bf23b4031e
In canCreateUndefOrPoison(), take not only poison-generating flags, but also poison-generating metadata into account. The helpers are written generically, but I believe the only case that can actually matter is !range on calls -- !nonnull and !align are only valid on loads, and those can create undef/poison anyway. Unfortunately, this negatively impacts logical to bitwise and/or conversion: For ctpop/ctlz/cttz we always attach !range metadata, which will now block the transform, because it might introduce poison. It would be possible to recover this regression by supporting a ConsiderFlagsAndMetadata=false mode in impliesPoison() and clearing flags/metadata on visited instructions. Fixes https://github.com/llvm/llvm-project/issues/59888. Differential Revision: https://reviews.llvm.org/D142115
256 lines
9.1 KiB
C++
256 lines
9.1 KiB
C++
//===-- Operator.cpp - Implement the LLVM operators -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the non-inline methods for the LLVM Operator classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "ConstantsContext.h"
|
|
|
|
namespace llvm {
|
|
bool Operator::hasPoisonGeneratingFlags() const {
|
|
switch (getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Shl: {
|
|
auto *OBO = cast<OverflowingBinaryOperator>(this);
|
|
return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
|
|
}
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::AShr:
|
|
case Instruction::LShr:
|
|
return cast<PossiblyExactOperator>(this)->isExact();
|
|
case Instruction::GetElementPtr: {
|
|
auto *GEP = cast<GEPOperator>(this);
|
|
// Note: inrange exists on constexpr only
|
|
return GEP->isInBounds() || GEP->getInRangeIndex() != std::nullopt;
|
|
}
|
|
default:
|
|
if (const auto *FP = dyn_cast<FPMathOperator>(this))
|
|
return FP->hasNoNaNs() || FP->hasNoInfs();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Operator::hasPoisonGeneratingFlagsOrMetadata() const {
|
|
if (hasPoisonGeneratingFlags())
|
|
return true;
|
|
auto *I = dyn_cast<Instruction>(this);
|
|
return I && I->hasPoisonGeneratingMetadata();
|
|
}
|
|
|
|
Type *GEPOperator::getSourceElementType() const {
|
|
if (auto *I = dyn_cast<GetElementPtrInst>(this))
|
|
return I->getSourceElementType();
|
|
return cast<GetElementPtrConstantExpr>(this)->getSourceElementType();
|
|
}
|
|
|
|
Type *GEPOperator::getResultElementType() const {
|
|
if (auto *I = dyn_cast<GetElementPtrInst>(this))
|
|
return I->getResultElementType();
|
|
return cast<GetElementPtrConstantExpr>(this)->getResultElementType();
|
|
}
|
|
|
|
Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const {
|
|
/// compute the worse possible offset for every level of the GEP et accumulate
|
|
/// the minimum alignment into Result.
|
|
|
|
Align Result = Align(llvm::Value::MaximumAlignment);
|
|
for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
|
|
GTI != GTE; ++GTI) {
|
|
uint64_t Offset;
|
|
ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
|
|
|
|
if (StructType *STy = GTI.getStructTypeOrNull()) {
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
Offset = SL->getElementOffset(OpC->getZExtValue());
|
|
} else {
|
|
assert(GTI.isSequential() && "should be sequencial");
|
|
/// If the index isn't known, we take 1 because it is the index that will
|
|
/// give the worse alignment of the offset.
|
|
const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1;
|
|
Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount;
|
|
}
|
|
Result = Align(MinAlign(Offset, Result.value()));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
bool GEPOperator::accumulateConstantOffset(
|
|
const DataLayout &DL, APInt &Offset,
|
|
function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
|
|
assert(Offset.getBitWidth() ==
|
|
DL.getIndexSizeInBits(getPointerAddressSpace()) &&
|
|
"The offset bit width does not match DL specification.");
|
|
SmallVector<const Value *> Index(llvm::drop_begin(operand_values()));
|
|
return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index,
|
|
DL, Offset, ExternalAnalysis);
|
|
}
|
|
|
|
bool GEPOperator::accumulateConstantOffset(
|
|
Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL,
|
|
APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) {
|
|
bool UsedExternalAnalysis = false;
|
|
auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool {
|
|
Index = Index.sextOrTrunc(Offset.getBitWidth());
|
|
APInt IndexedSize = APInt(Offset.getBitWidth(), Size);
|
|
// For array or vector indices, scale the index by the size of the type.
|
|
if (!UsedExternalAnalysis) {
|
|
Offset += Index * IndexedSize;
|
|
} else {
|
|
// External Analysis can return a result higher/lower than the value
|
|
// represents. We need to detect overflow/underflow.
|
|
bool Overflow = false;
|
|
APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow);
|
|
if (Overflow)
|
|
return false;
|
|
Offset = Offset.sadd_ov(OffsetPlus, Overflow);
|
|
if (Overflow)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin(
|
|
SourceType, Index.begin());
|
|
auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end());
|
|
for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) {
|
|
// Scalable vectors are multiplied by a runtime constant.
|
|
bool ScalableType = false;
|
|
if (isa<ScalableVectorType>(GTI.getIndexedType()))
|
|
ScalableType = true;
|
|
|
|
Value *V = GTI.getOperand();
|
|
StructType *STy = GTI.getStructTypeOrNull();
|
|
// Handle ConstantInt if possible.
|
|
if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
|
|
if (ConstOffset->isZero())
|
|
continue;
|
|
// if the type is scalable and the constant is not zero (vscale * n * 0 =
|
|
// 0) bailout.
|
|
if (ScalableType)
|
|
return false;
|
|
// Handle a struct index, which adds its field offset to the pointer.
|
|
if (STy) {
|
|
unsigned ElementIdx = ConstOffset->getZExtValue();
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
// Element offset is in bytes.
|
|
if (!AccumulateOffset(
|
|
APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)),
|
|
1))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (!AccumulateOffset(ConstOffset->getValue(),
|
|
DL.getTypeAllocSize(GTI.getIndexedType())))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// The operand is not constant, check if an external analysis was provided.
|
|
// External analsis is not applicable to a struct type.
|
|
if (!ExternalAnalysis || STy || ScalableType)
|
|
return false;
|
|
APInt AnalysisIndex;
|
|
if (!ExternalAnalysis(*V, AnalysisIndex))
|
|
return false;
|
|
UsedExternalAnalysis = true;
|
|
if (!AccumulateOffset(AnalysisIndex,
|
|
DL.getTypeAllocSize(GTI.getIndexedType())))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GEPOperator::collectOffset(
|
|
const DataLayout &DL, unsigned BitWidth,
|
|
MapVector<Value *, APInt> &VariableOffsets,
|
|
APInt &ConstantOffset) const {
|
|
assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) &&
|
|
"The offset bit width does not match DL specification.");
|
|
|
|
auto CollectConstantOffset = [&](APInt Index, uint64_t Size) {
|
|
Index = Index.sextOrTrunc(BitWidth);
|
|
APInt IndexedSize = APInt(BitWidth, Size);
|
|
ConstantOffset += Index * IndexedSize;
|
|
};
|
|
|
|
for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
|
|
GTI != GTE; ++GTI) {
|
|
// Scalable vectors are multiplied by a runtime constant.
|
|
bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType());
|
|
|
|
Value *V = GTI.getOperand();
|
|
StructType *STy = GTI.getStructTypeOrNull();
|
|
// Handle ConstantInt if possible.
|
|
if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
|
|
if (ConstOffset->isZero())
|
|
continue;
|
|
// If the type is scalable and the constant is not zero (vscale * n * 0 =
|
|
// 0) bailout.
|
|
// TODO: If the runtime value is accessible at any point before DWARF
|
|
// emission, then we could potentially keep a forward reference to it
|
|
// in the debug value to be filled in later.
|
|
if (ScalableType)
|
|
return false;
|
|
// Handle a struct index, which adds its field offset to the pointer.
|
|
if (STy) {
|
|
unsigned ElementIdx = ConstOffset->getZExtValue();
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
// Element offset is in bytes.
|
|
CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)),
|
|
1);
|
|
continue;
|
|
}
|
|
CollectConstantOffset(ConstOffset->getValue(),
|
|
DL.getTypeAllocSize(GTI.getIndexedType()));
|
|
continue;
|
|
}
|
|
|
|
if (STy || ScalableType)
|
|
return false;
|
|
APInt IndexedSize =
|
|
APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
|
|
// Insert an initial offset of 0 for V iff none exists already, then
|
|
// increment the offset by IndexedSize.
|
|
if (!IndexedSize.isZero()) {
|
|
VariableOffsets.insert({V, APInt(BitWidth, 0)});
|
|
VariableOffsets[V] += IndexedSize;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void FastMathFlags::print(raw_ostream &O) const {
|
|
if (all())
|
|
O << " fast";
|
|
else {
|
|
if (allowReassoc())
|
|
O << " reassoc";
|
|
if (noNaNs())
|
|
O << " nnan";
|
|
if (noInfs())
|
|
O << " ninf";
|
|
if (noSignedZeros())
|
|
O << " nsz";
|
|
if (allowReciprocal())
|
|
O << " arcp";
|
|
if (allowContract())
|
|
O << " contract";
|
|
if (approxFunc())
|
|
O << " afn";
|
|
}
|
|
}
|
|
} // namespace llvm
|