2946cd7010
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
807 lines
30 KiB
C++
807 lines
30 KiB
C++
//===- RewriteRope.cpp - Rope specialized for rewriter --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the RewriteRope class, which is a powerful string.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Rewrite/Core/RewriteRope.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
|
|
using namespace clang;
|
|
|
|
/// RewriteRope is a "strong" string class, designed to make insertions and
|
|
/// deletions in the middle of the string nearly constant time (really, they are
|
|
/// O(log N), but with a very low constant factor).
|
|
///
|
|
/// The implementation of this datastructure is a conceptual linear sequence of
|
|
/// RopePiece elements. Each RopePiece represents a view on a separately
|
|
/// allocated and reference counted string. This means that splitting a very
|
|
/// long string can be done in constant time by splitting a RopePiece that
|
|
/// references the whole string into two rope pieces that reference each half.
|
|
/// Once split, another string can be inserted in between the two halves by
|
|
/// inserting a RopePiece in between the two others. All of this is very
|
|
/// inexpensive: it takes time proportional to the number of RopePieces, not the
|
|
/// length of the strings they represent.
|
|
///
|
|
/// While a linear sequences of RopePieces is the conceptual model, the actual
|
|
/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
|
|
/// is a tree that keeps the values in the leaves and has where each node
|
|
/// contains a reasonable number of pointers to children/values) allows us to
|
|
/// maintain efficient operation when the RewriteRope contains a *huge* number
|
|
/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
|
|
/// the RopePiece corresponding to some offset very efficiently, and it
|
|
/// automatically balances itself on insertions of RopePieces (which can happen
|
|
/// for both insertions and erases of string ranges).
|
|
///
|
|
/// The one wrinkle on the theory is that we don't attempt to keep the tree
|
|
/// properly balanced when erases happen. Erases of string data can both insert
|
|
/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
|
|
/// which results in two rope pieces, which is just like an insert) or it can
|
|
/// reduce the number of RopePieces maintained by the B+Tree. In the case when
|
|
/// the number of RopePieces is reduced, we don't attempt to maintain the
|
|
/// standard 'invariant' that each node in the tree contains at least
|
|
/// 'WidthFactor' children/values. For our use cases, this doesn't seem to
|
|
/// matter.
|
|
///
|
|
/// The implementation below is primarily implemented in terms of three classes:
|
|
/// RopePieceBTreeNode - Common base class for:
|
|
///
|
|
/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
|
|
/// nodes. This directly represents a chunk of the string with those
|
|
/// RopePieces concatenated.
|
|
/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
|
|
/// up to '2*WidthFactor' other nodes in the tree.
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RopePieceBTreeNode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
|
|
/// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
|
|
/// and a flag that determines which subclass the instance is. Also
|
|
/// important, this node knows the full extend of the node, including any
|
|
/// children that it has. This allows efficient skipping over entire subtrees
|
|
/// when looking for an offset in the BTree.
|
|
class RopePieceBTreeNode {
|
|
protected:
|
|
/// WidthFactor - This controls the number of K/V slots held in the BTree:
|
|
/// how wide it is. Each level of the BTree is guaranteed to have at least
|
|
/// 'WidthFactor' elements in it (either ropepieces or children), (except
|
|
/// the root, which may have less) and may have at most 2*WidthFactor
|
|
/// elements.
|
|
enum { WidthFactor = 8 };
|
|
|
|
/// Size - This is the number of bytes of file this node (including any
|
|
/// potential children) covers.
|
|
unsigned Size = 0;
|
|
|
|
/// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
|
|
/// is an instance of RopePieceBTreeInterior.
|
|
bool IsLeaf;
|
|
|
|
RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
|
|
~RopePieceBTreeNode() = default;
|
|
|
|
public:
|
|
bool isLeaf() const { return IsLeaf; }
|
|
unsigned size() const { return Size; }
|
|
|
|
void Destroy();
|
|
|
|
/// split - Split the range containing the specified offset so that we are
|
|
/// guaranteed that there is a place to do an insertion at the specified
|
|
/// offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *split(unsigned Offset);
|
|
|
|
/// insert - Insert the specified ropepiece into this tree node at the
|
|
/// specified offset. The offset is relative, so "0" is the start of the
|
|
/// node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
|
|
|
|
/// erase - Remove NumBytes from this node at the specified offset. We are
|
|
/// guaranteed that there is a split at Offset.
|
|
void erase(unsigned Offset, unsigned NumBytes);
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RopePieceBTreeLeaf Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
|
|
/// nodes. This directly represents a chunk of the string with those
|
|
/// RopePieces concatenated. Since this is a B+Tree, all values (in this case
|
|
/// instances of RopePiece) are stored in leaves like this. To make iteration
|
|
/// over the leaves efficient, they maintain a singly linked list through the
|
|
/// NextLeaf field. This allows the B+Tree forward iterator to be constant
|
|
/// time for all increments.
|
|
class RopePieceBTreeLeaf : public RopePieceBTreeNode {
|
|
/// NumPieces - This holds the number of rope pieces currently active in the
|
|
/// Pieces array.
|
|
unsigned char NumPieces = 0;
|
|
|
|
/// Pieces - This tracks the file chunks currently in this leaf.
|
|
RopePiece Pieces[2*WidthFactor];
|
|
|
|
/// NextLeaf - This is a pointer to the next leaf in the tree, allowing
|
|
/// efficient in-order forward iteration of the tree without traversal.
|
|
RopePieceBTreeLeaf **PrevLeaf = nullptr;
|
|
RopePieceBTreeLeaf *NextLeaf = nullptr;
|
|
|
|
public:
|
|
RopePieceBTreeLeaf() : RopePieceBTreeNode(true) {}
|
|
|
|
~RopePieceBTreeLeaf() {
|
|
if (PrevLeaf || NextLeaf)
|
|
removeFromLeafInOrder();
|
|
clear();
|
|
}
|
|
|
|
bool isFull() const { return NumPieces == 2*WidthFactor; }
|
|
|
|
/// clear - Remove all rope pieces from this leaf.
|
|
void clear() {
|
|
while (NumPieces)
|
|
Pieces[--NumPieces] = RopePiece();
|
|
Size = 0;
|
|
}
|
|
|
|
unsigned getNumPieces() const { return NumPieces; }
|
|
|
|
const RopePiece &getPiece(unsigned i) const {
|
|
assert(i < getNumPieces() && "Invalid piece ID");
|
|
return Pieces[i];
|
|
}
|
|
|
|
const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
|
|
|
|
void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
|
|
assert(!PrevLeaf && !NextLeaf && "Already in ordering");
|
|
|
|
NextLeaf = Node->NextLeaf;
|
|
if (NextLeaf)
|
|
NextLeaf->PrevLeaf = &NextLeaf;
|
|
PrevLeaf = &Node->NextLeaf;
|
|
Node->NextLeaf = this;
|
|
}
|
|
|
|
void removeFromLeafInOrder() {
|
|
if (PrevLeaf) {
|
|
*PrevLeaf = NextLeaf;
|
|
if (NextLeaf)
|
|
NextLeaf->PrevLeaf = PrevLeaf;
|
|
} else if (NextLeaf) {
|
|
NextLeaf->PrevLeaf = nullptr;
|
|
}
|
|
}
|
|
|
|
/// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
|
|
/// summing the size of all RopePieces.
|
|
void FullRecomputeSizeLocally() {
|
|
Size = 0;
|
|
for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
|
|
Size += getPiece(i).size();
|
|
}
|
|
|
|
/// split - Split the range containing the specified offset so that we are
|
|
/// guaranteed that there is a place to do an insertion at the specified
|
|
/// offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *split(unsigned Offset);
|
|
|
|
/// insert - Insert the specified ropepiece into this tree node at the
|
|
/// specified offset. The offset is relative, so "0" is the start of the
|
|
/// node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
|
|
|
|
/// erase - Remove NumBytes from this node at the specified offset. We are
|
|
/// guaranteed that there is a split at Offset.
|
|
void erase(unsigned Offset, unsigned NumBytes);
|
|
|
|
static bool classof(const RopePieceBTreeNode *N) {
|
|
return N->isLeaf();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// split - Split the range containing the specified offset so that we are
|
|
/// guaranteed that there is a place to do an insertion at the specified
|
|
/// offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
|
|
// Find the insertion point. We are guaranteed that there is a split at the
|
|
// specified offset so find it.
|
|
if (Offset == 0 || Offset == size()) {
|
|
// Fastpath for a common case. There is already a splitpoint at the end.
|
|
return nullptr;
|
|
}
|
|
|
|
// Find the piece that this offset lands in.
|
|
unsigned PieceOffs = 0;
|
|
unsigned i = 0;
|
|
while (Offset >= PieceOffs+Pieces[i].size()) {
|
|
PieceOffs += Pieces[i].size();
|
|
++i;
|
|
}
|
|
|
|
// If there is already a split point at the specified offset, just return
|
|
// success.
|
|
if (PieceOffs == Offset)
|
|
return nullptr;
|
|
|
|
// Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
|
|
// to being Piece relative.
|
|
unsigned IntraPieceOffset = Offset-PieceOffs;
|
|
|
|
// We do this by shrinking the RopePiece and then doing an insert of the tail.
|
|
RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
|
|
Pieces[i].EndOffs);
|
|
Size -= Pieces[i].size();
|
|
Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
|
|
Size += Pieces[i].size();
|
|
|
|
return insert(Offset, Tail);
|
|
}
|
|
|
|
/// insert - Insert the specified RopePiece into this tree node at the
|
|
/// specified offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
|
|
const RopePiece &R) {
|
|
// If this node is not full, insert the piece.
|
|
if (!isFull()) {
|
|
// Find the insertion point. We are guaranteed that there is a split at the
|
|
// specified offset so find it.
|
|
unsigned i = 0, e = getNumPieces();
|
|
if (Offset == size()) {
|
|
// Fastpath for a common case.
|
|
i = e;
|
|
} else {
|
|
unsigned SlotOffs = 0;
|
|
for (; Offset > SlotOffs; ++i)
|
|
SlotOffs += getPiece(i).size();
|
|
assert(SlotOffs == Offset && "Split didn't occur before insertion!");
|
|
}
|
|
|
|
// For an insertion into a non-full leaf node, just insert the value in
|
|
// its sorted position. This requires moving later values over.
|
|
for (; i != e; --e)
|
|
Pieces[e] = Pieces[e-1];
|
|
Pieces[i] = R;
|
|
++NumPieces;
|
|
Size += R.size();
|
|
return nullptr;
|
|
}
|
|
|
|
// Otherwise, if this is leaf is full, split it in two halves. Since this
|
|
// node is full, it contains 2*WidthFactor values. We move the first
|
|
// 'WidthFactor' values to the LHS child (which we leave in this node) and
|
|
// move the last 'WidthFactor' values into the RHS child.
|
|
|
|
// Create the new node.
|
|
RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
|
|
|
|
// Move over the last 'WidthFactor' values from here to NewNode.
|
|
std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
|
|
&NewNode->Pieces[0]);
|
|
// Replace old pieces with null RopePieces to drop refcounts.
|
|
std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
|
|
|
|
// Decrease the number of values in the two nodes.
|
|
NewNode->NumPieces = NumPieces = WidthFactor;
|
|
|
|
// Recompute the two nodes' size.
|
|
NewNode->FullRecomputeSizeLocally();
|
|
FullRecomputeSizeLocally();
|
|
|
|
// Update the list of leaves.
|
|
NewNode->insertAfterLeafInOrder(this);
|
|
|
|
// These insertions can't fail.
|
|
if (this->size() >= Offset)
|
|
this->insert(Offset, R);
|
|
else
|
|
NewNode->insert(Offset - this->size(), R);
|
|
return NewNode;
|
|
}
|
|
|
|
/// erase - Remove NumBytes from this node at the specified offset. We are
|
|
/// guaranteed that there is a split at Offset.
|
|
void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
|
|
// Since we are guaranteed that there is a split at Offset, we start by
|
|
// finding the Piece that starts there.
|
|
unsigned PieceOffs = 0;
|
|
unsigned i = 0;
|
|
for (; Offset > PieceOffs; ++i)
|
|
PieceOffs += getPiece(i).size();
|
|
assert(PieceOffs == Offset && "Split didn't occur before erase!");
|
|
|
|
unsigned StartPiece = i;
|
|
|
|
// Figure out how many pieces completely cover 'NumBytes'. We want to remove
|
|
// all of them.
|
|
for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
|
|
PieceOffs += getPiece(i).size();
|
|
|
|
// If we exactly include the last one, include it in the region to delete.
|
|
if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
|
|
PieceOffs += getPiece(i).size();
|
|
++i;
|
|
}
|
|
|
|
// If we completely cover some RopePieces, erase them now.
|
|
if (i != StartPiece) {
|
|
unsigned NumDeleted = i-StartPiece;
|
|
for (; i != getNumPieces(); ++i)
|
|
Pieces[i-NumDeleted] = Pieces[i];
|
|
|
|
// Drop references to dead rope pieces.
|
|
std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
|
|
RopePiece());
|
|
NumPieces -= NumDeleted;
|
|
|
|
unsigned CoverBytes = PieceOffs-Offset;
|
|
NumBytes -= CoverBytes;
|
|
Size -= CoverBytes;
|
|
}
|
|
|
|
// If we completely removed some stuff, we could be done.
|
|
if (NumBytes == 0) return;
|
|
|
|
// Okay, now might be erasing part of some Piece. If this is the case, then
|
|
// move the start point of the piece.
|
|
assert(getPiece(StartPiece).size() > NumBytes);
|
|
Pieces[StartPiece].StartOffs += NumBytes;
|
|
|
|
// The size of this node just shrunk by NumBytes.
|
|
Size -= NumBytes;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RopePieceBTreeInterior Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
|
|
/// which holds up to 2*WidthFactor pointers to child nodes.
|
|
class RopePieceBTreeInterior : public RopePieceBTreeNode {
|
|
/// NumChildren - This holds the number of children currently active in the
|
|
/// Children array.
|
|
unsigned char NumChildren = 0;
|
|
|
|
RopePieceBTreeNode *Children[2*WidthFactor];
|
|
|
|
public:
|
|
RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}
|
|
|
|
RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
|
|
: RopePieceBTreeNode(false) {
|
|
Children[0] = LHS;
|
|
Children[1] = RHS;
|
|
NumChildren = 2;
|
|
Size = LHS->size() + RHS->size();
|
|
}
|
|
|
|
~RopePieceBTreeInterior() {
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
Children[i]->Destroy();
|
|
}
|
|
|
|
bool isFull() const { return NumChildren == 2*WidthFactor; }
|
|
|
|
unsigned getNumChildren() const { return NumChildren; }
|
|
|
|
const RopePieceBTreeNode *getChild(unsigned i) const {
|
|
assert(i < NumChildren && "invalid child #");
|
|
return Children[i];
|
|
}
|
|
|
|
RopePieceBTreeNode *getChild(unsigned i) {
|
|
assert(i < NumChildren && "invalid child #");
|
|
return Children[i];
|
|
}
|
|
|
|
/// FullRecomputeSizeLocally - Recompute the Size field of this node by
|
|
/// summing up the sizes of the child nodes.
|
|
void FullRecomputeSizeLocally() {
|
|
Size = 0;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
Size += getChild(i)->size();
|
|
}
|
|
|
|
/// split - Split the range containing the specified offset so that we are
|
|
/// guaranteed that there is a place to do an insertion at the specified
|
|
/// offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *split(unsigned Offset);
|
|
|
|
/// insert - Insert the specified ropepiece into this tree node at the
|
|
/// specified offset. The offset is relative, so "0" is the start of the
|
|
/// node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
|
|
|
|
/// HandleChildPiece - A child propagated an insertion result up to us.
|
|
/// Insert the new child, and/or propagate the result further up the tree.
|
|
RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
|
|
|
|
/// erase - Remove NumBytes from this node at the specified offset. We are
|
|
/// guaranteed that there is a split at Offset.
|
|
void erase(unsigned Offset, unsigned NumBytes);
|
|
|
|
static bool classof(const RopePieceBTreeNode *N) {
|
|
return !N->isLeaf();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// split - Split the range containing the specified offset so that we are
|
|
/// guaranteed that there is a place to do an insertion at the specified
|
|
/// offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
|
|
// Figure out which child to split.
|
|
if (Offset == 0 || Offset == size())
|
|
return nullptr; // If we have an exact offset, we're already split.
|
|
|
|
unsigned ChildOffset = 0;
|
|
unsigned i = 0;
|
|
for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
|
|
ChildOffset += getChild(i)->size();
|
|
|
|
// If already split there, we're done.
|
|
if (ChildOffset == Offset)
|
|
return nullptr;
|
|
|
|
// Otherwise, recursively split the child.
|
|
if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
|
|
return HandleChildPiece(i, RHS);
|
|
return nullptr; // Done!
|
|
}
|
|
|
|
/// insert - Insert the specified ropepiece into this tree node at the
|
|
/// specified offset. The offset is relative, so "0" is the start of the
|
|
/// node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
|
|
const RopePiece &R) {
|
|
// Find the insertion point. We are guaranteed that there is a split at the
|
|
// specified offset so find it.
|
|
unsigned i = 0, e = getNumChildren();
|
|
|
|
unsigned ChildOffs = 0;
|
|
if (Offset == size()) {
|
|
// Fastpath for a common case. Insert at end of last child.
|
|
i = e-1;
|
|
ChildOffs = size()-getChild(i)->size();
|
|
} else {
|
|
for (; Offset > ChildOffs+getChild(i)->size(); ++i)
|
|
ChildOffs += getChild(i)->size();
|
|
}
|
|
|
|
Size += R.size();
|
|
|
|
// Insert at the end of this child.
|
|
if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
|
|
return HandleChildPiece(i, RHS);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// HandleChildPiece - A child propagated an insertion result up to us.
|
|
/// Insert the new child, and/or propagate the result further up the tree.
|
|
RopePieceBTreeNode *
|
|
RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
|
|
// Otherwise the child propagated a subtree up to us as a new child. See if
|
|
// we have space for it here.
|
|
if (!isFull()) {
|
|
// Insert RHS after child 'i'.
|
|
if (i + 1 != getNumChildren())
|
|
memmove(&Children[i+2], &Children[i+1],
|
|
(getNumChildren()-i-1)*sizeof(Children[0]));
|
|
Children[i+1] = RHS;
|
|
++NumChildren;
|
|
return nullptr;
|
|
}
|
|
|
|
// Okay, this node is full. Split it in half, moving WidthFactor children to
|
|
// a newly allocated interior node.
|
|
|
|
// Create the new node.
|
|
RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
|
|
|
|
// Move over the last 'WidthFactor' values from here to NewNode.
|
|
memcpy(&NewNode->Children[0], &Children[WidthFactor],
|
|
WidthFactor*sizeof(Children[0]));
|
|
|
|
// Decrease the number of values in the two nodes.
|
|
NewNode->NumChildren = NumChildren = WidthFactor;
|
|
|
|
// Finally, insert the two new children in the side the can (now) hold them.
|
|
// These insertions can't fail.
|
|
if (i < WidthFactor)
|
|
this->HandleChildPiece(i, RHS);
|
|
else
|
|
NewNode->HandleChildPiece(i-WidthFactor, RHS);
|
|
|
|
// Recompute the two nodes' size.
|
|
NewNode->FullRecomputeSizeLocally();
|
|
FullRecomputeSizeLocally();
|
|
return NewNode;
|
|
}
|
|
|
|
/// erase - Remove NumBytes from this node at the specified offset. We are
|
|
/// guaranteed that there is a split at Offset.
|
|
void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
|
|
// This will shrink this node by NumBytes.
|
|
Size -= NumBytes;
|
|
|
|
// Find the first child that overlaps with Offset.
|
|
unsigned i = 0;
|
|
for (; Offset >= getChild(i)->size(); ++i)
|
|
Offset -= getChild(i)->size();
|
|
|
|
// Propagate the delete request into overlapping children, or completely
|
|
// delete the children as appropriate.
|
|
while (NumBytes) {
|
|
RopePieceBTreeNode *CurChild = getChild(i);
|
|
|
|
// If we are deleting something contained entirely in the child, pass on the
|
|
// request.
|
|
if (Offset+NumBytes < CurChild->size()) {
|
|
CurChild->erase(Offset, NumBytes);
|
|
return;
|
|
}
|
|
|
|
// If this deletion request starts somewhere in the middle of the child, it
|
|
// must be deleting to the end of the child.
|
|
if (Offset) {
|
|
unsigned BytesFromChild = CurChild->size()-Offset;
|
|
CurChild->erase(Offset, BytesFromChild);
|
|
NumBytes -= BytesFromChild;
|
|
// Start at the beginning of the next child.
|
|
Offset = 0;
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
// If the deletion request completely covers the child, delete it and move
|
|
// the rest down.
|
|
NumBytes -= CurChild->size();
|
|
CurChild->Destroy();
|
|
--NumChildren;
|
|
if (i != getNumChildren())
|
|
memmove(&Children[i], &Children[i+1],
|
|
(getNumChildren()-i)*sizeof(Children[0]));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RopePieceBTreeNode Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RopePieceBTreeNode::Destroy() {
|
|
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
|
|
delete Leaf;
|
|
else
|
|
delete cast<RopePieceBTreeInterior>(this);
|
|
}
|
|
|
|
/// split - Split the range containing the specified offset so that we are
|
|
/// guaranteed that there is a place to do an insertion at the specified
|
|
/// offset. The offset is relative, so "0" is the start of the node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
|
|
assert(Offset <= size() && "Invalid offset to split!");
|
|
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
|
|
return Leaf->split(Offset);
|
|
return cast<RopePieceBTreeInterior>(this)->split(Offset);
|
|
}
|
|
|
|
/// insert - Insert the specified ropepiece into this tree node at the
|
|
/// specified offset. The offset is relative, so "0" is the start of the
|
|
/// node.
|
|
///
|
|
/// If there is no space in this subtree for the extra piece, the extra tree
|
|
/// node is returned and must be inserted into a parent.
|
|
RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
|
|
const RopePiece &R) {
|
|
assert(Offset <= size() && "Invalid offset to insert!");
|
|
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
|
|
return Leaf->insert(Offset, R);
|
|
return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
|
|
}
|
|
|
|
/// erase - Remove NumBytes from this node at the specified offset. We are
|
|
/// guaranteed that there is a split at Offset.
|
|
void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
|
|
assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
|
|
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
|
|
return Leaf->erase(Offset, NumBytes);
|
|
return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RopePieceBTreeIterator Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const RopePieceBTreeLeaf *getCN(const void *P) {
|
|
return static_cast<const RopePieceBTreeLeaf*>(P);
|
|
}
|
|
|
|
// begin iterator.
|
|
RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
|
|
const auto *N = static_cast<const RopePieceBTreeNode *>(n);
|
|
|
|
// Walk down the left side of the tree until we get to a leaf.
|
|
while (const auto *IN = dyn_cast<RopePieceBTreeInterior>(N))
|
|
N = IN->getChild(0);
|
|
|
|
// We must have at least one leaf.
|
|
CurNode = cast<RopePieceBTreeLeaf>(N);
|
|
|
|
// If we found a leaf that happens to be empty, skip over it until we get
|
|
// to something full.
|
|
while (CurNode && getCN(CurNode)->getNumPieces() == 0)
|
|
CurNode = getCN(CurNode)->getNextLeafInOrder();
|
|
|
|
if (CurNode)
|
|
CurPiece = &getCN(CurNode)->getPiece(0);
|
|
else // Empty tree, this is an end() iterator.
|
|
CurPiece = nullptr;
|
|
CurChar = 0;
|
|
}
|
|
|
|
void RopePieceBTreeIterator::MoveToNextPiece() {
|
|
if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
|
|
CurChar = 0;
|
|
++CurPiece;
|
|
return;
|
|
}
|
|
|
|
// Find the next non-empty leaf node.
|
|
do
|
|
CurNode = getCN(CurNode)->getNextLeafInOrder();
|
|
while (CurNode && getCN(CurNode)->getNumPieces() == 0);
|
|
|
|
if (CurNode)
|
|
CurPiece = &getCN(CurNode)->getPiece(0);
|
|
else // Hit end().
|
|
CurPiece = nullptr;
|
|
CurChar = 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RopePieceBTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RopePieceBTreeNode *getRoot(void *P) {
|
|
return static_cast<RopePieceBTreeNode*>(P);
|
|
}
|
|
|
|
RopePieceBTree::RopePieceBTree() {
|
|
Root = new RopePieceBTreeLeaf();
|
|
}
|
|
|
|
RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
|
|
assert(RHS.empty() && "Can't copy non-empty tree yet");
|
|
Root = new RopePieceBTreeLeaf();
|
|
}
|
|
|
|
RopePieceBTree::~RopePieceBTree() {
|
|
getRoot(Root)->Destroy();
|
|
}
|
|
|
|
unsigned RopePieceBTree::size() const {
|
|
return getRoot(Root)->size();
|
|
}
|
|
|
|
void RopePieceBTree::clear() {
|
|
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
|
|
Leaf->clear();
|
|
else {
|
|
getRoot(Root)->Destroy();
|
|
Root = new RopePieceBTreeLeaf();
|
|
}
|
|
}
|
|
|
|
void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
|
|
// #1. Split at Offset.
|
|
if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
|
|
Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
|
|
|
|
// #2. Do the insertion.
|
|
if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
|
|
Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
|
|
}
|
|
|
|
void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
|
|
// #1. Split at Offset.
|
|
if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
|
|
Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
|
|
|
|
// #2. Do the erasing.
|
|
getRoot(Root)->erase(Offset, NumBytes);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RewriteRope Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// MakeRopeString - This copies the specified byte range into some instance of
|
|
/// RopeRefCountString, and return a RopePiece that represents it. This uses
|
|
/// the AllocBuffer object to aggregate requests for small strings into one
|
|
/// allocation instead of doing tons of tiny allocations.
|
|
RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
|
|
unsigned Len = End-Start;
|
|
assert(Len && "Zero length RopePiece is invalid!");
|
|
|
|
// If we have space for this string in the current alloc buffer, use it.
|
|
if (AllocOffs+Len <= AllocChunkSize) {
|
|
memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
|
|
AllocOffs += Len;
|
|
return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
|
|
}
|
|
|
|
// If we don't have enough room because this specific allocation is huge,
|
|
// just allocate a new rope piece for it alone.
|
|
if (Len > AllocChunkSize) {
|
|
unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
|
|
auto *Res = reinterpret_cast<RopeRefCountString *>(new char[Size]);
|
|
Res->RefCount = 0;
|
|
memcpy(Res->Data, Start, End-Start);
|
|
return RopePiece(Res, 0, End-Start);
|
|
}
|
|
|
|
// Otherwise, this was a small request but we just don't have space for it
|
|
// Make a new chunk and share it with later allocations.
|
|
|
|
unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
|
|
auto *Res = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
|
|
Res->RefCount = 0;
|
|
memcpy(Res->Data, Start, Len);
|
|
AllocBuffer = Res;
|
|
AllocOffs = Len;
|
|
|
|
return RopePiece(AllocBuffer, 0, Len);
|
|
}
|