11, 13, 15
// TruncMask: 0, 4, 1, 5, 2, 6, 3, 7 8, 12, 9, 13, 10, 14, 11, 15
for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
for (unsigned i = 0; i < BaseElts / 2; i++)
LeafMask.push_back(Base + i * 2);
for (unsigned i = 0; i < BaseElts / 2; i++)
LeafMask.push_back(Base + i * 2 + 1);
}
for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
for (unsigned i = 0; i < BaseElts / 2; i++) {
TruncMask.push_back(Base + i);
TruncMask.push_back(Base + i + BaseElts / 2);
}
}
for (Instruction *I : Exts) {
LLVM_DEBUG(dbgs() << "Replacing ext " << *I << "\n");
Builder.SetInsertPoint(I);
Value *Shuffle = Builder.CreateShuffleVector(I->getOperand(0), LeafMask);
bool FPext = isa<FPExtInst>(I);
bool Sext = isa<SExtInst>(I);
Value *Ext = FPext ? Builder.CreateFPExt(Shuffle, I->getType())
: Sext ? Builder.CreateSExt(Shuffle, I->getType())
: Builder.CreateZExt(Shuffle, I->getType());
I->replaceAllUsesWith(Ext);
LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n");
}
for (Use *I : OtherLeafs) {
LLVM_DEBUG(dbgs() << "Replacing leaf " << *I << "\n");
Builder.SetInsertPoint(cast<Instruction>(I->getUser()));
Value *Shuffle = Builder.CreateShuffleVector(I->get(), LeafMask);
I->getUser()->setOperand(I->getOperandNo(), Shuffle);
LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n");
}
for (Instruction *I : Truncs) {
LLVM_DEBUG(dbgs() << "Replacing trunc " << *I << "\n");
Builder.SetInsertPoint(I->getParent(), ++I->getIterator());
Value *Shuf = Builder.CreateShuffleVector(I, TruncMask);
I->replaceAllUsesWith(Shuf);
cast<Instruction>(Shuf)->setOperand(0, I);
LLVM_DEBUG(dbgs() << " with " << *Shuf << "\n");
}
return true;
}
// Add reductions are fairly common and associative, meaning we can start the
// interleaving from them and don't need to emit a shuffle.
static bool isAddReduction(Instruction &I) {
if (auto *II = dyn_cast<IntrinsicInst>(&I))
return II->getIntrinsicID() == Intrinsic::vector_reduce_add;
return false;
}
bool MVELaneInterleaving::runOnFunction(Function &F) {
if (!EnableInterleave)
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<TargetMachine>();
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
if (!ST->hasMVEIntegerOps())
return false;
bool Changed = false;
SmallPtrSet<Instruction *, 16> Visited;
for (Instruction &I : reverse(instructions(F))) {
if (((I.getType()->isVectorTy() &&
(isa<TruncInst>(I) || isa<FPTruncInst>(I))) ||
isAddReduction(I)) &&
!Visited.count(&I))
Changed |= tryInterleave(&I, Visited);
}
return Changed;
}