3047 lines
125 KiB
C++
3047 lines
125 KiB
C++
//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
// Implementation for the IROutliner which is used by the IROutliner Pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/IROutliner.h"
|
|
#include "llvm/Analysis/IRSimilarityIdentifier.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "iroutliner"
|
|
|
|
using namespace llvm;
|
|
using namespace IRSimilarity;
|
|
|
|
// A command flag to be used for debugging to exclude branches from similarity
|
|
// matching and outlining.
|
|
namespace llvm {
|
|
extern cl::opt<bool> DisableBranches;
|
|
|
|
// A command flag to be used for debugging to indirect calls from similarity
|
|
// matching and outlining.
|
|
extern cl::opt<bool> DisableIndirectCalls;
|
|
|
|
// A command flag to be used for debugging to exclude intrinsics from similarity
|
|
// matching and outlining.
|
|
extern cl::opt<bool> DisableIntrinsics;
|
|
|
|
} // namespace llvm
|
|
|
|
// Set to true if the user wants the ir outliner to run on linkonceodr linkage
|
|
// functions. This is false by default because the linker can dedupe linkonceodr
|
|
// functions. Since the outliner is confined to a single module (modulo LTO),
|
|
// this is off by default. It should, however, be the default behavior in
|
|
// LTO.
|
|
static cl::opt<bool> EnableLinkOnceODRIROutlining(
|
|
"enable-linkonceodr-ir-outlining", cl::Hidden,
|
|
cl::desc("Enable the IR outliner on linkonceodr functions"),
|
|
cl::init(false));
|
|
|
|
// This is a debug option to test small pieces of code to ensure that outlining
|
|
// works correctly.
|
|
static cl::opt<bool> NoCostModel(
|
|
"ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
|
|
cl::desc("Debug option to outline greedily, without restriction that "
|
|
"calculated benefit outweighs cost"));
|
|
|
|
/// The OutlinableGroup holds all the overarching information for outlining
|
|
/// a set of regions that are structurally similar to one another, such as the
|
|
/// types of the overall function, the output blocks, the sets of stores needed
|
|
/// and a list of the different regions. This information is used in the
|
|
/// deduplication of extracted regions with the same structure.
|
|
struct OutlinableGroup {
|
|
/// The sections that could be outlined
|
|
std::vector<OutlinableRegion *> Regions;
|
|
|
|
/// The argument types for the function created as the overall function to
|
|
/// replace the extracted function for each region.
|
|
std::vector<Type *> ArgumentTypes;
|
|
/// The FunctionType for the overall function.
|
|
FunctionType *OutlinedFunctionType = nullptr;
|
|
/// The Function for the collective overall function.
|
|
Function *OutlinedFunction = nullptr;
|
|
|
|
/// Flag for whether we should not consider this group of OutlinableRegions
|
|
/// for extraction.
|
|
bool IgnoreGroup = false;
|
|
|
|
/// The return blocks for the overall function.
|
|
DenseMap<Value *, BasicBlock *> EndBBs;
|
|
|
|
/// The PHIBlocks with their corresponding return block based on the return
|
|
/// value as the key.
|
|
DenseMap<Value *, BasicBlock *> PHIBlocks;
|
|
|
|
/// A set containing the different GVN store sets needed. Each array contains
|
|
/// a sorted list of the different values that need to be stored into output
|
|
/// registers.
|
|
DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
|
|
|
|
/// Flag for whether the \ref ArgumentTypes have been defined after the
|
|
/// extraction of the first region.
|
|
bool InputTypesSet = false;
|
|
|
|
/// The number of input values in \ref ArgumentTypes. Anything after this
|
|
/// index in ArgumentTypes is an output argument.
|
|
unsigned NumAggregateInputs = 0;
|
|
|
|
/// The mapping of the canonical numbering of the values in outlined sections
|
|
/// to specific arguments.
|
|
DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
|
|
|
|
/// The number of branches in the region target a basic block that is outside
|
|
/// of the region.
|
|
unsigned BranchesToOutside = 0;
|
|
|
|
/// Tracker counting backwards from the highest unsigned value possible to
|
|
/// avoid conflicting with the GVNs of assigned values. We start at -3 since
|
|
/// -2 and -1 are assigned by the DenseMap.
|
|
unsigned PHINodeGVNTracker = -3;
|
|
|
|
DenseMap<unsigned,
|
|
std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
|
|
PHINodeGVNToGVNs;
|
|
DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
|
|
|
|
/// The number of instructions that will be outlined by extracting \ref
|
|
/// Regions.
|
|
InstructionCost Benefit = 0;
|
|
/// The number of added instructions needed for the outlining of the \ref
|
|
/// Regions.
|
|
InstructionCost Cost = 0;
|
|
|
|
/// The argument that needs to be marked with the swifterr attribute. If not
|
|
/// needed, there is no value.
|
|
std::optional<unsigned> SwiftErrorArgument;
|
|
|
|
/// For the \ref Regions, we look at every Value. If it is a constant,
|
|
/// we check whether it is the same in Region.
|
|
///
|
|
/// \param [in,out] NotSame contains the global value numbers where the
|
|
/// constant is not always the same, and must be passed in as an argument.
|
|
void findSameConstants(DenseSet<unsigned> &NotSame);
|
|
|
|
/// For the regions, look at each set of GVN stores needed and account for
|
|
/// each combination. Add an argument to the argument types if there is
|
|
/// more than one combination.
|
|
///
|
|
/// \param [in] M - The module we are outlining from.
|
|
void collectGVNStoreSets(Module &M);
|
|
};
|
|
|
|
/// Move the contents of \p SourceBB to before the last instruction of \p
|
|
/// TargetBB.
|
|
/// \param SourceBB - the BasicBlock to pull Instructions from.
|
|
/// \param TargetBB - the BasicBlock to put Instruction into.
|
|
static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
|
|
for (Instruction &I : llvm::make_early_inc_range(SourceBB))
|
|
I.moveBefore(TargetBB, TargetBB.end());
|
|
}
|
|
|
|
/// A function to sort the keys of \p Map, which must be a mapping of constant
|
|
/// values to basic blocks and return it in \p SortedKeys
|
|
///
|
|
/// \param SortedKeys - The vector the keys will be return in and sorted.
|
|
/// \param Map - The DenseMap containing keys to sort.
|
|
static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
|
|
DenseMap<Value *, BasicBlock *> &Map) {
|
|
for (auto &VtoBB : Map)
|
|
SortedKeys.push_back(VtoBB.first);
|
|
|
|
// Here we expect to have either 1 value that is void (nullptr) or multiple
|
|
// values that are all constant integers.
|
|
if (SortedKeys.size() == 1) {
|
|
assert(!SortedKeys[0] && "Expected a single void value.");
|
|
return;
|
|
}
|
|
|
|
stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
|
|
assert(LHS && RHS && "Expected non void values.");
|
|
const ConstantInt *LHSC = cast<ConstantInt>(LHS);
|
|
const ConstantInt *RHSC = cast<ConstantInt>(RHS);
|
|
|
|
return LHSC->getLimitedValue() < RHSC->getLimitedValue();
|
|
});
|
|
}
|
|
|
|
Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
|
|
Value *V) {
|
|
std::optional<unsigned> GVN = Candidate->getGVN(V);
|
|
assert(GVN && "No GVN for incoming value");
|
|
std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
|
|
std::optional<unsigned> FirstGVN =
|
|
Other.Candidate->fromCanonicalNum(*CanonNum);
|
|
std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
|
|
return FoundValueOpt.value_or(nullptr);
|
|
}
|
|
|
|
BasicBlock *
|
|
OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
|
|
BasicBlock *BB) {
|
|
Instruction *FirstNonPHI = BB->getFirstNonPHI();
|
|
assert(FirstNonPHI && "block is empty?");
|
|
Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
|
|
if (!CorrespondingVal)
|
|
return nullptr;
|
|
BasicBlock *CorrespondingBlock =
|
|
cast<Instruction>(CorrespondingVal)->getParent();
|
|
return CorrespondingBlock;
|
|
}
|
|
|
|
/// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
|
|
/// in \p Included to branch to BasicBlock \p Replace if they currently branch
|
|
/// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
|
|
/// when PHINodes are included in outlined regions.
|
|
///
|
|
/// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
|
|
/// checked.
|
|
/// \param Find - The successor block to be replaced.
|
|
/// \param Replace - The new succesor block to branch to.
|
|
/// \param Included - The set of blocks about to be outlined.
|
|
static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
|
|
BasicBlock *Replace,
|
|
DenseSet<BasicBlock *> &Included) {
|
|
for (PHINode &PN : PHIBlock->phis()) {
|
|
for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
|
|
++Idx) {
|
|
// Check if the incoming block is included in the set of blocks being
|
|
// outlined.
|
|
BasicBlock *Incoming = PN.getIncomingBlock(Idx);
|
|
if (!Included.contains(Incoming))
|
|
continue;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
|
|
assert(BI && "Not a branch instruction?");
|
|
// Look over the branching instructions into this block to see if we
|
|
// used to branch to Find in this outlined block.
|
|
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
|
|
Succ++) {
|
|
// If we have found the block to replace, we do so here.
|
|
if (BI->getSuccessor(Succ) != Find)
|
|
continue;
|
|
BI->setSuccessor(Succ, Replace);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void OutlinableRegion::splitCandidate() {
|
|
assert(!CandidateSplit && "Candidate already split!");
|
|
|
|
Instruction *BackInst = Candidate->backInstruction();
|
|
|
|
Instruction *EndInst = nullptr;
|
|
// Check whether the last instruction is a terminator, if it is, we do
|
|
// not split on the following instruction. We leave the block as it is. We
|
|
// also check that this is not the last instruction in the Module, otherwise
|
|
// the check for whether the current following instruction matches the
|
|
// previously recorded instruction will be incorrect.
|
|
if (!BackInst->isTerminator() ||
|
|
BackInst->getParent() != &BackInst->getFunction()->back()) {
|
|
EndInst = Candidate->end()->Inst;
|
|
assert(EndInst && "Expected an end instruction?");
|
|
}
|
|
|
|
// We check if the current instruction following the last instruction in the
|
|
// region is the same as the recorded instruction following the last
|
|
// instruction. If they do not match, there could be problems in rewriting
|
|
// the program after outlining, so we ignore it.
|
|
if (!BackInst->isTerminator() &&
|
|
EndInst != BackInst->getNextNonDebugInstruction())
|
|
return;
|
|
|
|
Instruction *StartInst = (*Candidate->begin()).Inst;
|
|
assert(StartInst && "Expected a start instruction?");
|
|
StartBB = StartInst->getParent();
|
|
PrevBB = StartBB;
|
|
|
|
DenseSet<BasicBlock *> BBSet;
|
|
Candidate->getBasicBlocks(BBSet);
|
|
|
|
// We iterate over the instructions in the region, if we find a PHINode, we
|
|
// check if there are predecessors outside of the region, if there are,
|
|
// we ignore this region since we are unable to handle the severing of the
|
|
// phi node right now.
|
|
|
|
// TODO: Handle extraneous inputs for PHINodes through variable number of
|
|
// inputs, similar to how outputs are handled.
|
|
BasicBlock::iterator It = StartInst->getIterator();
|
|
EndBB = BackInst->getParent();
|
|
BasicBlock *IBlock;
|
|
BasicBlock *PHIPredBlock = nullptr;
|
|
bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
|
|
while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
|
|
unsigned NumPredsOutsideRegion = 0;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
if (!BBSet.contains(PN->getIncomingBlock(i))) {
|
|
PHIPredBlock = PN->getIncomingBlock(i);
|
|
++NumPredsOutsideRegion;
|
|
continue;
|
|
}
|
|
|
|
// We must consider the case there the incoming block to the PHINode is
|
|
// the same as the final block of the OutlinableRegion. If this is the
|
|
// case, the branch from this block must also be outlined to be valid.
|
|
IBlock = PN->getIncomingBlock(i);
|
|
if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
|
|
PHIPredBlock = PN->getIncomingBlock(i);
|
|
++NumPredsOutsideRegion;
|
|
}
|
|
}
|
|
|
|
if (NumPredsOutsideRegion > 1)
|
|
return;
|
|
|
|
It++;
|
|
}
|
|
|
|
// If the region starts with a PHINode, but is not the initial instruction of
|
|
// the BasicBlock, we ignore this region for now.
|
|
if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
|
|
return;
|
|
|
|
// If the region ends with a PHINode, but does not contain all of the phi node
|
|
// instructions of the region, we ignore it for now.
|
|
if (isa<PHINode>(BackInst) &&
|
|
BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
|
|
return;
|
|
|
|
// The basic block gets split like so:
|
|
// block: block:
|
|
// inst1 inst1
|
|
// inst2 inst2
|
|
// region1 br block_to_outline
|
|
// region2 block_to_outline:
|
|
// region3 -> region1
|
|
// region4 region2
|
|
// inst3 region3
|
|
// inst4 region4
|
|
// br block_after_outline
|
|
// block_after_outline:
|
|
// inst3
|
|
// inst4
|
|
|
|
std::string OriginalName = PrevBB->getName().str();
|
|
|
|
StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
|
|
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
|
|
// If there was a PHINode with an incoming block outside the region,
|
|
// make sure is correctly updated in the newly split block.
|
|
if (PHIPredBlock)
|
|
PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
|
|
|
|
CandidateSplit = true;
|
|
if (!BackInst->isTerminator()) {
|
|
EndBB = EndInst->getParent();
|
|
FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
|
|
EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
|
|
FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
|
|
} else {
|
|
EndBB = BackInst->getParent();
|
|
EndsInBranch = true;
|
|
FollowBB = nullptr;
|
|
}
|
|
|
|
// Refind the basic block set.
|
|
BBSet.clear();
|
|
Candidate->getBasicBlocks(BBSet);
|
|
// For the phi nodes in the new starting basic block of the region, we
|
|
// reassign the targets of the basic blocks branching instructions.
|
|
replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
|
|
if (FollowBB)
|
|
replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
|
|
}
|
|
|
|
void OutlinableRegion::reattachCandidate() {
|
|
assert(CandidateSplit && "Candidate is not split!");
|
|
|
|
// The basic block gets reattached like so:
|
|
// block: block:
|
|
// inst1 inst1
|
|
// inst2 inst2
|
|
// br block_to_outline region1
|
|
// block_to_outline: -> region2
|
|
// region1 region3
|
|
// region2 region4
|
|
// region3 inst3
|
|
// region4 inst4
|
|
// br block_after_outline
|
|
// block_after_outline:
|
|
// inst3
|
|
// inst4
|
|
assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
|
|
|
|
assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
|
|
// Make sure PHINode references to the block we are merging into are
|
|
// updated to be incoming blocks from the predecessor to the current block.
|
|
|
|
// NOTE: If this is updated such that the outlined block can have more than
|
|
// one incoming block to a PHINode, this logic will have to updated
|
|
// to handle multiple precessors instead.
|
|
|
|
// We only need to update this if the outlined section contains a PHINode, if
|
|
// it does not, then the incoming block was never changed in the first place.
|
|
// On the other hand, if PrevBB has no predecessors, it means that all
|
|
// incoming blocks to the first block are contained in the region, and there
|
|
// will be nothing to update.
|
|
Instruction *StartInst = (*Candidate->begin()).Inst;
|
|
if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
|
|
assert(!PrevBB->hasNPredecessorsOrMore(2) &&
|
|
"PrevBB has more than one predecessor. Should be 0 or 1.");
|
|
BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
|
|
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
|
|
}
|
|
PrevBB->getTerminator()->eraseFromParent();
|
|
|
|
// If we reattaching after outlining, we iterate over the phi nodes to
|
|
// the initial block, and reassign the branch instructions of the incoming
|
|
// blocks to the block we are remerging into.
|
|
if (!ExtractedFunction) {
|
|
DenseSet<BasicBlock *> BBSet;
|
|
Candidate->getBasicBlocks(BBSet);
|
|
|
|
replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
|
|
if (!EndsInBranch)
|
|
replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
|
|
}
|
|
|
|
moveBBContents(*StartBB, *PrevBB);
|
|
|
|
BasicBlock *PlacementBB = PrevBB;
|
|
if (StartBB != EndBB)
|
|
PlacementBB = EndBB;
|
|
if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
|
|
assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
|
|
assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
|
|
PlacementBB->getTerminator()->eraseFromParent();
|
|
moveBBContents(*FollowBB, *PlacementBB);
|
|
PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
|
|
FollowBB->eraseFromParent();
|
|
}
|
|
|
|
PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
|
|
StartBB->eraseFromParent();
|
|
|
|
// Make sure to save changes back to the StartBB.
|
|
StartBB = PrevBB;
|
|
EndBB = nullptr;
|
|
PrevBB = nullptr;
|
|
FollowBB = nullptr;
|
|
|
|
CandidateSplit = false;
|
|
}
|
|
|
|
/// Find whether \p V matches the Constants previously found for the \p GVN.
|
|
///
|
|
/// \param V - The value to check for consistency.
|
|
/// \param GVN - The global value number assigned to \p V.
|
|
/// \param GVNToConstant - The mapping of global value number to Constants.
|
|
/// \returns true if the Value matches the Constant mapped to by V and false if
|
|
/// it \p V is a Constant but does not match.
|
|
/// \returns std::nullopt if \p V is not a Constant.
|
|
static std::optional<bool>
|
|
constantMatches(Value *V, unsigned GVN,
|
|
DenseMap<unsigned, Constant *> &GVNToConstant) {
|
|
// See if we have a constants
|
|
Constant *CST = dyn_cast<Constant>(V);
|
|
if (!CST)
|
|
return std::nullopt;
|
|
|
|
// Holds a mapping from a global value number to a Constant.
|
|
DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
|
|
bool Inserted;
|
|
|
|
|
|
// If we have a constant, try to make a new entry in the GVNToConstant.
|
|
std::tie(GVNToConstantIt, Inserted) =
|
|
GVNToConstant.insert(std::make_pair(GVN, CST));
|
|
// If it was found and is not equal, it is not the same. We do not
|
|
// handle this case yet, and exit early.
|
|
if (Inserted || (GVNToConstantIt->second == CST))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
|
|
InstructionCost Benefit = 0;
|
|
|
|
// Estimate the benefit of outlining a specific sections of the program. We
|
|
// delegate mostly this task to the TargetTransformInfo so that if the target
|
|
// has specific changes, we can have a more accurate estimate.
|
|
|
|
// However, getInstructionCost delegates the code size calculation for
|
|
// arithmetic instructions to getArithmeticInstrCost in
|
|
// include/Analysis/TargetTransformImpl.h, where it always estimates that the
|
|
// code size for a division and remainder instruction to be equal to 4, and
|
|
// everything else to 1. This is not an accurate representation of the
|
|
// division instruction for targets that have a native division instruction.
|
|
// To be overly conservative, we only add 1 to the number of instructions for
|
|
// each division instruction.
|
|
for (IRInstructionData &ID : *Candidate) {
|
|
Instruction *I = ID.Inst;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
case Instruction::SDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::UDiv:
|
|
case Instruction::URem:
|
|
Benefit += 1;
|
|
break;
|
|
default:
|
|
Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Benefit;
|
|
}
|
|
|
|
/// Check the \p OutputMappings structure for value \p Input, if it exists
|
|
/// it has been used as an output for outlining, and has been renamed, and we
|
|
/// return the new value, otherwise, we return the same value.
|
|
///
|
|
/// \param OutputMappings [in] - The mapping of values to their renamed value
|
|
/// after being used as an output for an outlined region.
|
|
/// \param Input [in] - The value to find the remapped value of, if it exists.
|
|
/// \return The remapped value if it has been renamed, and the same value if has
|
|
/// not.
|
|
static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
|
|
Value *Input) {
|
|
DenseMap<Value *, Value *>::const_iterator OutputMapping =
|
|
OutputMappings.find(Input);
|
|
if (OutputMapping != OutputMappings.end())
|
|
return OutputMapping->second;
|
|
return Input;
|
|
}
|
|
|
|
/// Find whether \p Region matches the global value numbering to Constant
|
|
/// mapping found so far.
|
|
///
|
|
/// \param Region - The OutlinableRegion we are checking for constants
|
|
/// \param GVNToConstant - The mapping of global value number to Constants.
|
|
/// \param NotSame - The set of global value numbers that do not have the same
|
|
/// constant in each region.
|
|
/// \returns true if all Constants are the same in every use of a Constant in \p
|
|
/// Region and false if not
|
|
static bool
|
|
collectRegionsConstants(OutlinableRegion &Region,
|
|
DenseMap<unsigned, Constant *> &GVNToConstant,
|
|
DenseSet<unsigned> &NotSame) {
|
|
bool ConstantsTheSame = true;
|
|
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
for (IRInstructionData &ID : C) {
|
|
|
|
// Iterate over the operands in an instruction. If the global value number,
|
|
// assigned by the IRSimilarityCandidate, has been seen before, we check if
|
|
// the the number has been found to be not the same value in each instance.
|
|
for (Value *V : ID.OperVals) {
|
|
std::optional<unsigned> GVNOpt = C.getGVN(V);
|
|
assert(GVNOpt && "Expected a GVN for operand?");
|
|
unsigned GVN = *GVNOpt;
|
|
|
|
// Check if this global value has been found to not be the same already.
|
|
if (NotSame.contains(GVN)) {
|
|
if (isa<Constant>(V))
|
|
ConstantsTheSame = false;
|
|
continue;
|
|
}
|
|
|
|
// If it has been the same so far, we check the value for if the
|
|
// associated Constant value match the previous instances of the same
|
|
// global value number. If the global value does not map to a Constant,
|
|
// it is considered to not be the same value.
|
|
std::optional<bool> ConstantMatches =
|
|
constantMatches(V, GVN, GVNToConstant);
|
|
if (ConstantMatches) {
|
|
if (*ConstantMatches)
|
|
continue;
|
|
else
|
|
ConstantsTheSame = false;
|
|
}
|
|
|
|
// While this value is a register, it might not have been previously,
|
|
// make sure we don't already have a constant mapped to this global value
|
|
// number.
|
|
if (GVNToConstant.contains(GVN))
|
|
ConstantsTheSame = false;
|
|
|
|
NotSame.insert(GVN);
|
|
}
|
|
}
|
|
|
|
return ConstantsTheSame;
|
|
}
|
|
|
|
void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
|
|
DenseMap<unsigned, Constant *> GVNToConstant;
|
|
|
|
for (OutlinableRegion *Region : Regions)
|
|
collectRegionsConstants(*Region, GVNToConstant, NotSame);
|
|
}
|
|
|
|
void OutlinableGroup::collectGVNStoreSets(Module &M) {
|
|
for (OutlinableRegion *OS : Regions)
|
|
OutputGVNCombinations.insert(OS->GVNStores);
|
|
|
|
// We are adding an extracted argument to decide between which output path
|
|
// to use in the basic block. It is used in a switch statement and only
|
|
// needs to be an integer.
|
|
if (OutputGVNCombinations.size() > 1)
|
|
ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
|
|
}
|
|
|
|
/// Get the subprogram if it exists for one of the outlined regions.
|
|
///
|
|
/// \param [in] Group - The set of regions to find a subprogram for.
|
|
/// \returns the subprogram if it exists, or nullptr.
|
|
static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
|
|
for (OutlinableRegion *OS : Group.Regions)
|
|
if (Function *F = OS->Call->getFunction())
|
|
if (DISubprogram *SP = F->getSubprogram())
|
|
return SP;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
|
|
unsigned FunctionNameSuffix) {
|
|
assert(!Group.OutlinedFunction && "Function is already defined!");
|
|
|
|
Type *RetTy = Type::getVoidTy(M.getContext());
|
|
// All extracted functions _should_ have the same return type at this point
|
|
// since the similarity identifier ensures that all branches outside of the
|
|
// region occur in the same place.
|
|
|
|
// NOTE: Should we ever move to the model that uses a switch at every point
|
|
// needed, meaning that we could branch within the region or out, it is
|
|
// possible that we will need to switch to using the most general case all of
|
|
// the time.
|
|
for (OutlinableRegion *R : Group.Regions) {
|
|
Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
|
|
if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
|
|
(RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
|
|
RetTy = ExtractedFuncType;
|
|
}
|
|
|
|
Group.OutlinedFunctionType = FunctionType::get(
|
|
RetTy, Group.ArgumentTypes, false);
|
|
|
|
// These functions will only be called from within the same module, so
|
|
// we can set an internal linkage.
|
|
Group.OutlinedFunction = Function::Create(
|
|
Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
|
|
"outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
|
|
|
|
// Transfer the swifterr attribute to the correct function parameter.
|
|
if (Group.SwiftErrorArgument)
|
|
Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
|
|
Attribute::SwiftError);
|
|
|
|
Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
|
|
Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
|
|
|
|
// If there's a DISubprogram associated with this outlined function, then
|
|
// emit debug info for the outlined function.
|
|
if (DISubprogram *SP = getSubprogramOrNull(Group)) {
|
|
Function *F = Group.OutlinedFunction;
|
|
// We have a DISubprogram. Get its DICompileUnit.
|
|
DICompileUnit *CU = SP->getUnit();
|
|
DIBuilder DB(M, true, CU);
|
|
DIFile *Unit = SP->getFile();
|
|
Mangler Mg;
|
|
// Get the mangled name of the function for the linkage name.
|
|
std::string Dummy;
|
|
llvm::raw_string_ostream MangledNameStream(Dummy);
|
|
Mg.getNameWithPrefix(MangledNameStream, F, false);
|
|
|
|
DISubprogram *OutlinedSP = DB.createFunction(
|
|
Unit /* Context */, F->getName(), MangledNameStream.str(),
|
|
Unit /* File */,
|
|
0 /* Line 0 is reserved for compiler-generated code. */,
|
|
DB.createSubroutineType(
|
|
DB.getOrCreateTypeArray(std::nullopt)), /* void type */
|
|
0, /* Line 0 is reserved for compiler-generated code. */
|
|
DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
|
|
/* Outlined code is optimized code by definition. */
|
|
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
|
|
|
|
// Don't add any new variables to the subprogram.
|
|
DB.finalizeSubprogram(OutlinedSP);
|
|
|
|
// Attach subprogram to the function.
|
|
F->setSubprogram(OutlinedSP);
|
|
// We're done with the DIBuilder.
|
|
DB.finalize();
|
|
}
|
|
|
|
return Group.OutlinedFunction;
|
|
}
|
|
|
|
/// Move each BasicBlock in \p Old to \p New.
|
|
///
|
|
/// \param [in] Old - The function to move the basic blocks from.
|
|
/// \param [in] New - The function to move the basic blocks to.
|
|
/// \param [out] NewEnds - The return blocks of the new overall function.
|
|
static void moveFunctionData(Function &Old, Function &New,
|
|
DenseMap<Value *, BasicBlock *> &NewEnds) {
|
|
for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
|
|
CurrBB.removeFromParent();
|
|
CurrBB.insertInto(&New);
|
|
Instruction *I = CurrBB.getTerminator();
|
|
|
|
// For each block we find a return instruction is, it is a potential exit
|
|
// path for the function. We keep track of each block based on the return
|
|
// value here.
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
|
|
NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
|
|
|
|
std::vector<Instruction *> DebugInsts;
|
|
|
|
for (Instruction &Val : CurrBB) {
|
|
// We must handle the scoping of called functions differently than
|
|
// other outlined instructions.
|
|
if (!isa<CallInst>(&Val)) {
|
|
// Remove the debug information for outlined functions.
|
|
Val.setDebugLoc(DebugLoc());
|
|
|
|
// Loop info metadata may contain line locations. Update them to have no
|
|
// value in the new subprogram since the outlined code could be from
|
|
// several locations.
|
|
auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
|
|
if (DISubprogram *SP = New.getSubprogram())
|
|
if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
|
|
return DILocation::get(New.getContext(), Loc->getLine(),
|
|
Loc->getColumn(), SP, nullptr);
|
|
return MD;
|
|
};
|
|
updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
|
|
continue;
|
|
}
|
|
|
|
// From this point we are only handling call instructions.
|
|
CallInst *CI = cast<CallInst>(&Val);
|
|
|
|
// We add any debug statements here, to be removed after. Since the
|
|
// instructions originate from many different locations in the program,
|
|
// it will cause incorrect reporting from a debugger if we keep the
|
|
// same debug instructions.
|
|
if (isa<DbgInfoIntrinsic>(CI)) {
|
|
DebugInsts.push_back(&Val);
|
|
continue;
|
|
}
|
|
|
|
// Edit the scope of called functions inside of outlined functions.
|
|
if (DISubprogram *SP = New.getSubprogram()) {
|
|
DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
|
|
Val.setDebugLoc(DI);
|
|
}
|
|
}
|
|
|
|
for (Instruction *I : DebugInsts)
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Find the the constants that will need to be lifted into arguments
|
|
/// as they are not the same in each instance of the region.
|
|
///
|
|
/// \param [in] C - The IRSimilarityCandidate containing the region we are
|
|
/// analyzing.
|
|
/// \param [in] NotSame - The set of global value numbers that do not have a
|
|
/// single Constant across all OutlinableRegions similar to \p C.
|
|
/// \param [out] Inputs - The list containing the global value numbers of the
|
|
/// arguments needed for the region of code.
|
|
static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
|
|
std::vector<unsigned> &Inputs) {
|
|
DenseSet<unsigned> Seen;
|
|
// Iterate over the instructions, and find what constants will need to be
|
|
// extracted into arguments.
|
|
for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
|
|
IDIt != EndIDIt; IDIt++) {
|
|
for (Value *V : (*IDIt).OperVals) {
|
|
// Since these are stored before any outlining, they will be in the
|
|
// global value numbering.
|
|
unsigned GVN = *C.getGVN(V);
|
|
if (isa<Constant>(V))
|
|
if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
|
|
Inputs.push_back(GVN);
|
|
Seen.insert(GVN);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find the GVN for the inputs that have been found by the CodeExtractor.
|
|
///
|
|
/// \param [in] C - The IRSimilarityCandidate containing the region we are
|
|
/// analyzing.
|
|
/// \param [in] CurrentInputs - The set of inputs found by the
|
|
/// CodeExtractor.
|
|
/// \param [in] OutputMappings - The mapping of values that have been replaced
|
|
/// by a new output value.
|
|
/// \param [out] EndInputNumbers - The global value numbers for the extracted
|
|
/// arguments.
|
|
static void mapInputsToGVNs(IRSimilarityCandidate &C,
|
|
SetVector<Value *> &CurrentInputs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
std::vector<unsigned> &EndInputNumbers) {
|
|
// Get the Global Value Number for each input. We check if the Value has been
|
|
// replaced by a different value at output, and use the original value before
|
|
// replacement.
|
|
for (Value *Input : CurrentInputs) {
|
|
assert(Input && "Have a nullptr as an input");
|
|
if (OutputMappings.contains(Input))
|
|
Input = OutputMappings.find(Input)->second;
|
|
assert(C.getGVN(Input) && "Could not find a numbering for the given input");
|
|
EndInputNumbers.push_back(*C.getGVN(Input));
|
|
}
|
|
}
|
|
|
|
/// Find the original value for the \p ArgInput values if any one of them was
|
|
/// replaced during a previous extraction.
|
|
///
|
|
/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
|
|
/// \param [in] OutputMappings - The mapping of values that have been replaced
|
|
/// by a new output value.
|
|
/// \param [out] RemappedArgInputs - The remapped values according to
|
|
/// \p OutputMappings that will be extracted.
|
|
static void
|
|
remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
SetVector<Value *> &RemappedArgInputs) {
|
|
// Get the global value number for each input that will be extracted as an
|
|
// argument by the code extractor, remapping if needed for reloaded values.
|
|
for (Value *Input : ArgInputs) {
|
|
if (OutputMappings.contains(Input))
|
|
Input = OutputMappings.find(Input)->second;
|
|
RemappedArgInputs.insert(Input);
|
|
}
|
|
}
|
|
|
|
/// Find the input GVNs and the output values for a region of Instructions.
|
|
/// Using the code extractor, we collect the inputs to the extracted function.
|
|
///
|
|
/// The \p Region can be identified as needing to be ignored in this function.
|
|
/// It should be checked whether it should be ignored after a call to this
|
|
/// function.
|
|
///
|
|
/// \param [in,out] Region - The region of code to be analyzed.
|
|
/// \param [out] InputGVNs - The global value numbers for the extracted
|
|
/// arguments.
|
|
/// \param [in] NotSame - The global value numbers in the region that do not
|
|
/// have the same constant value in the regions structurally similar to
|
|
/// \p Region.
|
|
/// \param [in] OutputMappings - The mapping of values that have been replaced
|
|
/// by a new output value after extraction.
|
|
/// \param [out] ArgInputs - The values of the inputs to the extracted function.
|
|
/// \param [out] Outputs - The set of values extracted by the CodeExtractor
|
|
/// as outputs.
|
|
static void getCodeExtractorArguments(
|
|
OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
|
|
DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
|
|
SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
|
|
// OverallInputs are the inputs to the region found by the CodeExtractor,
|
|
// SinkCands and HoistCands are used by the CodeExtractor to find sunken
|
|
// allocas of values whose lifetimes are contained completely within the
|
|
// outlined region. PremappedInputs are the arguments found by the
|
|
// CodeExtractor, removing conditions such as sunken allocas, but that
|
|
// may need to be remapped due to the extracted output values replacing
|
|
// the original values. We use DummyOutputs for this first run of finding
|
|
// inputs and outputs since the outputs could change during findAllocas,
|
|
// the correct set of extracted outputs will be in the final Outputs ValueSet.
|
|
SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
|
|
DummyOutputs;
|
|
|
|
// Use the code extractor to get the inputs and outputs, without sunken
|
|
// allocas or removing llvm.assumes.
|
|
CodeExtractor *CE = Region.CE;
|
|
CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
|
|
assert(Region.StartBB && "Region must have a start BasicBlock!");
|
|
Function *OrigF = Region.StartBB->getParent();
|
|
CodeExtractorAnalysisCache CEAC(*OrigF);
|
|
BasicBlock *Dummy = nullptr;
|
|
|
|
// The region may be ineligible due to VarArgs in the parent function. In this
|
|
// case we ignore the region.
|
|
if (!CE->isEligible()) {
|
|
Region.IgnoreRegion = true;
|
|
return;
|
|
}
|
|
|
|
// Find if any values are going to be sunk into the function when extracted
|
|
CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
|
|
CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
|
|
|
|
// TODO: Support regions with sunken allocas: values whose lifetimes are
|
|
// contained completely within the outlined region. These are not guaranteed
|
|
// to be the same in every region, so we must elevate them all to arguments
|
|
// when they appear. If these values are not equal, it means there is some
|
|
// Input in OverallInputs that was removed for ArgInputs.
|
|
if (OverallInputs.size() != PremappedInputs.size()) {
|
|
Region.IgnoreRegion = true;
|
|
return;
|
|
}
|
|
|
|
findConstants(C, NotSame, InputGVNs);
|
|
|
|
mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
|
|
|
|
remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
|
|
ArgInputs);
|
|
|
|
// Sort the GVNs, since we now have constants included in the \ref InputGVNs
|
|
// we need to make sure they are in a deterministic order.
|
|
stable_sort(InputGVNs);
|
|
}
|
|
|
|
/// Look over the inputs and map each input argument to an argument in the
|
|
/// overall function for the OutlinableRegions. This creates a way to replace
|
|
/// the arguments of the extracted function with the arguments of the new
|
|
/// overall function.
|
|
///
|
|
/// \param [in,out] Region - The region of code to be analyzed.
|
|
/// \param [in] InputGVNs - The global value numbering of the input values
|
|
/// collected.
|
|
/// \param [in] ArgInputs - The values of the arguments to the extracted
|
|
/// function.
|
|
static void
|
|
findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
|
|
std::vector<unsigned> &InputGVNs,
|
|
SetVector<Value *> &ArgInputs) {
|
|
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
|
|
// This counts the argument number in the overall function.
|
|
unsigned TypeIndex = 0;
|
|
|
|
// This counts the argument number in the extracted function.
|
|
unsigned OriginalIndex = 0;
|
|
|
|
// Find the mapping of the extracted arguments to the arguments for the
|
|
// overall function. Since there may be extra arguments in the overall
|
|
// function to account for the extracted constants, we have two different
|
|
// counters as we find extracted arguments, and as we come across overall
|
|
// arguments.
|
|
|
|
// Additionally, in our first pass, for the first extracted function,
|
|
// we find argument locations for the canonical value numbering. This
|
|
// numbering overrides any discovered location for the extracted code.
|
|
for (unsigned InputVal : InputGVNs) {
|
|
std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
|
|
assert(CanonicalNumberOpt && "Canonical number not found?");
|
|
unsigned CanonicalNumber = *CanonicalNumberOpt;
|
|
|
|
std::optional<Value *> InputOpt = C.fromGVN(InputVal);
|
|
assert(InputOpt && "Global value number not found?");
|
|
Value *Input = *InputOpt;
|
|
|
|
DenseMap<unsigned, unsigned>::iterator AggArgIt =
|
|
Group.CanonicalNumberToAggArg.find(CanonicalNumber);
|
|
|
|
if (!Group.InputTypesSet) {
|
|
Group.ArgumentTypes.push_back(Input->getType());
|
|
// If the input value has a swifterr attribute, make sure to mark the
|
|
// argument in the overall function.
|
|
if (Input->isSwiftError()) {
|
|
assert(
|
|
!Group.SwiftErrorArgument &&
|
|
"Argument already marked with swifterr for this OutlinableGroup!");
|
|
Group.SwiftErrorArgument = TypeIndex;
|
|
}
|
|
}
|
|
|
|
// Check if we have a constant. If we do add it to the overall argument
|
|
// number to Constant map for the region, and continue to the next input.
|
|
if (Constant *CST = dyn_cast<Constant>(Input)) {
|
|
if (AggArgIt != Group.CanonicalNumberToAggArg.end())
|
|
Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
|
|
else {
|
|
Group.CanonicalNumberToAggArg.insert(
|
|
std::make_pair(CanonicalNumber, TypeIndex));
|
|
Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
|
|
}
|
|
TypeIndex++;
|
|
continue;
|
|
}
|
|
|
|
// It is not a constant, we create the mapping from extracted argument list
|
|
// to the overall argument list, using the canonical location, if it exists.
|
|
assert(ArgInputs.count(Input) && "Input cannot be found!");
|
|
|
|
if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
|
|
if (OriginalIndex != AggArgIt->second)
|
|
Region.ChangedArgOrder = true;
|
|
Region.ExtractedArgToAgg.insert(
|
|
std::make_pair(OriginalIndex, AggArgIt->second));
|
|
Region.AggArgToExtracted.insert(
|
|
std::make_pair(AggArgIt->second, OriginalIndex));
|
|
} else {
|
|
Group.CanonicalNumberToAggArg.insert(
|
|
std::make_pair(CanonicalNumber, TypeIndex));
|
|
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
|
|
Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
|
|
}
|
|
OriginalIndex++;
|
|
TypeIndex++;
|
|
}
|
|
|
|
// If the function type definitions for the OutlinableGroup holding the region
|
|
// have not been set, set the length of the inputs here. We should have the
|
|
// same inputs for all of the different regions contained in the
|
|
// OutlinableGroup since they are all structurally similar to one another.
|
|
if (!Group.InputTypesSet) {
|
|
Group.NumAggregateInputs = TypeIndex;
|
|
Group.InputTypesSet = true;
|
|
}
|
|
|
|
Region.NumExtractedInputs = OriginalIndex;
|
|
}
|
|
|
|
/// Check if the \p V has any uses outside of the region other than \p PN.
|
|
///
|
|
/// \param V [in] - The value to check.
|
|
/// \param PHILoc [in] - The location in the PHINode of \p V.
|
|
/// \param PN [in] - The PHINode using \p V.
|
|
/// \param Exits [in] - The potential blocks we exit to from the outlined
|
|
/// region.
|
|
/// \param BlocksInRegion [in] - The basic blocks contained in the region.
|
|
/// \returns true if \p V has any use soutside its region other than \p PN.
|
|
static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
|
|
SmallPtrSet<BasicBlock *, 1> &Exits,
|
|
DenseSet<BasicBlock *> &BlocksInRegion) {
|
|
// We check to see if the value is used by the PHINode from some other
|
|
// predecessor not included in the region. If it is, we make sure
|
|
// to keep it as an output.
|
|
if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
|
|
[PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
|
|
return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
|
|
!BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
|
|
}))
|
|
return true;
|
|
|
|
// Check if the value is used by any other instructions outside the region.
|
|
return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
|
|
Instruction *I = dyn_cast<Instruction>(U);
|
|
if (!I)
|
|
return false;
|
|
|
|
// If the use of the item is inside the region, we skip it. Uses
|
|
// inside the region give us useful information about how the item could be
|
|
// used as an output.
|
|
BasicBlock *Parent = I->getParent();
|
|
if (BlocksInRegion.contains(Parent))
|
|
return false;
|
|
|
|
// If it's not a PHINode then we definitely know the use matters. This
|
|
// output value will not completely combined with another item in a PHINode
|
|
// as it is directly reference by another non-phi instruction
|
|
if (!isa<PHINode>(I))
|
|
return true;
|
|
|
|
// If we have a PHINode outside one of the exit locations, then it
|
|
// can be considered an outside use as well. If there is a PHINode
|
|
// contained in the Exit where this values use matters, it will be
|
|
// caught when we analyze that PHINode.
|
|
if (!Exits.contains(Parent))
|
|
return true;
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
|
|
/// considered outputs. A PHINodes is an output when more than one incoming
|
|
/// value has been marked by the CodeExtractor as an output.
|
|
///
|
|
/// \param CurrentExitFromRegion [in] - The block to analyze.
|
|
/// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
|
|
/// region.
|
|
/// \param RegionBlocks [in] - The basic blocks in the region.
|
|
/// \param Outputs [in, out] - The existing outputs for the region, we may add
|
|
/// PHINodes to this as we find that they replace output values.
|
|
/// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
|
|
/// totally replaced by a PHINode.
|
|
/// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
|
|
/// in PHINodes, but have other uses, and should still be considered outputs.
|
|
static void analyzeExitPHIsForOutputUses(
|
|
BasicBlock *CurrentExitFromRegion,
|
|
SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
|
|
DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
|
|
DenseSet<Value *> &OutputsReplacedByPHINode,
|
|
DenseSet<Value *> &OutputsWithNonPhiUses) {
|
|
for (PHINode &PN : CurrentExitFromRegion->phis()) {
|
|
// Find all incoming values from the outlining region.
|
|
SmallVector<unsigned, 2> IncomingVals;
|
|
for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
|
|
if (RegionBlocks.contains(PN.getIncomingBlock(I)))
|
|
IncomingVals.push_back(I);
|
|
|
|
// Do not process PHI if there are no predecessors from region.
|
|
unsigned NumIncomingVals = IncomingVals.size();
|
|
if (NumIncomingVals == 0)
|
|
continue;
|
|
|
|
// If there is one predecessor, we mark it as a value that needs to be kept
|
|
// as an output.
|
|
if (NumIncomingVals == 1) {
|
|
Value *V = PN.getIncomingValue(*IncomingVals.begin());
|
|
OutputsWithNonPhiUses.insert(V);
|
|
OutputsReplacedByPHINode.erase(V);
|
|
continue;
|
|
}
|
|
|
|
// This PHINode will be used as an output value, so we add it to our list.
|
|
Outputs.insert(&PN);
|
|
|
|
// Not all of the incoming values should be ignored as other inputs and
|
|
// outputs may have uses in outlined region. If they have other uses
|
|
// outside of the single PHINode we should not skip over it.
|
|
for (unsigned Idx : IncomingVals) {
|
|
Value *V = PN.getIncomingValue(Idx);
|
|
if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
|
|
OutputsWithNonPhiUses.insert(V);
|
|
OutputsReplacedByPHINode.erase(V);
|
|
continue;
|
|
}
|
|
if (!OutputsWithNonPhiUses.contains(V))
|
|
OutputsReplacedByPHINode.insert(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Represents the type for the unsigned number denoting the output number for
|
|
// phi node, along with the canonical number for the exit block.
|
|
using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
|
|
// The list of canonical numbers for the incoming values to a PHINode.
|
|
using CanonList = SmallVector<unsigned, 2>;
|
|
// The pair type representing the set of canonical values being combined in the
|
|
// PHINode, along with the location data for the PHINode.
|
|
using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
|
|
|
|
/// Encode \p PND as an integer for easy lookup based on the argument location,
|
|
/// the parent BasicBlock canonical numbering, and the canonical numbering of
|
|
/// the values stored in the PHINode.
|
|
///
|
|
/// \param PND - The data to hash.
|
|
/// \returns The hash code of \p PND.
|
|
static hash_code encodePHINodeData(PHINodeData &PND) {
|
|
return llvm::hash_combine(
|
|
llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
|
|
llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
|
|
}
|
|
|
|
/// Create a special GVN for PHINodes that will be used outside of
|
|
/// the region. We create a hash code based on the Canonical number of the
|
|
/// parent BasicBlock, the canonical numbering of the values stored in the
|
|
/// PHINode and the aggregate argument location. This is used to find whether
|
|
/// this PHINode type has been given a canonical numbering already. If not, we
|
|
/// assign it a value and store it for later use. The value is returned to
|
|
/// identify different output schemes for the set of regions.
|
|
///
|
|
/// \param Region - The region that \p PN is an output for.
|
|
/// \param PN - The PHINode we are analyzing.
|
|
/// \param Blocks - The blocks for the region we are analyzing.
|
|
/// \param AggArgIdx - The argument \p PN will be stored into.
|
|
/// \returns An optional holding the assigned canonical number, or std::nullopt
|
|
/// if there is some attribute of the PHINode blocking it from being used.
|
|
static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
|
|
PHINode *PN,
|
|
DenseSet<BasicBlock *> &Blocks,
|
|
unsigned AggArgIdx) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
IRSimilarityCandidate &Cand = *Region.Candidate;
|
|
BasicBlock *PHIBB = PN->getParent();
|
|
CanonList PHIGVNs;
|
|
Value *Incoming;
|
|
BasicBlock *IncomingBlock;
|
|
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
|
|
Incoming = PN->getIncomingValue(Idx);
|
|
IncomingBlock = PN->getIncomingBlock(Idx);
|
|
// If we cannot find a GVN, and the incoming block is included in the region
|
|
// this means that the input to the PHINode is not included in the region we
|
|
// are trying to analyze, meaning, that if it was outlined, we would be
|
|
// adding an extra input. We ignore this case for now, and so ignore the
|
|
// region.
|
|
std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
|
|
if (!OGVN && Blocks.contains(IncomingBlock)) {
|
|
Region.IgnoreRegion = true;
|
|
return std::nullopt;
|
|
}
|
|
|
|
// If the incoming block isn't in the region, we don't have to worry about
|
|
// this incoming value.
|
|
if (!Blocks.contains(IncomingBlock))
|
|
continue;
|
|
|
|
// Collect the canonical numbers of the values in the PHINode.
|
|
unsigned GVN = *OGVN;
|
|
OGVN = Cand.getCanonicalNum(GVN);
|
|
assert(OGVN && "No GVN found for incoming value?");
|
|
PHIGVNs.push_back(*OGVN);
|
|
|
|
// Find the incoming block and use the canonical numbering as well to define
|
|
// the hash for the PHINode.
|
|
OGVN = Cand.getGVN(IncomingBlock);
|
|
|
|
// If there is no number for the incoming block, it is because we have
|
|
// split the candidate basic blocks. So we use the previous block that it
|
|
// was split from to find the valid global value numbering for the PHINode.
|
|
if (!OGVN) {
|
|
assert(Cand.getStartBB() == IncomingBlock &&
|
|
"Unknown basic block used in exit path PHINode.");
|
|
|
|
BasicBlock *PrevBlock = nullptr;
|
|
// Iterate over the predecessors to the incoming block of the
|
|
// PHINode, when we find a block that is not contained in the region
|
|
// we know that this is the first block that we split from, and should
|
|
// have a valid global value numbering.
|
|
for (BasicBlock *Pred : predecessors(IncomingBlock))
|
|
if (!Blocks.contains(Pred)) {
|
|
PrevBlock = Pred;
|
|
break;
|
|
}
|
|
assert(PrevBlock && "Expected a predecessor not in the reigon!");
|
|
OGVN = Cand.getGVN(PrevBlock);
|
|
}
|
|
GVN = *OGVN;
|
|
OGVN = Cand.getCanonicalNum(GVN);
|
|
assert(OGVN && "No GVN found for incoming block?");
|
|
PHIGVNs.push_back(*OGVN);
|
|
}
|
|
|
|
// Now that we have the GVNs for the incoming values, we are going to combine
|
|
// them with the GVN of the incoming bock, and the output location of the
|
|
// PHINode to generate a hash value representing this instance of the PHINode.
|
|
DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
|
|
DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
|
|
std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
|
|
assert(BBGVN && "Could not find GVN for the incoming block!");
|
|
|
|
BBGVN = Cand.getCanonicalNum(*BBGVN);
|
|
assert(BBGVN && "Could not find canonical number for the incoming block!");
|
|
// Create a pair of the exit block canonical value, and the aggregate
|
|
// argument location, connected to the canonical numbers stored in the
|
|
// PHINode.
|
|
PHINodeData TemporaryPair =
|
|
std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
|
|
hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
|
|
|
|
// Look for and create a new entry in our connection between canonical
|
|
// numbers for PHINodes, and the set of objects we just created.
|
|
GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
|
|
if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
|
|
bool Inserted = false;
|
|
std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
|
|
std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
|
|
std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
|
|
std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
|
|
}
|
|
|
|
return GVNToPHIIt->second;
|
|
}
|
|
|
|
/// Create a mapping of the output arguments for the \p Region to the output
|
|
/// arguments of the overall outlined function.
|
|
///
|
|
/// \param [in,out] Region - The region of code to be analyzed.
|
|
/// \param [in] Outputs - The values found by the code extractor.
|
|
static void
|
|
findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
|
|
SetVector<Value *> &Outputs) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
|
|
SmallVector<BasicBlock *> BE;
|
|
DenseSet<BasicBlock *> BlocksInRegion;
|
|
C.getBasicBlocks(BlocksInRegion, BE);
|
|
|
|
// Find the exits to the region.
|
|
SmallPtrSet<BasicBlock *, 1> Exits;
|
|
for (BasicBlock *Block : BE)
|
|
for (BasicBlock *Succ : successors(Block))
|
|
if (!BlocksInRegion.contains(Succ))
|
|
Exits.insert(Succ);
|
|
|
|
// After determining which blocks exit to PHINodes, we add these PHINodes to
|
|
// the set of outputs to be processed. We also check the incoming values of
|
|
// the PHINodes for whether they should no longer be considered outputs.
|
|
DenseSet<Value *> OutputsReplacedByPHINode;
|
|
DenseSet<Value *> OutputsWithNonPhiUses;
|
|
for (BasicBlock *ExitBB : Exits)
|
|
analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
|
|
OutputsReplacedByPHINode,
|
|
OutputsWithNonPhiUses);
|
|
|
|
// This counts the argument number in the extracted function.
|
|
unsigned OriginalIndex = Region.NumExtractedInputs;
|
|
|
|
// This counts the argument number in the overall function.
|
|
unsigned TypeIndex = Group.NumAggregateInputs;
|
|
bool TypeFound;
|
|
DenseSet<unsigned> AggArgsUsed;
|
|
|
|
// Iterate over the output types and identify if there is an aggregate pointer
|
|
// type whose base type matches the current output type. If there is, we mark
|
|
// that we will use this output register for this value. If not we add another
|
|
// type to the overall argument type list. We also store the GVNs used for
|
|
// stores to identify which values will need to be moved into an special
|
|
// block that holds the stores to the output registers.
|
|
for (Value *Output : Outputs) {
|
|
TypeFound = false;
|
|
// We can do this since it is a result value, and will have a number
|
|
// that is necessarily the same. BUT if in the future, the instructions
|
|
// do not have to be in same order, but are functionally the same, we will
|
|
// have to use a different scheme, as one-to-one correspondence is not
|
|
// guaranteed.
|
|
unsigned ArgumentSize = Group.ArgumentTypes.size();
|
|
|
|
// If the output is combined in a PHINode, we make sure to skip over it.
|
|
if (OutputsReplacedByPHINode.contains(Output))
|
|
continue;
|
|
|
|
unsigned AggArgIdx = 0;
|
|
for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
|
|
if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
|
|
continue;
|
|
|
|
if (AggArgsUsed.contains(Jdx))
|
|
continue;
|
|
|
|
TypeFound = true;
|
|
AggArgsUsed.insert(Jdx);
|
|
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
|
|
Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
|
|
AggArgIdx = Jdx;
|
|
break;
|
|
}
|
|
|
|
// We were unable to find an unused type in the output type set that matches
|
|
// the output, so we add a pointer type to the argument types of the overall
|
|
// function to handle this output and create a mapping to it.
|
|
if (!TypeFound) {
|
|
Group.ArgumentTypes.push_back(Output->getType()->getPointerTo(
|
|
M.getDataLayout().getAllocaAddrSpace()));
|
|
// Mark the new pointer type as the last value in the aggregate argument
|
|
// list.
|
|
unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
|
|
AggArgsUsed.insert(ArgTypeIdx);
|
|
Region.ExtractedArgToAgg.insert(
|
|
std::make_pair(OriginalIndex, ArgTypeIdx));
|
|
Region.AggArgToExtracted.insert(
|
|
std::make_pair(ArgTypeIdx, OriginalIndex));
|
|
AggArgIdx = ArgTypeIdx;
|
|
}
|
|
|
|
// TODO: Adapt to the extra input from the PHINode.
|
|
PHINode *PN = dyn_cast<PHINode>(Output);
|
|
|
|
std::optional<unsigned> GVN;
|
|
if (PN && !BlocksInRegion.contains(PN->getParent())) {
|
|
// Values outside the region can be combined into PHINode when we
|
|
// have multiple exits. We collect both of these into a list to identify
|
|
// which values are being used in the PHINode. Each list identifies a
|
|
// different PHINode, and a different output. We store the PHINode as it's
|
|
// own canonical value. These canonical values are also dependent on the
|
|
// output argument it is saved to.
|
|
|
|
// If two PHINodes have the same canonical values, but different aggregate
|
|
// argument locations, then they will have distinct Canonical Values.
|
|
GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
|
|
if (!GVN)
|
|
return;
|
|
} else {
|
|
// If we do not have a PHINode we use the global value numbering for the
|
|
// output value, to find the canonical number to add to the set of stored
|
|
// values.
|
|
GVN = C.getGVN(Output);
|
|
GVN = C.getCanonicalNum(*GVN);
|
|
}
|
|
|
|
// Each region has a potentially unique set of outputs. We save which
|
|
// values are output in a list of canonical values so we can differentiate
|
|
// among the different store schemes.
|
|
Region.GVNStores.push_back(*GVN);
|
|
|
|
OriginalIndex++;
|
|
TypeIndex++;
|
|
}
|
|
|
|
// We sort the stored values to make sure that we are not affected by analysis
|
|
// order when determining what combination of items were stored.
|
|
stable_sort(Region.GVNStores);
|
|
}
|
|
|
|
void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
|
|
DenseSet<unsigned> &NotSame) {
|
|
std::vector<unsigned> Inputs;
|
|
SetVector<Value *> ArgInputs, Outputs;
|
|
|
|
getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
|
|
Outputs);
|
|
|
|
if (Region.IgnoreRegion)
|
|
return;
|
|
|
|
// Map the inputs found by the CodeExtractor to the arguments found for
|
|
// the overall function.
|
|
findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
|
|
|
|
// Map the outputs found by the CodeExtractor to the arguments found for
|
|
// the overall function.
|
|
findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
|
|
}
|
|
|
|
/// Replace the extracted function in the Region with a call to the overall
|
|
/// function constructed from the deduplicated similar regions, replacing and
|
|
/// remapping the values passed to the extracted function as arguments to the
|
|
/// new arguments of the overall function.
|
|
///
|
|
/// \param [in] M - The module to outline from.
|
|
/// \param [in] Region - The regions of extracted code to be replaced with a new
|
|
/// function.
|
|
/// \returns a call instruction with the replaced function.
|
|
CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
|
|
std::vector<Value *> NewCallArgs;
|
|
DenseMap<unsigned, unsigned>::iterator ArgPair;
|
|
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
CallInst *Call = Region.Call;
|
|
assert(Call && "Call to replace is nullptr?");
|
|
Function *AggFunc = Group.OutlinedFunction;
|
|
assert(AggFunc && "Function to replace with is nullptr?");
|
|
|
|
// If the arguments are the same size, there are not values that need to be
|
|
// made into an argument, the argument ordering has not been change, or
|
|
// different output registers to handle. We can simply replace the called
|
|
// function in this case.
|
|
if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
|
|
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
|
|
<< *AggFunc << " with same number of arguments\n");
|
|
Call->setCalledFunction(AggFunc);
|
|
return Call;
|
|
}
|
|
|
|
// We have a different number of arguments than the new function, so
|
|
// we need to use our previously mappings off extracted argument to overall
|
|
// function argument, and constants to overall function argument to create the
|
|
// new argument list.
|
|
for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
|
|
|
|
if (AggArgIdx == AggFunc->arg_size() - 1 &&
|
|
Group.OutputGVNCombinations.size() > 1) {
|
|
// If we are on the last argument, and we need to differentiate between
|
|
// output blocks, add an integer to the argument list to determine
|
|
// what block to take
|
|
LLVM_DEBUG(dbgs() << "Set switch block argument to "
|
|
<< Region.OutputBlockNum << "\n");
|
|
NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
|
|
Region.OutputBlockNum));
|
|
continue;
|
|
}
|
|
|
|
ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
|
|
if (ArgPair != Region.AggArgToExtracted.end()) {
|
|
Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
|
|
// If we found the mapping from the extracted function to the overall
|
|
// function, we simply add it to the argument list. We use the same
|
|
// value, it just needs to honor the new order of arguments.
|
|
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
|
|
<< *ArgumentValue << "\n");
|
|
NewCallArgs.push_back(ArgumentValue);
|
|
continue;
|
|
}
|
|
|
|
// If it is a constant, we simply add it to the argument list as a value.
|
|
if (Region.AggArgToConstant.contains(AggArgIdx)) {
|
|
Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
|
|
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
|
|
<< *CST << "\n");
|
|
NewCallArgs.push_back(CST);
|
|
continue;
|
|
}
|
|
|
|
// Add a nullptr value if the argument is not found in the extracted
|
|
// function. If we cannot find a value, it means it is not in use
|
|
// for the region, so we should not pass anything to it.
|
|
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
|
|
NewCallArgs.push_back(ConstantPointerNull::get(
|
|
static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
|
|
<< *AggFunc << " with new set of arguments\n");
|
|
// Create the new call instruction and erase the old one.
|
|
Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
|
|
Call);
|
|
|
|
// It is possible that the call to the outlined function is either the first
|
|
// instruction is in the new block, the last instruction, or both. If either
|
|
// of these is the case, we need to make sure that we replace the instruction
|
|
// in the IRInstructionData struct with the new call.
|
|
CallInst *OldCall = Region.Call;
|
|
if (Region.NewFront->Inst == OldCall)
|
|
Region.NewFront->Inst = Call;
|
|
if (Region.NewBack->Inst == OldCall)
|
|
Region.NewBack->Inst = Call;
|
|
|
|
// Transfer any debug information.
|
|
Call->setDebugLoc(Region.Call->getDebugLoc());
|
|
// Since our output may determine which branch we go to, we make sure to
|
|
// propogate this new call value through the module.
|
|
OldCall->replaceAllUsesWith(Call);
|
|
|
|
// Remove the old instruction.
|
|
OldCall->eraseFromParent();
|
|
Region.Call = Call;
|
|
|
|
// Make sure that the argument in the new function has the SwiftError
|
|
// argument.
|
|
if (Group.SwiftErrorArgument)
|
|
Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
|
|
|
|
return Call;
|
|
}
|
|
|
|
/// Find or create a BasicBlock in the outlined function containing PhiBlocks
|
|
/// for \p RetVal.
|
|
///
|
|
/// \param Group - The OutlinableGroup containing the information about the
|
|
/// overall outlined function.
|
|
/// \param RetVal - The return value or exit option that we are currently
|
|
/// evaluating.
|
|
/// \returns The found or newly created BasicBlock to contain the needed
|
|
/// PHINodes to be used as outputs.
|
|
static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
|
|
DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
|
|
ReturnBlockForRetVal;
|
|
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
|
|
ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
|
|
assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
|
|
"Could not find output value!");
|
|
BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
|
|
|
|
// Find if a PHIBlock exists for this return value already. If it is
|
|
// the first time we are analyzing this, we will not, so we record it.
|
|
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
|
|
if (PhiBlockForRetVal != Group.PHIBlocks.end())
|
|
return PhiBlockForRetVal->second;
|
|
|
|
// If we did not find a block, we create one, and insert it into the
|
|
// overall function and record it.
|
|
bool Inserted = false;
|
|
BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
|
|
ReturnBB->getParent());
|
|
std::tie(PhiBlockForRetVal, Inserted) =
|
|
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
|
|
|
|
// We find the predecessors of the return block in the newly created outlined
|
|
// function in order to point them to the new PHIBlock rather than the already
|
|
// existing return block.
|
|
SmallVector<BranchInst *, 2> BranchesToChange;
|
|
for (BasicBlock *Pred : predecessors(ReturnBB))
|
|
BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
|
|
|
|
// Now we mark the branch instructions found, and change the references of the
|
|
// return block to the newly created PHIBlock.
|
|
for (BranchInst *BI : BranchesToChange)
|
|
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
|
|
if (BI->getSuccessor(Succ) != ReturnBB)
|
|
continue;
|
|
BI->setSuccessor(Succ, PHIBlock);
|
|
}
|
|
|
|
BranchInst::Create(ReturnBB, PHIBlock);
|
|
|
|
return PhiBlockForRetVal->second;
|
|
}
|
|
|
|
/// For the function call now representing the \p Region, find the passed value
|
|
/// to that call that represents Argument \p A at the call location if the
|
|
/// call has already been replaced with a call to the overall, aggregate
|
|
/// function.
|
|
///
|
|
/// \param A - The Argument to get the passed value for.
|
|
/// \param Region - The extracted Region corresponding to the outlined function.
|
|
/// \returns The Value representing \p A at the call site.
|
|
static Value *
|
|
getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
|
|
const OutlinableRegion &Region) {
|
|
// If we don't need to adjust the argument number at all (since the call
|
|
// has already been replaced by a call to the overall outlined function)
|
|
// we can just get the specified argument.
|
|
return Region.Call->getArgOperand(A->getArgNo());
|
|
}
|
|
|
|
/// For the function call now representing the \p Region, find the passed value
|
|
/// to that call that represents Argument \p A at the call location if the
|
|
/// call has only been replaced by the call to the aggregate function.
|
|
///
|
|
/// \param A - The Argument to get the passed value for.
|
|
/// \param Region - The extracted Region corresponding to the outlined function.
|
|
/// \returns The Value representing \p A at the call site.
|
|
static Value *
|
|
getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
|
|
const OutlinableRegion &Region) {
|
|
unsigned ArgNum = A->getArgNo();
|
|
|
|
// If it is a constant, we can look at our mapping from when we created
|
|
// the outputs to figure out what the constant value is.
|
|
if (Region.AggArgToConstant.count(ArgNum))
|
|
return Region.AggArgToConstant.find(ArgNum)->second;
|
|
|
|
// If it is not a constant, and we are not looking at the overall function, we
|
|
// need to adjust which argument we are looking at.
|
|
ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
|
|
return Region.Call->getArgOperand(ArgNum);
|
|
}
|
|
|
|
/// Find the canonical numbering for the incoming Values into the PHINode \p PN.
|
|
///
|
|
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
|
|
/// \param Region [in] - The OutlinableRegion containing \p PN.
|
|
/// \param OutputMappings [in] - The mapping of output values from outlined
|
|
/// region to their original values.
|
|
/// \param CanonNums [out] - The canonical numbering for the incoming values to
|
|
/// \p PN paired with their incoming block.
|
|
/// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
|
|
/// of \p Region rather than the overall function's call.
|
|
static void findCanonNumsForPHI(
|
|
PHINode *PN, OutlinableRegion &Region,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
|
|
bool ReplacedWithOutlinedCall = true) {
|
|
// Iterate over the incoming values.
|
|
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
|
|
Value *IVal = PN->getIncomingValue(Idx);
|
|
BasicBlock *IBlock = PN->getIncomingBlock(Idx);
|
|
// If we have an argument as incoming value, we need to grab the passed
|
|
// value from the call itself.
|
|
if (Argument *A = dyn_cast<Argument>(IVal)) {
|
|
if (ReplacedWithOutlinedCall)
|
|
IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
|
|
else
|
|
IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
|
|
}
|
|
|
|
// Get the original value if it has been replaced by an output value.
|
|
IVal = findOutputMapping(OutputMappings, IVal);
|
|
|
|
// Find and add the canonical number for the incoming value.
|
|
std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
|
|
assert(GVN && "No GVN for incoming value");
|
|
std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
|
|
assert(CanonNum && "No Canonical Number for GVN");
|
|
CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
|
|
}
|
|
}
|
|
|
|
/// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
|
|
/// in order to condense the number of instructions added to the outlined
|
|
/// function.
|
|
///
|
|
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
|
|
/// \param Region [in] - The OutlinableRegion containing \p PN.
|
|
/// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
|
|
/// \p PN in.
|
|
/// \param OutputMappings [in] - The mapping of output values from outlined
|
|
/// region to their original values.
|
|
/// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
|
|
/// matched.
|
|
/// \return the newly found or created PHINode in \p OverallPhiBlock.
|
|
static PHINode*
|
|
findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
|
|
BasicBlock *OverallPhiBlock,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
DenseSet<PHINode *> &UsedPHIs) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
|
|
|
|
// A list of the canonical numbering assigned to each incoming value, paired
|
|
// with the incoming block for the PHINode passed into this function.
|
|
SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
|
|
|
|
// We have to use the extracted function since we have merged this region into
|
|
// the overall function yet. We make sure to reassign the argument numbering
|
|
// since it is possible that the argument ordering is different between the
|
|
// functions.
|
|
findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
|
|
/* ReplacedWithOutlinedCall = */ false);
|
|
|
|
OutlinableRegion *FirstRegion = Group.Regions[0];
|
|
|
|
// A list of the canonical numbering assigned to each incoming value, paired
|
|
// with the incoming block for the PHINode that we are currently comparing
|
|
// the passed PHINode to.
|
|
SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
|
|
|
|
// Find the Canonical Numbering for each PHINode, if it matches, we replace
|
|
// the uses of the PHINode we are searching for, with the found PHINode.
|
|
for (PHINode &CurrPN : OverallPhiBlock->phis()) {
|
|
// If this PHINode has already been matched to another PHINode to be merged,
|
|
// we skip it.
|
|
if (UsedPHIs.contains(&CurrPN))
|
|
continue;
|
|
|
|
CurrentCanonNums.clear();
|
|
findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
|
|
/* ReplacedWithOutlinedCall = */ true);
|
|
|
|
// If the list of incoming values is not the same length, then they cannot
|
|
// match since there is not an analogue for each incoming value.
|
|
if (PNCanonNums.size() != CurrentCanonNums.size())
|
|
continue;
|
|
|
|
bool FoundMatch = true;
|
|
|
|
// We compare the canonical value for each incoming value in the passed
|
|
// in PHINode to one already present in the outlined region. If the
|
|
// incoming values do not match, then the PHINodes do not match.
|
|
|
|
// We also check to make sure that the incoming block matches as well by
|
|
// finding the corresponding incoming block in the combined outlined region
|
|
// for the current outlined region.
|
|
for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
|
|
std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
|
|
std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
|
|
if (ToCompareTo.first != ToAdd.first) {
|
|
FoundMatch = false;
|
|
break;
|
|
}
|
|
|
|
BasicBlock *CorrespondingBlock =
|
|
Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
|
|
assert(CorrespondingBlock && "Found block is nullptr");
|
|
if (CorrespondingBlock != ToCompareTo.second) {
|
|
FoundMatch = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If all incoming values and branches matched, then we can merge
|
|
// into the found PHINode.
|
|
if (FoundMatch) {
|
|
UsedPHIs.insert(&CurrPN);
|
|
return &CurrPN;
|
|
}
|
|
}
|
|
|
|
// If we've made it here, it means we weren't able to replace the PHINode, so
|
|
// we must insert it ourselves.
|
|
PHINode *NewPN = cast<PHINode>(PN.clone());
|
|
NewPN->insertBefore(&*OverallPhiBlock->begin());
|
|
for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
|
|
Idx++) {
|
|
Value *IncomingVal = NewPN->getIncomingValue(Idx);
|
|
BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
|
|
|
|
// Find corresponding basic block in the overall function for the incoming
|
|
// block.
|
|
BasicBlock *BlockToUse =
|
|
Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
|
|
NewPN->setIncomingBlock(Idx, BlockToUse);
|
|
|
|
// If we have an argument we make sure we replace using the argument from
|
|
// the correct function.
|
|
if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
|
|
Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
|
|
NewPN->setIncomingValue(Idx, Val);
|
|
continue;
|
|
}
|
|
|
|
// Find the corresponding value in the overall function.
|
|
IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
|
|
Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
|
|
assert(Val && "Value is nullptr?");
|
|
DenseMap<Value *, Value *>::iterator RemappedIt =
|
|
FirstRegion->RemappedArguments.find(Val);
|
|
if (RemappedIt != FirstRegion->RemappedArguments.end())
|
|
Val = RemappedIt->second;
|
|
NewPN->setIncomingValue(Idx, Val);
|
|
}
|
|
return NewPN;
|
|
}
|
|
|
|
// Within an extracted function, replace the argument uses of the extracted
|
|
// region with the arguments of the function for an OutlinableGroup.
|
|
//
|
|
/// \param [in] Region - The region of extracted code to be changed.
|
|
/// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
|
|
/// region.
|
|
/// \param [in] FirstFunction - A flag to indicate whether we are using this
|
|
/// function to define the overall outlined function for all the regions, or
|
|
/// if we are operating on one of the following regions.
|
|
static void
|
|
replaceArgumentUses(OutlinableRegion &Region,
|
|
DenseMap<Value *, BasicBlock *> &OutputBBs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
bool FirstFunction = false) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
assert(Region.ExtractedFunction && "Region has no extracted function?");
|
|
|
|
Function *DominatingFunction = Region.ExtractedFunction;
|
|
if (FirstFunction)
|
|
DominatingFunction = Group.OutlinedFunction;
|
|
DominatorTree DT(*DominatingFunction);
|
|
DenseSet<PHINode *> UsedPHIs;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
|
|
ArgIdx++) {
|
|
assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
|
|
"No mapping from extracted to outlined?");
|
|
unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
|
|
Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
|
|
Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
|
|
// The argument is an input, so we can simply replace it with the overall
|
|
// argument value
|
|
if (ArgIdx < Region.NumExtractedInputs) {
|
|
LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
|
|
<< *Region.ExtractedFunction << " with " << *AggArg
|
|
<< " in function " << *Group.OutlinedFunction << "\n");
|
|
Arg->replaceAllUsesWith(AggArg);
|
|
Value *V = Region.Call->getArgOperand(ArgIdx);
|
|
Region.RemappedArguments.insert(std::make_pair(V, AggArg));
|
|
continue;
|
|
}
|
|
|
|
// If we are replacing an output, we place the store value in its own
|
|
// block inside the overall function before replacing the use of the output
|
|
// in the function.
|
|
assert(Arg->hasOneUse() && "Output argument can only have one use");
|
|
User *InstAsUser = Arg->user_back();
|
|
assert(InstAsUser && "User is nullptr!");
|
|
|
|
Instruction *I = cast<Instruction>(InstAsUser);
|
|
BasicBlock *BB = I->getParent();
|
|
SmallVector<BasicBlock *, 4> Descendants;
|
|
DT.getDescendants(BB, Descendants);
|
|
bool EdgeAdded = false;
|
|
if (Descendants.size() == 0) {
|
|
EdgeAdded = true;
|
|
DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
|
|
DT.getDescendants(BB, Descendants);
|
|
}
|
|
|
|
// Iterate over the following blocks, looking for return instructions,
|
|
// if we find one, find the corresponding output block for the return value
|
|
// and move our store instruction there.
|
|
for (BasicBlock *DescendBB : Descendants) {
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
Value *RetVal = RI->getReturnValue();
|
|
auto VBBIt = OutputBBs.find(RetVal);
|
|
assert(VBBIt != OutputBBs.end() && "Could not find output value!");
|
|
|
|
// If this is storing a PHINode, we must make sure it is included in the
|
|
// overall function.
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
|
|
Value *ValueOperand = SI->getValueOperand();
|
|
|
|
StoreInst *NewI = cast<StoreInst>(I->clone());
|
|
NewI->setDebugLoc(DebugLoc());
|
|
BasicBlock *OutputBB = VBBIt->second;
|
|
NewI->insertInto(OutputBB, OutputBB->end());
|
|
LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
|
|
<< *OutputBB << "\n");
|
|
|
|
// If this is storing a PHINode, we must make sure it is included in the
|
|
// overall function.
|
|
if (!isa<PHINode>(ValueOperand) ||
|
|
Region.Candidate->getGVN(ValueOperand).has_value()) {
|
|
if (FirstFunction)
|
|
continue;
|
|
Value *CorrVal =
|
|
Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
|
|
assert(CorrVal && "Value is nullptr?");
|
|
NewI->setOperand(0, CorrVal);
|
|
continue;
|
|
}
|
|
PHINode *PN = cast<PHINode>(SI->getValueOperand());
|
|
// If it has a value, it was not split by the code extractor, which
|
|
// is what we are looking for.
|
|
if (Region.Candidate->getGVN(PN))
|
|
continue;
|
|
|
|
// We record the parent block for the PHINode in the Region so that
|
|
// we can exclude it from checks later on.
|
|
Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
|
|
|
|
// If this is the first function, we do not need to worry about mergiing
|
|
// this with any other block in the overall outlined function, so we can
|
|
// just continue.
|
|
if (FirstFunction) {
|
|
BasicBlock *PHIBlock = PN->getParent();
|
|
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
|
|
continue;
|
|
}
|
|
|
|
// We look for the aggregate block that contains the PHINodes leading into
|
|
// this exit path. If we can't find one, we create one.
|
|
BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
|
|
|
|
// For our PHINode, we find the combined canonical numbering, and
|
|
// attempt to find a matching PHINode in the overall PHIBlock. If we
|
|
// cannot, we copy the PHINode and move it into this new block.
|
|
PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
|
|
OutputMappings, UsedPHIs);
|
|
NewI->setOperand(0, NewPN);
|
|
}
|
|
|
|
// If we added an edge for basic blocks without a predecessor, we remove it
|
|
// here.
|
|
if (EdgeAdded)
|
|
DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
|
|
I->eraseFromParent();
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
|
|
<< *Region.ExtractedFunction << " with " << *AggArg
|
|
<< " in function " << *Group.OutlinedFunction << "\n");
|
|
Arg->replaceAllUsesWith(AggArg);
|
|
}
|
|
}
|
|
|
|
/// Within an extracted function, replace the constants that need to be lifted
|
|
/// into arguments with the actual argument.
|
|
///
|
|
/// \param Region [in] - The region of extracted code to be changed.
|
|
void replaceConstants(OutlinableRegion &Region) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
// Iterate over the constants that need to be elevated into arguments
|
|
for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
|
|
unsigned AggArgIdx = Const.first;
|
|
Function *OutlinedFunction = Group.OutlinedFunction;
|
|
assert(OutlinedFunction && "Overall Function is not defined?");
|
|
Constant *CST = Const.second;
|
|
Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
|
|
// Identify the argument it will be elevated to, and replace instances of
|
|
// that constant in the function.
|
|
|
|
// TODO: If in the future constants do not have one global value number,
|
|
// i.e. a constant 1 could be mapped to several values, this check will
|
|
// have to be more strict. It cannot be using only replaceUsesWithIf.
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
|
|
<< " in function " << *OutlinedFunction << " with "
|
|
<< *Arg << "\n");
|
|
CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
|
|
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
|
|
return I->getFunction() == OutlinedFunction;
|
|
return false;
|
|
});
|
|
}
|
|
}
|
|
|
|
/// It is possible that there is a basic block that already performs the same
|
|
/// stores. This returns a duplicate block, if it exists
|
|
///
|
|
/// \param OutputBBs [in] the blocks we are looking for a duplicate of.
|
|
/// \param OutputStoreBBs [in] The existing output blocks.
|
|
/// \returns an optional value with the number output block if there is a match.
|
|
std::optional<unsigned> findDuplicateOutputBlock(
|
|
DenseMap<Value *, BasicBlock *> &OutputBBs,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
|
|
|
|
bool Mismatch = false;
|
|
unsigned MatchingNum = 0;
|
|
// We compare the new set output blocks to the other sets of output blocks.
|
|
// If they are the same number, and have identical instructions, they are
|
|
// considered to be the same.
|
|
for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
|
|
Mismatch = false;
|
|
for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
|
|
DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
|
|
OutputBBs.find(VToB.first);
|
|
if (OutputBBIt == OutputBBs.end()) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
|
|
BasicBlock *CompBB = VToB.second;
|
|
BasicBlock *OutputBB = OutputBBIt->second;
|
|
if (CompBB->size() - 1 != OutputBB->size()) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
|
|
BasicBlock::iterator NIt = OutputBB->begin();
|
|
for (Instruction &I : *CompBB) {
|
|
if (isa<BranchInst>(&I))
|
|
continue;
|
|
|
|
if (!I.isIdenticalTo(&(*NIt))) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
|
|
NIt++;
|
|
}
|
|
}
|
|
|
|
if (!Mismatch)
|
|
return MatchingNum;
|
|
|
|
MatchingNum++;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Remove empty output blocks from the outlined region.
|
|
///
|
|
/// \param BlocksToPrune - Mapping of return values output blocks for the \p
|
|
/// Region.
|
|
/// \param Region - The OutlinableRegion we are analyzing.
|
|
static bool
|
|
analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
|
|
OutlinableRegion &Region) {
|
|
bool AllRemoved = true;
|
|
Value *RetValueForBB;
|
|
BasicBlock *NewBB;
|
|
SmallVector<Value *, 4> ToRemove;
|
|
// Iterate over the output blocks created in the outlined section.
|
|
for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
|
|
RetValueForBB = VtoBB.first;
|
|
NewBB = VtoBB.second;
|
|
|
|
// If there are no instructions, we remove it from the module, and also
|
|
// mark the value for removal from the return value to output block mapping.
|
|
if (NewBB->size() == 0) {
|
|
NewBB->eraseFromParent();
|
|
ToRemove.push_back(RetValueForBB);
|
|
continue;
|
|
}
|
|
|
|
// Mark that we could not remove all the blocks since they were not all
|
|
// empty.
|
|
AllRemoved = false;
|
|
}
|
|
|
|
// Remove the return value from the mapping.
|
|
for (Value *V : ToRemove)
|
|
BlocksToPrune.erase(V);
|
|
|
|
// Mark the region as having the no output scheme.
|
|
if (AllRemoved)
|
|
Region.OutputBlockNum = -1;
|
|
|
|
return AllRemoved;
|
|
}
|
|
|
|
/// For the outlined section, move needed the StoreInsts for the output
|
|
/// registers into their own block. Then, determine if there is a duplicate
|
|
/// output block already created.
|
|
///
|
|
/// \param [in] OG - The OutlinableGroup of regions to be outlined.
|
|
/// \param [in] Region - The OutlinableRegion that is being analyzed.
|
|
/// \param [in,out] OutputBBs - the blocks that stores for this region will be
|
|
/// placed in.
|
|
/// \param [in] EndBBs - the final blocks of the extracted function.
|
|
/// \param [in] OutputMappings - OutputMappings the mapping of values that have
|
|
/// been replaced by a new output value.
|
|
/// \param [in,out] OutputStoreBBs - The existing output blocks.
|
|
static void alignOutputBlockWithAggFunc(
|
|
OutlinableGroup &OG, OutlinableRegion &Region,
|
|
DenseMap<Value *, BasicBlock *> &OutputBBs,
|
|
DenseMap<Value *, BasicBlock *> &EndBBs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
|
|
// If none of the output blocks have any instructions, this means that we do
|
|
// not have to determine if it matches any of the other output schemes, and we
|
|
// don't have to do anything else.
|
|
if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
|
|
return;
|
|
|
|
// Determine is there is a duplicate set of blocks.
|
|
std::optional<unsigned> MatchingBB =
|
|
findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
|
|
|
|
// If there is, we remove the new output blocks. If it does not,
|
|
// we add it to our list of sets of output blocks.
|
|
if (MatchingBB) {
|
|
LLVM_DEBUG(dbgs() << "Set output block for region in function"
|
|
<< Region.ExtractedFunction << " to " << *MatchingBB);
|
|
|
|
Region.OutputBlockNum = *MatchingBB;
|
|
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
|
|
VtoBB.second->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
Region.OutputBlockNum = OutputStoreBBs.size();
|
|
|
|
Value *RetValueForBB;
|
|
BasicBlock *NewBB;
|
|
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
|
|
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
|
|
RetValueForBB = VtoBB.first;
|
|
NewBB = VtoBB.second;
|
|
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
|
|
EndBBs.find(RetValueForBB);
|
|
LLVM_DEBUG(dbgs() << "Create output block for region in"
|
|
<< Region.ExtractedFunction << " to "
|
|
<< *NewBB);
|
|
BranchInst::Create(VBBIt->second, NewBB);
|
|
OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
|
|
}
|
|
}
|
|
|
|
/// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
|
|
/// before creating a basic block for each \p NewMap, and inserting into the new
|
|
/// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
|
|
///
|
|
/// \param OldMap [in] - The mapping to base the new mapping off of.
|
|
/// \param NewMap [out] - The output mapping using the keys of \p OldMap.
|
|
/// \param ParentFunc [in] - The function to put the new basic block in.
|
|
/// \param BaseName [in] - The start of the BasicBlock names to be appended to
|
|
/// by an index value.
|
|
static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
|
|
DenseMap<Value *, BasicBlock *> &NewMap,
|
|
Function *ParentFunc, Twine BaseName) {
|
|
unsigned Idx = 0;
|
|
std::vector<Value *> SortedKeys;
|
|
|
|
getSortedConstantKeys(SortedKeys, OldMap);
|
|
|
|
for (Value *RetVal : SortedKeys) {
|
|
BasicBlock *NewBB = BasicBlock::Create(
|
|
ParentFunc->getContext(),
|
|
Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
|
|
ParentFunc);
|
|
NewMap.insert(std::make_pair(RetVal, NewBB));
|
|
}
|
|
}
|
|
|
|
/// Create the switch statement for outlined function to differentiate between
|
|
/// all the output blocks.
|
|
///
|
|
/// For the outlined section, determine if an outlined block already exists that
|
|
/// matches the needed stores for the extracted section.
|
|
/// \param [in] M - The module we are outlining from.
|
|
/// \param [in] OG - The group of regions to be outlined.
|
|
/// \param [in] EndBBs - The final blocks of the extracted function.
|
|
/// \param [in,out] OutputStoreBBs - The existing output blocks.
|
|
void createSwitchStatement(
|
|
Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
|
|
// We only need the switch statement if there is more than one store
|
|
// combination, or there is more than one set of output blocks. The first
|
|
// will occur when we store different sets of values for two different
|
|
// regions. The second will occur when we have two outputs that are combined
|
|
// in a PHINode outside of the region in one outlined instance, and are used
|
|
// seaparately in another. This will create the same set of OutputGVNs, but
|
|
// will generate two different output schemes.
|
|
if (OG.OutputGVNCombinations.size() > 1) {
|
|
Function *AggFunc = OG.OutlinedFunction;
|
|
// Create a final block for each different return block.
|
|
DenseMap<Value *, BasicBlock *> ReturnBBs;
|
|
createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
|
|
|
|
for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
|
|
std::pair<Value *, BasicBlock *> &OutputBlock =
|
|
*OG.EndBBs.find(RetBlockPair.first);
|
|
BasicBlock *ReturnBlock = RetBlockPair.second;
|
|
BasicBlock *EndBB = OutputBlock.second;
|
|
Instruction *Term = EndBB->getTerminator();
|
|
// Move the return value to the final block instead of the original exit
|
|
// stub.
|
|
Term->moveBefore(*ReturnBlock, ReturnBlock->end());
|
|
// Put the switch statement in the old end basic block for the function
|
|
// with a fall through to the new return block.
|
|
LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
|
|
<< OutputStoreBBs.size() << "\n");
|
|
SwitchInst *SwitchI =
|
|
SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
|
|
ReturnBlock, OutputStoreBBs.size(), EndBB);
|
|
|
|
unsigned Idx = 0;
|
|
for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
|
|
DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
|
|
OutputStoreBB.find(OutputBlock.first);
|
|
|
|
if (OSBBIt == OutputStoreBB.end())
|
|
continue;
|
|
|
|
BasicBlock *BB = OSBBIt->second;
|
|
SwitchI->addCase(
|
|
ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
|
|
Term = BB->getTerminator();
|
|
Term->setSuccessor(0, ReturnBlock);
|
|
Idx++;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
|
|
|
|
// If there needs to be stores, move them from the output blocks to their
|
|
// corresponding ending block. We do not check that the OutputGVNCombinations
|
|
// is equal to 1 here since that could just been the case where there are 0
|
|
// outputs. Instead, we check whether there is more than one set of output
|
|
// blocks since this is the only case where we would have to move the
|
|
// stores, and erase the extraneous blocks.
|
|
if (OutputStoreBBs.size() == 1) {
|
|
LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
|
|
<< *OG.OutlinedFunction << "\n");
|
|
DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
|
|
for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
|
|
DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
|
|
EndBBs.find(VBPair.first);
|
|
assert(EndBBIt != EndBBs.end() && "Could not find end block");
|
|
BasicBlock *EndBB = EndBBIt->second;
|
|
BasicBlock *OutputBB = VBPair.second;
|
|
Instruction *Term = OutputBB->getTerminator();
|
|
Term->eraseFromParent();
|
|
Term = EndBB->getTerminator();
|
|
moveBBContents(*OutputBB, *EndBB);
|
|
Term->moveBefore(*EndBB, EndBB->end());
|
|
OutputBB->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Fill the new function that will serve as the replacement function for all of
|
|
/// the extracted regions of a certain structure from the first region in the
|
|
/// list of regions. Replace this first region's extracted function with the
|
|
/// new overall function.
|
|
///
|
|
/// \param [in] M - The module we are outlining from.
|
|
/// \param [in] CurrentGroup - The group of regions to be outlined.
|
|
/// \param [in,out] OutputStoreBBs - The output blocks for each different
|
|
/// set of stores needed for the different functions.
|
|
/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
|
|
/// once outlining is complete.
|
|
/// \param [in] OutputMappings - Extracted functions to erase from module
|
|
/// once outlining is complete.
|
|
static void fillOverallFunction(
|
|
Module &M, OutlinableGroup &CurrentGroup,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
|
|
std::vector<Function *> &FuncsToRemove,
|
|
const DenseMap<Value *, Value *> &OutputMappings) {
|
|
OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
|
|
|
|
// Move first extracted function's instructions into new function.
|
|
LLVM_DEBUG(dbgs() << "Move instructions from "
|
|
<< *CurrentOS->ExtractedFunction << " to instruction "
|
|
<< *CurrentGroup.OutlinedFunction << "\n");
|
|
moveFunctionData(*CurrentOS->ExtractedFunction,
|
|
*CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
|
|
|
|
// Transfer the attributes from the function to the new function.
|
|
for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
|
|
CurrentGroup.OutlinedFunction->addFnAttr(A);
|
|
|
|
// Create a new set of output blocks for the first extracted function.
|
|
DenseMap<Value *, BasicBlock *> NewBBs;
|
|
createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
|
|
CurrentGroup.OutlinedFunction, "output_block_0");
|
|
CurrentOS->OutputBlockNum = 0;
|
|
|
|
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
|
|
replaceConstants(*CurrentOS);
|
|
|
|
// We first identify if any output blocks are empty, if they are we remove
|
|
// them. We then create a branch instruction to the basic block to the return
|
|
// block for the function for each non empty output block.
|
|
if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
|
|
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
|
|
for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
|
|
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
|
|
CurrentGroup.EndBBs.find(VToBB.first);
|
|
BasicBlock *EndBB = VBBIt->second;
|
|
BranchInst::Create(EndBB, VToBB.second);
|
|
OutputStoreBBs.back().insert(VToBB);
|
|
}
|
|
}
|
|
|
|
// Replace the call to the extracted function with the outlined function.
|
|
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
|
|
|
|
// We only delete the extracted functions at the end since we may need to
|
|
// reference instructions contained in them for mapping purposes.
|
|
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
|
|
}
|
|
|
|
void IROutliner::deduplicateExtractedSections(
|
|
Module &M, OutlinableGroup &CurrentGroup,
|
|
std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
|
|
createFunction(M, CurrentGroup, OutlinedFunctionNum);
|
|
|
|
std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
|
|
|
|
OutlinableRegion *CurrentOS;
|
|
|
|
fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
|
|
OutputMappings);
|
|
|
|
std::vector<Value *> SortedKeys;
|
|
for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
|
|
CurrentOS = CurrentGroup.Regions[Idx];
|
|
AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
|
|
*CurrentOS->ExtractedFunction);
|
|
|
|
// Create a set of BasicBlocks, one for each return block, to hold the
|
|
// needed store instructions.
|
|
DenseMap<Value *, BasicBlock *> NewBBs;
|
|
createAndInsertBasicBlocks(
|
|
CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
|
|
"output_block_" + Twine(static_cast<unsigned>(Idx)));
|
|
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
|
|
alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
|
|
CurrentGroup.EndBBs, OutputMappings,
|
|
OutputStoreBBs);
|
|
|
|
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
|
|
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
|
|
}
|
|
|
|
// Create a switch statement to handle the different output schemes.
|
|
createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
|
|
|
|
OutlinedFunctionNum++;
|
|
}
|
|
|
|
/// Checks that the next instruction in the InstructionDataList matches the
|
|
/// next instruction in the module. If they do not, there could be the
|
|
/// possibility that extra code has been inserted, and we must ignore it.
|
|
///
|
|
/// \param ID - The IRInstructionData to check the next instruction of.
|
|
/// \returns true if the InstructionDataList and actual instruction match.
|
|
static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
|
|
// We check if there is a discrepancy between the InstructionDataList
|
|
// and the actual next instruction in the module. If there is, it means
|
|
// that an extra instruction was added, likely by the CodeExtractor.
|
|
|
|
// Since we do not have any similarity data about this particular
|
|
// instruction, we cannot confidently outline it, and must discard this
|
|
// candidate.
|
|
IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
|
|
Instruction *NextIDLInst = NextIDIt->Inst;
|
|
Instruction *NextModuleInst = nullptr;
|
|
if (!ID.Inst->isTerminator())
|
|
NextModuleInst = ID.Inst->getNextNonDebugInstruction();
|
|
else if (NextIDLInst != nullptr)
|
|
NextModuleInst =
|
|
&*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
|
|
|
|
if (NextIDLInst && NextIDLInst != NextModuleInst)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
|
|
const OutlinableRegion &Region) {
|
|
IRSimilarityCandidate *IRSC = Region.Candidate;
|
|
unsigned StartIdx = IRSC->getStartIdx();
|
|
unsigned EndIdx = IRSC->getEndIdx();
|
|
|
|
// A check to make sure that we are not about to attempt to outline something
|
|
// that has already been outlined.
|
|
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
|
|
if (Outlined.contains(Idx))
|
|
return false;
|
|
|
|
// We check if the recorded instruction matches the actual next instruction,
|
|
// if it does not, we fix it in the InstructionDataList.
|
|
if (!Region.Candidate->backInstruction()->isTerminator()) {
|
|
Instruction *NewEndInst =
|
|
Region.Candidate->backInstruction()->getNextNonDebugInstruction();
|
|
assert(NewEndInst && "Next instruction is a nullptr?");
|
|
if (Region.Candidate->end()->Inst != NewEndInst) {
|
|
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
|
|
IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
|
|
IRInstructionData(*NewEndInst,
|
|
InstructionClassifier.visit(*NewEndInst), *IDL);
|
|
|
|
// Insert the first IRInstructionData of the new region after the
|
|
// last IRInstructionData of the IRSimilarityCandidate.
|
|
IDL->insert(Region.Candidate->end(), *NewEndIRID);
|
|
}
|
|
}
|
|
|
|
return none_of(*IRSC, [this](IRInstructionData &ID) {
|
|
if (!nextIRInstructionDataMatchesNextInst(ID))
|
|
return true;
|
|
|
|
return !this->InstructionClassifier.visit(ID.Inst);
|
|
});
|
|
}
|
|
|
|
void IROutliner::pruneIncompatibleRegions(
|
|
std::vector<IRSimilarityCandidate> &CandidateVec,
|
|
OutlinableGroup &CurrentGroup) {
|
|
bool PreviouslyOutlined;
|
|
|
|
// Sort from beginning to end, so the IRSimilarityCandidates are in order.
|
|
stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
|
|
const IRSimilarityCandidate &RHS) {
|
|
return LHS.getStartIdx() < RHS.getStartIdx();
|
|
});
|
|
|
|
IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
|
|
// Since outlining a call and a branch instruction will be the same as only
|
|
// outlinining a call instruction, we ignore it as a space saving.
|
|
if (FirstCandidate.getLength() == 2) {
|
|
if (isa<CallInst>(FirstCandidate.front()->Inst) &&
|
|
isa<BranchInst>(FirstCandidate.back()->Inst))
|
|
return;
|
|
}
|
|
|
|
unsigned CurrentEndIdx = 0;
|
|
for (IRSimilarityCandidate &IRSC : CandidateVec) {
|
|
PreviouslyOutlined = false;
|
|
unsigned StartIdx = IRSC.getStartIdx();
|
|
unsigned EndIdx = IRSC.getEndIdx();
|
|
const Function &FnForCurrCand = *IRSC.getFunction();
|
|
|
|
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
|
|
if (Outlined.contains(Idx)) {
|
|
PreviouslyOutlined = true;
|
|
break;
|
|
}
|
|
|
|
if (PreviouslyOutlined)
|
|
continue;
|
|
|
|
// Check over the instructions, and if the basic block has its address
|
|
// taken for use somewhere else, we do not outline that block.
|
|
bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
|
|
return ID.Inst->getParent()->hasAddressTaken();
|
|
});
|
|
|
|
if (BBHasAddressTaken)
|
|
continue;
|
|
|
|
if (FnForCurrCand.hasOptNone())
|
|
continue;
|
|
|
|
if (FnForCurrCand.hasFnAttribute("nooutline")) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "... Skipping function with nooutline attribute: "
|
|
<< FnForCurrCand.getName() << "\n";
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
|
|
!OutlineFromLinkODRs)
|
|
continue;
|
|
|
|
// Greedily prune out any regions that will overlap with already chosen
|
|
// regions.
|
|
if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
|
|
continue;
|
|
|
|
bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
|
|
if (!nextIRInstructionDataMatchesNextInst(ID))
|
|
return true;
|
|
|
|
return !this->InstructionClassifier.visit(ID.Inst);
|
|
});
|
|
|
|
if (BadInst)
|
|
continue;
|
|
|
|
OutlinableRegion *OS = new (RegionAllocator.Allocate())
|
|
OutlinableRegion(IRSC, CurrentGroup);
|
|
CurrentGroup.Regions.push_back(OS);
|
|
|
|
CurrentEndIdx = EndIdx;
|
|
}
|
|
}
|
|
|
|
InstructionCost
|
|
IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
|
|
InstructionCost RegionBenefit = 0;
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
|
|
// We add the number of instructions in the region to the benefit as an
|
|
// estimate as to how much will be removed.
|
|
RegionBenefit += Region->getBenefit(TTI);
|
|
LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
|
|
<< " saved instructions to overfall benefit.\n");
|
|
}
|
|
|
|
return RegionBenefit;
|
|
}
|
|
|
|
/// For the \p OutputCanon number passed in find the value represented by this
|
|
/// canonical number. If it is from a PHINode, we pick the first incoming
|
|
/// value and return that Value instead.
|
|
///
|
|
/// \param Region - The OutlinableRegion to get the Value from.
|
|
/// \param OutputCanon - The canonical number to find the Value from.
|
|
/// \returns The Value represented by a canonical number \p OutputCanon in \p
|
|
/// Region.
|
|
static Value *findOutputValueInRegion(OutlinableRegion &Region,
|
|
unsigned OutputCanon) {
|
|
OutlinableGroup &CurrentGroup = *Region.Parent;
|
|
// If the value is greater than the value in the tracker, we have a
|
|
// PHINode and will instead use one of the incoming values to find the
|
|
// type.
|
|
if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
|
|
auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
|
|
assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
|
|
"Could not find GVN set for PHINode number!");
|
|
assert(It->second.second.size() > 0 && "PHINode does not have any values!");
|
|
OutputCanon = *It->second.second.begin();
|
|
}
|
|
std::optional<unsigned> OGVN =
|
|
Region.Candidate->fromCanonicalNum(OutputCanon);
|
|
assert(OGVN && "Could not find GVN for Canonical Number?");
|
|
std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
|
|
assert(OV && "Could not find value for GVN?");
|
|
return *OV;
|
|
}
|
|
|
|
InstructionCost
|
|
IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
|
|
InstructionCost OverallCost = 0;
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
|
|
|
|
// Each output incurs a load after the call, so we add that to the cost.
|
|
for (unsigned OutputCanon : Region->GVNStores) {
|
|
Value *V = findOutputValueInRegion(*Region, OutputCanon);
|
|
InstructionCost LoadCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
|
|
LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
|
|
<< " instructions to cost for output of type "
|
|
<< *V->getType() << "\n");
|
|
OverallCost += LoadCost;
|
|
}
|
|
}
|
|
|
|
return OverallCost;
|
|
}
|
|
|
|
/// Find the extra instructions needed to handle any output values for the
|
|
/// region.
|
|
///
|
|
/// \param [in] M - The Module to outline from.
|
|
/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
|
|
/// \param [in] TTI - The TargetTransformInfo used to collect information for
|
|
/// new instruction costs.
|
|
/// \returns the additional cost to handle the outputs.
|
|
static InstructionCost findCostForOutputBlocks(Module &M,
|
|
OutlinableGroup &CurrentGroup,
|
|
TargetTransformInfo &TTI) {
|
|
InstructionCost OutputCost = 0;
|
|
unsigned NumOutputBranches = 0;
|
|
|
|
OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
|
|
IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
|
|
DenseSet<BasicBlock *> CandidateBlocks;
|
|
Candidate.getBasicBlocks(CandidateBlocks);
|
|
|
|
// Count the number of different output branches that point to blocks outside
|
|
// of the region.
|
|
DenseSet<BasicBlock *> FoundBlocks;
|
|
for (IRInstructionData &ID : Candidate) {
|
|
if (!isa<BranchInst>(ID.Inst))
|
|
continue;
|
|
|
|
for (Value *V : ID.OperVals) {
|
|
BasicBlock *BB = static_cast<BasicBlock *>(V);
|
|
if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
|
|
NumOutputBranches++;
|
|
}
|
|
}
|
|
|
|
CurrentGroup.BranchesToOutside = NumOutputBranches;
|
|
|
|
for (const ArrayRef<unsigned> &OutputUse :
|
|
CurrentGroup.OutputGVNCombinations) {
|
|
for (unsigned OutputCanon : OutputUse) {
|
|
Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
|
|
InstructionCost StoreCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
|
|
// An instruction cost is added for each store set that needs to occur for
|
|
// various output combinations inside the function, plus a branch to
|
|
// return to the exit block.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
|
|
<< " instructions to cost for output of type "
|
|
<< *V->getType() << "\n");
|
|
OutputCost += StoreCost * NumOutputBranches;
|
|
}
|
|
|
|
InstructionCost BranchCost =
|
|
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
|
|
LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
|
|
<< " a branch instruction\n");
|
|
OutputCost += BranchCost * NumOutputBranches;
|
|
}
|
|
|
|
// If there is more than one output scheme, we must have a comparison and
|
|
// branch for each different item in the switch statement.
|
|
if (CurrentGroup.OutputGVNCombinations.size() > 1) {
|
|
InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
|
|
Instruction::ICmp, Type::getInt32Ty(M.getContext()),
|
|
Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
InstructionCost BranchCost =
|
|
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
|
|
|
|
unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
|
|
InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
|
|
|
|
LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
|
|
<< " instructions for each switch case for each different"
|
|
<< " output path in a function\n");
|
|
OutputCost += TotalCost * NumOutputBranches;
|
|
}
|
|
|
|
return OutputCost;
|
|
}
|
|
|
|
void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
|
|
InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
|
|
CurrentGroup.Benefit += RegionBenefit;
|
|
LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
|
|
|
|
InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
|
|
CurrentGroup.Cost += OutputReloadCost;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
InstructionCost AverageRegionBenefit =
|
|
RegionBenefit / CurrentGroup.Regions.size();
|
|
unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
|
|
unsigned NumRegions = CurrentGroup.Regions.size();
|
|
TargetTransformInfo &TTI =
|
|
getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
|
|
|
|
// We add one region to the cost once, to account for the instructions added
|
|
// inside of the newly created function.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
|
|
<< " instructions to cost for body of new function.\n");
|
|
CurrentGroup.Cost += AverageRegionBenefit;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
// For each argument, we must add an instruction for loading the argument
|
|
// out of the register and into a value inside of the newly outlined function.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
|
|
<< " instructions to cost for each argument in the new"
|
|
<< " function.\n");
|
|
CurrentGroup.Cost +=
|
|
OverallArgumentNum * TargetTransformInfo::TCC_Basic;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
// Each argument needs to either be loaded into a register or onto the stack.
|
|
// Some arguments will only be loaded into the stack once the argument
|
|
// registers are filled.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
|
|
<< " instructions to cost for each argument in the new"
|
|
<< " function " << NumRegions << " times for the "
|
|
<< "needed argument handling at the call site.\n");
|
|
CurrentGroup.Cost +=
|
|
2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
}
|
|
|
|
void IROutliner::updateOutputMapping(OutlinableRegion &Region,
|
|
ArrayRef<Value *> Outputs,
|
|
LoadInst *LI) {
|
|
// For and load instructions following the call
|
|
Value *Operand = LI->getPointerOperand();
|
|
std::optional<unsigned> OutputIdx;
|
|
// Find if the operand it is an output register.
|
|
for (unsigned ArgIdx = Region.NumExtractedInputs;
|
|
ArgIdx < Region.Call->arg_size(); ArgIdx++) {
|
|
if (Operand == Region.Call->getArgOperand(ArgIdx)) {
|
|
OutputIdx = ArgIdx - Region.NumExtractedInputs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we found an output register, place a mapping of the new value
|
|
// to the original in the mapping.
|
|
if (!OutputIdx)
|
|
return;
|
|
|
|
if (!OutputMappings.contains(Outputs[*OutputIdx])) {
|
|
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
|
|
<< *Outputs[*OutputIdx] << "\n");
|
|
OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
|
|
} else {
|
|
Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
|
|
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
|
|
<< *Outputs[*OutputIdx] << "\n");
|
|
OutputMappings.insert(std::make_pair(LI, Orig));
|
|
}
|
|
}
|
|
|
|
bool IROutliner::extractSection(OutlinableRegion &Region) {
|
|
SetVector<Value *> ArgInputs, Outputs, SinkCands;
|
|
assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
|
|
BasicBlock *InitialStart = Region.StartBB;
|
|
Function *OrigF = Region.StartBB->getParent();
|
|
CodeExtractorAnalysisCache CEAC(*OrigF);
|
|
Region.ExtractedFunction =
|
|
Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
|
|
|
|
// If the extraction was successful, find the BasicBlock, and reassign the
|
|
// OutlinableRegion blocks
|
|
if (!Region.ExtractedFunction) {
|
|
LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
|
|
<< "\n");
|
|
Region.reattachCandidate();
|
|
return false;
|
|
}
|
|
|
|
// Get the block containing the called branch, and reassign the blocks as
|
|
// necessary. If the original block still exists, it is because we ended on
|
|
// a branch instruction, and so we move the contents into the block before
|
|
// and assign the previous block correctly.
|
|
User *InstAsUser = Region.ExtractedFunction->user_back();
|
|
BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
|
|
Region.PrevBB = RewrittenBB->getSinglePredecessor();
|
|
assert(Region.PrevBB && "PrevBB is nullptr?");
|
|
if (Region.PrevBB == InitialStart) {
|
|
BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
|
|
Instruction *BI = NewPrev->getTerminator();
|
|
BI->eraseFromParent();
|
|
moveBBContents(*InitialStart, *NewPrev);
|
|
Region.PrevBB = NewPrev;
|
|
InitialStart->eraseFromParent();
|
|
}
|
|
|
|
Region.StartBB = RewrittenBB;
|
|
Region.EndBB = RewrittenBB;
|
|
|
|
// The sequences of outlinable regions has now changed. We must fix the
|
|
// IRInstructionDataList for consistency. Although they may not be illegal
|
|
// instructions, they should not be compared with anything else as they
|
|
// should not be outlined in this round. So marking these as illegal is
|
|
// allowed.
|
|
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
|
|
Instruction *BeginRewritten = &*RewrittenBB->begin();
|
|
Instruction *EndRewritten = &*RewrittenBB->begin();
|
|
Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
|
|
*BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
|
|
Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
|
|
*EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
|
|
|
|
// Insert the first IRInstructionData of the new region in front of the
|
|
// first IRInstructionData of the IRSimilarityCandidate.
|
|
IDL->insert(Region.Candidate->begin(), *Region.NewFront);
|
|
// Insert the first IRInstructionData of the new region after the
|
|
// last IRInstructionData of the IRSimilarityCandidate.
|
|
IDL->insert(Region.Candidate->end(), *Region.NewBack);
|
|
// Remove the IRInstructionData from the IRSimilarityCandidate.
|
|
IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
|
|
|
|
assert(RewrittenBB != nullptr &&
|
|
"Could not find a predecessor after extraction!");
|
|
|
|
// Iterate over the new set of instructions to find the new call
|
|
// instruction.
|
|
for (Instruction &I : *RewrittenBB)
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
if (Region.ExtractedFunction == CI->getCalledFunction())
|
|
Region.Call = CI;
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
|
|
updateOutputMapping(Region, Outputs.getArrayRef(), LI);
|
|
Region.reattachCandidate();
|
|
return true;
|
|
}
|
|
|
|
unsigned IROutliner::doOutline(Module &M) {
|
|
// Find the possible similarity sections.
|
|
InstructionClassifier.EnableBranches = !DisableBranches;
|
|
InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
|
|
InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
|
|
|
|
IRSimilarityIdentifier &Identifier = getIRSI(M);
|
|
SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
|
|
|
|
// Sort them by size of extracted sections
|
|
unsigned OutlinedFunctionNum = 0;
|
|
// If we only have one SimilarityGroup in SimilarityCandidates, we do not have
|
|
// to sort them by the potential number of instructions to be outlined
|
|
if (SimilarityCandidates.size() > 1)
|
|
llvm::stable_sort(SimilarityCandidates,
|
|
[](const std::vector<IRSimilarityCandidate> &LHS,
|
|
const std::vector<IRSimilarityCandidate> &RHS) {
|
|
return LHS[0].getLength() * LHS.size() >
|
|
RHS[0].getLength() * RHS.size();
|
|
});
|
|
// Creating OutlinableGroups for each SimilarityCandidate to be used in
|
|
// each of the following for loops to avoid making an allocator.
|
|
std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
|
|
|
|
DenseSet<unsigned> NotSame;
|
|
std::vector<OutlinableGroup *> NegativeCostGroups;
|
|
std::vector<OutlinableRegion *> OutlinedRegions;
|
|
// Iterate over the possible sets of similarity.
|
|
unsigned PotentialGroupIdx = 0;
|
|
for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
|
|
OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
|
|
|
|
// Remove entries that were previously outlined
|
|
pruneIncompatibleRegions(CandidateVec, CurrentGroup);
|
|
|
|
// We pruned the number of regions to 0 to 1, meaning that it's not worth
|
|
// trying to outlined since there is no compatible similar instance of this
|
|
// code.
|
|
if (CurrentGroup.Regions.size() < 2)
|
|
continue;
|
|
|
|
// Determine if there are any values that are the same constant throughout
|
|
// each section in the set.
|
|
NotSame.clear();
|
|
CurrentGroup.findSameConstants(NotSame);
|
|
|
|
if (CurrentGroup.IgnoreGroup)
|
|
continue;
|
|
|
|
// Create a CodeExtractor for each outlinable region. Identify inputs and
|
|
// outputs for each section using the code extractor and create the argument
|
|
// types for the Aggregate Outlining Function.
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *OS : CurrentGroup.Regions) {
|
|
// Break the outlinable region out of its parent BasicBlock into its own
|
|
// BasicBlocks (see function implementation).
|
|
OS->splitCandidate();
|
|
|
|
// There's a chance that when the region is split, extra instructions are
|
|
// added to the region. This makes the region no longer viable
|
|
// to be split, so we ignore it for outlining.
|
|
if (!OS->CandidateSplit)
|
|
continue;
|
|
|
|
SmallVector<BasicBlock *> BE;
|
|
DenseSet<BasicBlock *> BlocksInRegion;
|
|
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
|
|
OS->CE = new (ExtractorAllocator.Allocate())
|
|
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
|
|
false, nullptr, "outlined");
|
|
findAddInputsOutputs(M, *OS, NotSame);
|
|
if (!OS->IgnoreRegion)
|
|
OutlinedRegions.push_back(OS);
|
|
|
|
// We recombine the blocks together now that we have gathered all the
|
|
// needed information.
|
|
OS->reattachCandidate();
|
|
}
|
|
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
|
|
if (CurrentGroup.Regions.empty())
|
|
continue;
|
|
|
|
CurrentGroup.collectGVNStoreSets(M);
|
|
|
|
if (CostModel)
|
|
findCostBenefit(M, CurrentGroup);
|
|
|
|
// If we are adhering to the cost model, skip those groups where the cost
|
|
// outweighs the benefits.
|
|
if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
|
|
OptimizationRemarkEmitter &ORE =
|
|
getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
|
|
ORE.emit([&]() {
|
|
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
|
|
OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
|
|
C->frontInstruction());
|
|
R << "did not outline "
|
|
<< ore::NV(std::to_string(CurrentGroup.Regions.size()))
|
|
<< " regions due to estimated increase of "
|
|
<< ore::NV("InstructionIncrease",
|
|
CurrentGroup.Cost - CurrentGroup.Benefit)
|
|
<< " instructions at locations ";
|
|
interleave(
|
|
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
|
|
[&R](OutlinableRegion *Region) {
|
|
R << ore::NV(
|
|
"DebugLoc",
|
|
Region->Candidate->frontInstruction()->getDebugLoc());
|
|
},
|
|
[&R]() { R << " "; });
|
|
return R;
|
|
});
|
|
continue;
|
|
}
|
|
|
|
NegativeCostGroups.push_back(&CurrentGroup);
|
|
}
|
|
|
|
ExtractorAllocator.DestroyAll();
|
|
|
|
if (NegativeCostGroups.size() > 1)
|
|
stable_sort(NegativeCostGroups,
|
|
[](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
|
|
return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
|
|
});
|
|
|
|
std::vector<Function *> FuncsToRemove;
|
|
for (OutlinableGroup *CG : NegativeCostGroups) {
|
|
OutlinableGroup &CurrentGroup = *CG;
|
|
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
// We check whether our region is compatible with what has already been
|
|
// outlined, and whether we need to ignore this item.
|
|
if (!isCompatibleWithAlreadyOutlinedCode(*Region))
|
|
continue;
|
|
OutlinedRegions.push_back(Region);
|
|
}
|
|
|
|
if (OutlinedRegions.size() < 2)
|
|
continue;
|
|
|
|
// Reestimate the cost and benefit of the OutlinableGroup. Continue only if
|
|
// we are still outlining enough regions to make up for the added cost.
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
if (CostModel) {
|
|
CurrentGroup.Benefit = 0;
|
|
CurrentGroup.Cost = 0;
|
|
findCostBenefit(M, CurrentGroup);
|
|
if (CurrentGroup.Cost >= CurrentGroup.Benefit)
|
|
continue;
|
|
}
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
Region->splitCandidate();
|
|
if (!Region->CandidateSplit)
|
|
continue;
|
|
OutlinedRegions.push_back(Region);
|
|
}
|
|
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
if (CurrentGroup.Regions.size() < 2) {
|
|
for (OutlinableRegion *R : CurrentGroup.Regions)
|
|
R->reattachCandidate();
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
|
|
<< " and benefit " << CurrentGroup.Benefit << "\n");
|
|
|
|
// Create functions out of all the sections, and mark them as outlined.
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *OS : CurrentGroup.Regions) {
|
|
SmallVector<BasicBlock *> BE;
|
|
DenseSet<BasicBlock *> BlocksInRegion;
|
|
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
|
|
OS->CE = new (ExtractorAllocator.Allocate())
|
|
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
|
|
false, nullptr, "outlined");
|
|
bool FunctionOutlined = extractSection(*OS);
|
|
if (FunctionOutlined) {
|
|
unsigned StartIdx = OS->Candidate->getStartIdx();
|
|
unsigned EndIdx = OS->Candidate->getEndIdx();
|
|
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
|
|
Outlined.insert(Idx);
|
|
|
|
OutlinedRegions.push_back(OS);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
|
|
<< " with benefit " << CurrentGroup.Benefit
|
|
<< " and cost " << CurrentGroup.Cost << "\n");
|
|
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
|
|
if (CurrentGroup.Regions.empty())
|
|
continue;
|
|
|
|
OptimizationRemarkEmitter &ORE =
|
|
getORE(*CurrentGroup.Regions[0]->Call->getFunction());
|
|
ORE.emit([&]() {
|
|
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
|
|
OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
|
|
R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
|
|
<< " regions with decrease of "
|
|
<< ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
|
|
<< " instructions at locations ";
|
|
interleave(
|
|
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
|
|
[&R](OutlinableRegion *Region) {
|
|
R << ore::NV("DebugLoc",
|
|
Region->Candidate->frontInstruction()->getDebugLoc());
|
|
},
|
|
[&R]() { R << " "; });
|
|
return R;
|
|
});
|
|
|
|
deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
|
|
OutlinedFunctionNum);
|
|
}
|
|
|
|
for (Function *F : FuncsToRemove)
|
|
F->eraseFromParent();
|
|
|
|
return OutlinedFunctionNum;
|
|
}
|
|
|
|
bool IROutliner::run(Module &M) {
|
|
CostModel = !NoCostModel;
|
|
OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
|
|
|
|
return doOutline(M) > 0;
|
|
}
|
|
|
|
PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
std::function<TargetTransformInfo &(Function &)> GTTI =
|
|
[&FAM](Function &F) -> TargetTransformInfo & {
|
|
return FAM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
|
|
std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
|
|
[&AM](Module &M) -> IRSimilarityIdentifier & {
|
|
return AM.getResult<IRSimilarityAnalysis>(M);
|
|
};
|
|
|
|
std::unique_ptr<OptimizationRemarkEmitter> ORE;
|
|
std::function<OptimizationRemarkEmitter &(Function &)> GORE =
|
|
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
|
|
ORE.reset(new OptimizationRemarkEmitter(&F));
|
|
return *ORE;
|
|
};
|
|
|
|
if (IROutliner(GTTI, GIRSI, GORE).run(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|