llvm-project/llvm/tools/lli/lli.cpp
Frank Tetzel b6ae90b86c [lli] Register profiling support for ORC in lli
Adds perf event listeners when RTDyldObjectLinkingLayer is used in -jit-kind=orc
mode.

Reviewed By: lhames

Differential Revision: https://reviews.llvm.org/D126214
2023-03-14 17:02:43 -07:00

1194 lines
42 KiB
C++

//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This utility provides a simple wrapper around the LLVM Execution Engines,
// which allow the direct execution of LLVM programs through a Just-In-Time
// compiler, or through an interpreter if no JIT is available for this platform.
//
//===----------------------------------------------------------------------===//
#include "ExecutionUtils.h"
#include "ForwardingMemoryManager.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/Orc/DebugObjectManagerPlugin.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/ELFNixPlatform.h"
#include "llvm/ExecutionEngine/Orc/EPCDebugObjectRegistrar.h"
#include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h"
#include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h"
#include "llvm/ExecutionEngine/Orc/EPCGenericRTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/ExecutionEngine/Orc/MachOPlatform.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h"
#include "llvm/ExecutionEngine/Orc/SymbolStringPool.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Instrumentation.h"
#include <cerrno>
#include <optional>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
#ifdef __CYGWIN__
#include <cygwin/version.h>
#if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
#define DO_NOTHING_ATEXIT 1
#endif
#endif
using namespace llvm;
static codegen::RegisterCodeGenFlags CGF;
#define DEBUG_TYPE "lli"
namespace {
enum class JITKind { MCJIT, Orc, OrcLazy };
enum class JITLinkerKind { Default, RuntimeDyld, JITLink };
cl::opt<std::string>
InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-"));
cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<bool> ForceInterpreter("force-interpreter",
cl::desc("Force interpretation: disable JIT"),
cl::init(false));
cl::opt<JITKind> UseJITKind(
"jit-kind", cl::desc("Choose underlying JIT kind."),
cl::init(JITKind::Orc),
cl::values(clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"),
clEnumValN(JITKind::Orc, "orc", "Orc JIT"),
clEnumValN(JITKind::OrcLazy, "orc-lazy",
"Orc-based lazy JIT.")));
cl::opt<JITLinkerKind>
JITLinker("jit-linker", cl::desc("Choose the dynamic linker/loader."),
cl::init(JITLinkerKind::Default),
cl::values(clEnumValN(JITLinkerKind::Default, "default",
"Default for platform and JIT-kind"),
clEnumValN(JITLinkerKind::RuntimeDyld, "rtdyld",
"RuntimeDyld"),
clEnumValN(JITLinkerKind::JITLink, "jitlink",
"Orc-specific linker")));
cl::opt<std::string> OrcRuntime("orc-runtime",
cl::desc("Use ORC runtime from given path"),
cl::init(""));
cl::opt<unsigned>
LazyJITCompileThreads("compile-threads",
cl::desc("Choose the number of compile threads "
"(jit-kind=orc-lazy only)"),
cl::init(0));
cl::list<std::string>
ThreadEntryPoints("thread-entry",
cl::desc("calls the given entry-point on a new thread "
"(jit-kind=orc-lazy only)"));
cl::opt<bool> PerModuleLazy(
"per-module-lazy",
cl::desc("Performs lazy compilation on whole module boundaries "
"rather than individual functions"),
cl::init(false));
cl::list<std::string>
JITDylibs("jd",
cl::desc("Specifies the JITDylib to be used for any subsequent "
"-extra-module arguments."));
cl::list<std::string>
Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"));
// The MCJIT supports building for a target address space separate from
// the JIT compilation process. Use a forked process and a copying
// memory manager with IPC to execute using this functionality.
cl::opt<bool> RemoteMCJIT("remote-mcjit",
cl::desc("Execute MCJIT'ed code in a separate process."),
cl::init(false));
// Manually specify the child process for remote execution. This overrides
// the simulated remote execution that allocates address space for child
// execution. The child process will be executed and will communicate with
// lli via stdin/stdout pipes.
cl::opt<std::string>
ChildExecPath("mcjit-remote-process",
cl::desc("Specify the filename of the process to launch "
"for remote MCJIT execution. If none is specified,"
"\n\tremote execution will be simulated in-process."),
cl::value_desc("filename"), cl::init(""));
// Determine optimization level.
cl::opt<char> OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix, cl::init('2'));
cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
cl::opt<std::string>
EntryFunc("entry-function",
cl::desc("Specify the entry function (default = 'main') "
"of the executable"),
cl::value_desc("function"),
cl::init("main"));
cl::list<std::string>
ExtraModules("extra-module",
cl::desc("Extra modules to be loaded"),
cl::value_desc("input bitcode"));
cl::list<std::string>
ExtraObjects("extra-object",
cl::desc("Extra object files to be loaded"),
cl::value_desc("input object"));
cl::list<std::string>
ExtraArchives("extra-archive",
cl::desc("Extra archive files to be loaded"),
cl::value_desc("input archive"));
cl::opt<bool>
EnableCacheManager("enable-cache-manager",
cl::desc("Use cache manager to save/load modules"),
cl::init(false));
cl::opt<std::string>
ObjectCacheDir("object-cache-dir",
cl::desc("Directory to store cached object files "
"(must be user writable)"),
cl::init(""));
cl::opt<std::string>
FakeArgv0("fake-argv0",
cl::desc("Override the 'argv[0]' value passed into the executing"
" program"), cl::value_desc("executable"));
cl::opt<bool>
DisableCoreFiles("disable-core-files", cl::Hidden,
cl::desc("Disable emission of core files if possible"));
cl::opt<bool>
NoLazyCompilation("disable-lazy-compilation",
cl::desc("Disable JIT lazy compilation"),
cl::init(false));
cl::opt<bool>
GenerateSoftFloatCalls("soft-float",
cl::desc("Generate software floating point library calls"),
cl::init(false));
cl::opt<bool> NoProcessSymbols(
"no-process-syms",
cl::desc("Do not resolve lli process symbols in JIT'd code"),
cl::init(false));
enum class LLJITPlatform { Inactive, DetectHost, ORC, GenericIR };
cl::opt<LLJITPlatform>
Platform("lljit-platform", cl::desc("Platform to use with LLJIT"),
cl::init(LLJITPlatform::DetectHost),
cl::values(clEnumValN(LLJITPlatform::DetectHost, "DetectHost",
"Select based on JIT target triple"),
clEnumValN(LLJITPlatform::ORC, "ORC",
"Use ORCPlatform with the ORC runtime"),
clEnumValN(LLJITPlatform::GenericIR, "GenericIR",
"Use LLJITGenericIRPlatform"),
clEnumValN(LLJITPlatform::Inactive, "Inactive",
"Disable platform support explicitly")),
cl::Hidden);
enum class DumpKind {
NoDump,
DumpFuncsToStdOut,
DumpModsToStdOut,
DumpModsToDisk
};
cl::opt<DumpKind> OrcDumpKind(
"orc-lazy-debug", cl::desc("Debug dumping for the orc-lazy JIT."),
cl::init(DumpKind::NoDump),
cl::values(clEnumValN(DumpKind::NoDump, "no-dump",
"Don't dump anything."),
clEnumValN(DumpKind::DumpFuncsToStdOut, "funcs-to-stdout",
"Dump function names to stdout."),
clEnumValN(DumpKind::DumpModsToStdOut, "mods-to-stdout",
"Dump modules to stdout."),
clEnumValN(DumpKind::DumpModsToDisk, "mods-to-disk",
"Dump modules to the current "
"working directory. (WARNING: "
"will overwrite existing files).")),
cl::Hidden);
cl::list<BuiltinFunctionKind> GenerateBuiltinFunctions(
"generate",
cl::desc("Provide built-in functions for access by JITed code "
"(jit-kind=orc-lazy only)"),
cl::values(clEnumValN(BuiltinFunctionKind::DumpDebugDescriptor,
"__dump_jit_debug_descriptor",
"Dump __jit_debug_descriptor contents to stdout"),
clEnumValN(BuiltinFunctionKind::DumpDebugObjects,
"__dump_jit_debug_objects",
"Dump __jit_debug_descriptor in-memory debug "
"objects as tool output")),
cl::Hidden);
ExitOnError ExitOnErr;
}
LLVM_ATTRIBUTE_USED void linkComponents() {
errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper
<< (void *)&llvm_orc_deregisterEHFrameSectionWrapper
<< (void *)&llvm_orc_registerJITLoaderGDBWrapper
<< (void *)&llvm_orc_registerJITLoaderGDBAllocAction;
}
//===----------------------------------------------------------------------===//
// Object cache
//
// This object cache implementation writes cached objects to disk to the
// directory specified by CacheDir, using a filename provided in the module
// descriptor. The cache tries to load a saved object using that path if the
// file exists. CacheDir defaults to "", in which case objects are cached
// alongside their originating bitcodes.
//
class LLIObjectCache : public ObjectCache {
public:
LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) {
// Add trailing '/' to cache dir if necessary.
if (!this->CacheDir.empty() &&
this->CacheDir[this->CacheDir.size() - 1] != '/')
this->CacheDir += '/';
}
~LLIObjectCache() override {}
void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override {
const std::string &ModuleID = M->getModuleIdentifier();
std::string CacheName;
if (!getCacheFilename(ModuleID, CacheName))
return;
if (!CacheDir.empty()) { // Create user-defined cache dir.
SmallString<128> dir(sys::path::parent_path(CacheName));
sys::fs::create_directories(Twine(dir));
}
std::error_code EC;
raw_fd_ostream outfile(CacheName, EC, sys::fs::OF_None);
outfile.write(Obj.getBufferStart(), Obj.getBufferSize());
outfile.close();
}
std::unique_ptr<MemoryBuffer> getObject(const Module* M) override {
const std::string &ModuleID = M->getModuleIdentifier();
std::string CacheName;
if (!getCacheFilename(ModuleID, CacheName))
return nullptr;
// Load the object from the cache filename
ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer =
MemoryBuffer::getFile(CacheName, /*IsText=*/false,
/*RequiresNullTerminator=*/false);
// If the file isn't there, that's OK.
if (!IRObjectBuffer)
return nullptr;
// MCJIT will want to write into this buffer, and we don't want that
// because the file has probably just been mmapped. Instead we make
// a copy. The filed-based buffer will be released when it goes
// out of scope.
return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer());
}
private:
std::string CacheDir;
bool getCacheFilename(const std::string &ModID, std::string &CacheName) {
std::string Prefix("file:");
size_t PrefixLength = Prefix.length();
if (ModID.substr(0, PrefixLength) != Prefix)
return false;
std::string CacheSubdir = ModID.substr(PrefixLength);
// Transform "X:\foo" => "/X\foo" for convenience on Windows.
if (is_style_windows(llvm::sys::path::Style::native) &&
isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') {
CacheSubdir[1] = CacheSubdir[0];
CacheSubdir[0] = '/';
}
CacheName = CacheDir + CacheSubdir;
size_t pos = CacheName.rfind('.');
CacheName.replace(pos, CacheName.length() - pos, ".o");
return true;
}
};
// On Mingw and Cygwin, an external symbol named '__main' is called from the
// generated 'main' function to allow static initialization. To avoid linking
// problems with remote targets (because lli's remote target support does not
// currently handle external linking) we add a secondary module which defines
// an empty '__main' function.
static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context,
StringRef TargetTripleStr) {
IRBuilder<> Builder(Context);
Triple TargetTriple(TargetTripleStr);
// Create a new module.
std::unique_ptr<Module> M = std::make_unique<Module>("CygMingHelper", Context);
M->setTargetTriple(TargetTripleStr);
// Create an empty function named "__main".
Type *ReturnTy;
if (TargetTriple.isArch64Bit())
ReturnTy = Type::getInt64Ty(Context);
else
ReturnTy = Type::getInt32Ty(Context);
Function *Result =
Function::Create(FunctionType::get(ReturnTy, {}, false),
GlobalValue::ExternalLinkage, "__main", M.get());
BasicBlock *BB = BasicBlock::Create(Context, "__main", Result);
Builder.SetInsertPoint(BB);
Value *ReturnVal = ConstantInt::get(ReturnTy, 0);
Builder.CreateRet(ReturnVal);
// Add this new module to the ExecutionEngine.
EE.addModule(std::move(M));
}
CodeGenOpt::Level getOptLevel() {
if (auto Level = CodeGenOpt::parseLevel(OptLevel))
return *Level;
WithColor::error(errs(), "lli") << "invalid optimization level.\n";
exit(1);
}
[[noreturn]] static void reportError(SMDiagnostic Err, const char *ProgName) {
Err.print(ProgName, errs());
exit(1);
}
Error loadDylibs();
int runOrcJIT(const char *ProgName);
void disallowOrcOptions();
Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote();
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char **argv, char * const *envp) {
InitLLVM X(argc, argv);
if (argc > 1)
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
// If we have a native target, initialize it to ensure it is linked in and
// usable by the JIT.
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
cl::ParseCommandLineOptions(argc, argv,
"llvm interpreter & dynamic compiler\n");
// If the user doesn't want core files, disable them.
if (DisableCoreFiles)
sys::Process::PreventCoreFiles();
ExitOnErr(loadDylibs());
if (UseJITKind == JITKind::MCJIT)
disallowOrcOptions();
else
return runOrcJIT(argv[0]);
// Old lli implementation based on ExecutionEngine and MCJIT.
LLVMContext Context;
// Load the bitcode...
SMDiagnostic Err;
std::unique_ptr<Module> Owner = parseIRFile(InputFile, Err, Context);
Module *Mod = Owner.get();
if (!Mod)
reportError(Err, argv[0]);
if (EnableCacheManager) {
std::string CacheName("file:");
CacheName.append(InputFile);
Mod->setModuleIdentifier(CacheName);
}
// If not jitting lazily, load the whole bitcode file eagerly too.
if (NoLazyCompilation) {
// Use *argv instead of argv[0] to work around a wrong GCC warning.
ExitOnError ExitOnErr(std::string(*argv) +
": bitcode didn't read correctly: ");
ExitOnErr(Mod->materializeAll());
}
std::string ErrorMsg;
EngineBuilder builder(std::move(Owner));
builder.setMArch(codegen::getMArch());
builder.setMCPU(codegen::getCPUStr());
builder.setMAttrs(codegen::getFeatureList());
if (auto RM = codegen::getExplicitRelocModel())
builder.setRelocationModel(*RM);
if (auto CM = codegen::getExplicitCodeModel())
builder.setCodeModel(*CM);
builder.setErrorStr(&ErrorMsg);
builder.setEngineKind(ForceInterpreter
? EngineKind::Interpreter
: EngineKind::JIT);
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
Mod->setTargetTriple(Triple::normalize(TargetTriple));
// Enable MCJIT if desired.
RTDyldMemoryManager *RTDyldMM = nullptr;
if (!ForceInterpreter) {
if (RemoteMCJIT)
RTDyldMM = new ForwardingMemoryManager();
else
RTDyldMM = new SectionMemoryManager();
// Deliberately construct a temp std::unique_ptr to pass in. Do not null out
// RTDyldMM: We still use it below, even though we don't own it.
builder.setMCJITMemoryManager(
std::unique_ptr<RTDyldMemoryManager>(RTDyldMM));
} else if (RemoteMCJIT) {
WithColor::error(errs(), argv[0])
<< "remote process execution does not work with the interpreter.\n";
exit(1);
}
builder.setOptLevel(getOptLevel());
TargetOptions Options =
codegen::InitTargetOptionsFromCodeGenFlags(Triple(TargetTriple));
if (codegen::getFloatABIForCalls() != FloatABI::Default)
Options.FloatABIType = codegen::getFloatABIForCalls();
builder.setTargetOptions(Options);
std::unique_ptr<ExecutionEngine> EE(builder.create());
if (!EE) {
if (!ErrorMsg.empty())
WithColor::error(errs(), argv[0])
<< "error creating EE: " << ErrorMsg << "\n";
else
WithColor::error(errs(), argv[0]) << "unknown error creating EE!\n";
exit(1);
}
std::unique_ptr<LLIObjectCache> CacheManager;
if (EnableCacheManager) {
CacheManager.reset(new LLIObjectCache(ObjectCacheDir));
EE->setObjectCache(CacheManager.get());
}
// Load any additional modules specified on the command line.
for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) {
std::unique_ptr<Module> XMod = parseIRFile(ExtraModules[i], Err, Context);
if (!XMod)
reportError(Err, argv[0]);
if (EnableCacheManager) {
std::string CacheName("file:");
CacheName.append(ExtraModules[i]);
XMod->setModuleIdentifier(CacheName);
}
EE->addModule(std::move(XMod));
}
for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) {
Expected<object::OwningBinary<object::ObjectFile>> Obj =
object::ObjectFile::createObjectFile(ExtraObjects[i]);
if (!Obj) {
// TODO: Actually report errors helpfully.
consumeError(Obj.takeError());
reportError(Err, argv[0]);
}
object::OwningBinary<object::ObjectFile> &O = Obj.get();
EE->addObjectFile(std::move(O));
}
for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) {
ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr =
MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]);
if (!ArBufOrErr)
reportError(Err, argv[0]);
std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get();
Expected<std::unique_ptr<object::Archive>> ArOrErr =
object::Archive::create(ArBuf->getMemBufferRef());
if (!ArOrErr) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(ArOrErr.takeError(), OS);
OS.flush();
errs() << Buf;
exit(1);
}
std::unique_ptr<object::Archive> &Ar = ArOrErr.get();
object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf));
EE->addArchive(std::move(OB));
}
// If the target is Cygwin/MingW and we are generating remote code, we
// need an extra module to help out with linking.
if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) {
addCygMingExtraModule(*EE, Context, Mod->getTargetTriple());
}
// The following functions have no effect if their respective profiling
// support wasn't enabled in the build configuration.
EE->RegisterJITEventListener(
JITEventListener::createOProfileJITEventListener());
EE->RegisterJITEventListener(
JITEventListener::createIntelJITEventListener());
if (!RemoteMCJIT)
EE->RegisterJITEventListener(
JITEventListener::createPerfJITEventListener());
if (!NoLazyCompilation && RemoteMCJIT) {
WithColor::warning(errs(), argv[0])
<< "remote mcjit does not support lazy compilation\n";
NoLazyCompilation = true;
}
EE->DisableLazyCompilation(NoLazyCompilation);
// If the user specifically requested an argv[0] to pass into the program,
// do it now.
if (!FakeArgv0.empty()) {
InputFile = static_cast<std::string>(FakeArgv0);
} else {
// Otherwise, if there is a .bc suffix on the executable strip it off, it
// might confuse the program.
if (StringRef(InputFile).endswith(".bc"))
InputFile.erase(InputFile.length() - 3);
}
// Add the module's name to the start of the vector of arguments to main().
InputArgv.insert(InputArgv.begin(), InputFile);
// Call the main function from M as if its signature were:
// int main (int argc, char **argv, const char **envp)
// using the contents of Args to determine argc & argv, and the contents of
// EnvVars to determine envp.
//
Function *EntryFn = Mod->getFunction(EntryFunc);
if (!EntryFn) {
WithColor::error(errs(), argv[0])
<< '\'' << EntryFunc << "\' function not found in module.\n";
return -1;
}
// Reset errno to zero on entry to main.
errno = 0;
int Result = -1;
// Sanity check use of remote-jit: LLI currently only supports use of the
// remote JIT on Unix platforms.
if (RemoteMCJIT) {
#ifndef LLVM_ON_UNIX
WithColor::warning(errs(), argv[0])
<< "host does not support external remote targets.\n";
WithColor::note() << "defaulting to local execution\n";
return -1;
#else
if (ChildExecPath.empty()) {
WithColor::error(errs(), argv[0])
<< "-remote-mcjit requires -mcjit-remote-process.\n";
exit(1);
} else if (!sys::fs::can_execute(ChildExecPath)) {
WithColor::error(errs(), argv[0])
<< "unable to find usable child executable: '" << ChildExecPath
<< "'\n";
return -1;
}
#endif
}
if (!RemoteMCJIT) {
// If the program doesn't explicitly call exit, we will need the Exit
// function later on to make an explicit call, so get the function now.
FunctionCallee Exit = Mod->getOrInsertFunction(
"exit", Type::getVoidTy(Context), Type::getInt32Ty(Context));
// Run static constructors.
if (!ForceInterpreter) {
// Give MCJIT a chance to apply relocations and set page permissions.
EE->finalizeObject();
}
EE->runStaticConstructorsDestructors(false);
// Trigger compilation separately so code regions that need to be
// invalidated will be known.
(void)EE->getPointerToFunction(EntryFn);
// Clear instruction cache before code will be executed.
if (RTDyldMM)
static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache();
// Run main.
Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
// Run static destructors.
EE->runStaticConstructorsDestructors(true);
// If the program didn't call exit explicitly, we should call it now.
// This ensures that any atexit handlers get called correctly.
if (Function *ExitF =
dyn_cast<Function>(Exit.getCallee()->stripPointerCasts())) {
if (ExitF->getFunctionType() == Exit.getFunctionType()) {
std::vector<GenericValue> Args;
GenericValue ResultGV;
ResultGV.IntVal = APInt(32, Result);
Args.push_back(ResultGV);
EE->runFunction(ExitF, Args);
WithColor::error(errs(), argv[0])
<< "exit(" << Result << ") returned!\n";
abort();
}
}
WithColor::error(errs(), argv[0]) << "exit defined with wrong prototype!\n";
abort();
} else {
// else == "if (RemoteMCJIT)"
std::unique_ptr<orc::ExecutorProcessControl> EPC = ExitOnErr(launchRemote());
// Remote target MCJIT doesn't (yet) support static constructors. No reason
// it couldn't. This is a limitation of the LLI implementation, not the
// MCJIT itself. FIXME.
// Create a remote memory manager.
auto RemoteMM = ExitOnErr(
orc::EPCGenericRTDyldMemoryManager::CreateWithDefaultBootstrapSymbols(
*EPC));
// Forward MCJIT's memory manager calls to the remote memory manager.
static_cast<ForwardingMemoryManager*>(RTDyldMM)->setMemMgr(
std::move(RemoteMM));
// Forward MCJIT's symbol resolution calls to the remote.
static_cast<ForwardingMemoryManager *>(RTDyldMM)->setResolver(
ExitOnErr(RemoteResolver::Create(*EPC)));
// Grab the target address of the JIT'd main function on the remote and call
// it.
// FIXME: argv and envp handling.
auto Entry =
orc::ExecutorAddr(EE->getFunctionAddress(EntryFn->getName().str()));
EE->finalizeObject();
LLVM_DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
<< format("%llx", Entry.getValue()) << "\n");
Result = ExitOnErr(EPC->runAsMain(Entry, {}));
// Like static constructors, the remote target MCJIT support doesn't handle
// this yet. It could. FIXME.
// Delete the EE - we need to tear it down *before* we terminate the session
// with the remote, otherwise it'll crash when it tries to release resources
// on a remote that has already been disconnected.
EE.reset();
// Signal the remote target that we're done JITing.
ExitOnErr(EPC->disconnect());
}
return Result;
}
static std::function<void(Module &)> createDebugDumper() {
switch (OrcDumpKind) {
case DumpKind::NoDump:
return [](Module &M) {};
case DumpKind::DumpFuncsToStdOut:
return [](Module &M) {
printf("[ ");
for (const auto &F : M) {
if (F.isDeclaration())
continue;
if (F.hasName()) {
std::string Name(std::string(F.getName()));
printf("%s ", Name.c_str());
} else
printf("<anon> ");
}
printf("]\n");
};
case DumpKind::DumpModsToStdOut:
return [](Module &M) {
outs() << "----- Module Start -----\n" << M << "----- Module End -----\n";
};
case DumpKind::DumpModsToDisk:
return [](Module &M) {
std::error_code EC;
raw_fd_ostream Out(M.getModuleIdentifier() + ".ll", EC,
sys::fs::OF_TextWithCRLF);
if (EC) {
errs() << "Couldn't open " << M.getModuleIdentifier()
<< " for dumping.\nError:" << EC.message() << "\n";
exit(1);
}
Out << M;
};
}
llvm_unreachable("Unknown DumpKind");
}
Error loadDylibs() {
for (const auto &Dylib : Dylibs) {
std::string ErrMsg;
if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
return make_error<StringError>(ErrMsg, inconvertibleErrorCode());
}
return Error::success();
}
static void exitOnLazyCallThroughFailure() { exit(1); }
Expected<orc::ThreadSafeModule>
loadModule(StringRef Path, orc::ThreadSafeContext TSCtx) {
SMDiagnostic Err;
auto M = parseIRFile(Path, Err, *TSCtx.getContext());
if (!M) {
std::string ErrMsg;
{
raw_string_ostream ErrMsgStream(ErrMsg);
Err.print("lli", ErrMsgStream);
}
return make_error<StringError>(std::move(ErrMsg), inconvertibleErrorCode());
}
if (EnableCacheManager)
M->setModuleIdentifier("file:" + M->getModuleIdentifier());
return orc::ThreadSafeModule(std::move(M), std::move(TSCtx));
}
int runOrcJIT(const char *ProgName) {
// Start setting up the JIT environment.
// Parse the main module.
orc::ThreadSafeContext TSCtx(std::make_unique<LLVMContext>());
auto MainModule = ExitOnErr(loadModule(InputFile, TSCtx));
// Get TargetTriple and DataLayout from the main module if they're explicitly
// set.
std::optional<Triple> TT;
std::optional<DataLayout> DL;
MainModule.withModuleDo([&](Module &M) {
if (!M.getTargetTriple().empty())
TT = Triple(M.getTargetTriple());
if (!M.getDataLayout().isDefault())
DL = M.getDataLayout();
});
orc::LLLazyJITBuilder Builder;
Builder.setJITTargetMachineBuilder(
TT ? orc::JITTargetMachineBuilder(*TT)
: ExitOnErr(orc::JITTargetMachineBuilder::detectHost()));
TT = Builder.getJITTargetMachineBuilder()->getTargetTriple();
if (DL)
Builder.setDataLayout(DL);
if (!codegen::getMArch().empty())
Builder.getJITTargetMachineBuilder()->getTargetTriple().setArchName(
codegen::getMArch());
Builder.getJITTargetMachineBuilder()
->setCPU(codegen::getCPUStr())
.addFeatures(codegen::getFeatureList())
.setRelocationModel(codegen::getExplicitRelocModel())
.setCodeModel(codegen::getExplicitCodeModel());
// FIXME: Setting a dummy call-through manager in non-lazy mode prevents the
// JIT builder to instantiate a default (which would fail with an error for
// unsupported architectures).
if (UseJITKind != JITKind::OrcLazy) {
auto ES = std::make_unique<orc::ExecutionSession>(
ExitOnErr(orc::SelfExecutorProcessControl::Create()));
Builder.setLazyCallthroughManager(
std::make_unique<orc::LazyCallThroughManager>(*ES, 0, nullptr));
Builder.setExecutionSession(std::move(ES));
}
Builder.setLazyCompileFailureAddr(
orc::ExecutorAddr::fromPtr(exitOnLazyCallThroughFailure));
Builder.setNumCompileThreads(LazyJITCompileThreads);
// If the object cache is enabled then set a custom compile function
// creator to use the cache.
std::unique_ptr<LLIObjectCache> CacheManager;
if (EnableCacheManager) {
CacheManager = std::make_unique<LLIObjectCache>(ObjectCacheDir);
Builder.setCompileFunctionCreator(
[&](orc::JITTargetMachineBuilder JTMB)
-> Expected<std::unique_ptr<orc::IRCompileLayer::IRCompiler>> {
if (LazyJITCompileThreads > 0)
return std::make_unique<orc::ConcurrentIRCompiler>(std::move(JTMB),
CacheManager.get());
auto TM = JTMB.createTargetMachine();
if (!TM)
return TM.takeError();
return std::make_unique<orc::TMOwningSimpleCompiler>(std::move(*TM),
CacheManager.get());
});
}
// Set up LLJIT platform.
LLJITPlatform P = Platform;
if (P == LLJITPlatform::DetectHost) {
if (JITLinker == JITLinkerKind::JITLink && !OrcRuntime.empty() &&
(TT->isOSBinFormatMachO() || TT->isOSBinFormatELF()))
P = LLJITPlatform::ORC;
else
P = LLJITPlatform::GenericIR;
}
switch (P) {
case LLJITPlatform::ORC:
Builder.setPlatformSetUp(orc::setUpOrcPlatform);
break;
case LLJITPlatform::GenericIR:
// Nothing to do: LLJITBuilder will use this by default.
break;
case LLJITPlatform::Inactive:
Builder.setPlatformSetUp(orc::setUpInactivePlatform);
break;
default:
llvm_unreachable("Unrecognized platform value");
}
std::unique_ptr<orc::ExecutorProcessControl> EPC = nullptr;
if (JITLinker == JITLinkerKind::JITLink) {
EPC = ExitOnErr(orc::SelfExecutorProcessControl::Create(
std::make_shared<orc::SymbolStringPool>()));
Builder.setObjectLinkingLayerCreator([&EPC, &P](orc::ExecutionSession &ES,
const Triple &TT) {
auto L = std::make_unique<orc::ObjectLinkingLayer>(ES, EPC->getMemMgr());
if (P != LLJITPlatform::ORC) {
L->addPlugin(std::make_unique<orc::EHFrameRegistrationPlugin>(
ES, ExitOnErr(orc::EPCEHFrameRegistrar::Create(ES))));
L->addPlugin(std::make_unique<orc::DebugObjectManagerPlugin>(
ES, ExitOnErr(orc::createJITLoaderGDBRegistrar(ES))));
}
return L;
});
}
auto J = ExitOnErr(Builder.create());
auto *ObjLayer = &J->getObjLinkingLayer();
if (auto *RTDyldObjLayer = dyn_cast<orc::RTDyldObjectLinkingLayer>(ObjLayer)) {
RTDyldObjLayer->registerJITEventListener(
*JITEventListener::createGDBRegistrationListener());
#if LLVM_USE_OPROFILE
RTDyldObjLayer->registerJITEventListener(
*JITEventListener::createOProfileJITEventListener());
#endif
#if LLVM_USE_INTEL_JITEVENTS
RTDyldObjLayer->registerJITEventListener(
*JITEventListener::createIntelJITEventListener());
#endif
#if LLVM_USE_PERF
RTDyldObjLayer->registerJITEventListener(
*JITEventListener::createPerfJITEventListener());
#endif
}
if (PerModuleLazy)
J->setPartitionFunction(orc::CompileOnDemandLayer::compileWholeModule);
auto Dump = createDebugDumper();
J->getIRTransformLayer().setTransform(
[&](orc::ThreadSafeModule TSM,
const orc::MaterializationResponsibility &R) {
TSM.withModuleDo([&](Module &M) {
if (verifyModule(M, &dbgs())) {
dbgs() << "Bad module: " << &M << "\n";
exit(1);
}
Dump(M);
});
return TSM;
});
orc::MangleAndInterner Mangle(J->getExecutionSession(), J->getDataLayout());
// Unless they've been explicitly disabled, make process symbols available to
// JIT'd code.
if (!NoProcessSymbols)
J->getMainJITDylib().addGenerator(
ExitOnErr(orc::DynamicLibrarySearchGenerator::GetForCurrentProcess(
J->getDataLayout().getGlobalPrefix(),
[MainName = Mangle("main")](const orc::SymbolStringPtr &Name) {
return Name != MainName;
})));
if (GenerateBuiltinFunctions.size() > 0)
J->getMainJITDylib().addGenerator(
std::make_unique<LLIBuiltinFunctionGenerator>(GenerateBuiltinFunctions,
Mangle));
if (P == LLJITPlatform::ORC) {
if (auto *OLL = llvm::dyn_cast<llvm::orc::ObjectLinkingLayer>(ObjLayer)) {
auto &ES = J->getExecutionSession();
if (TT->isOSBinFormatMachO()) {
if (auto P = llvm::orc::MachOPlatform::Create(
ES, *OLL, J->getMainJITDylib(), OrcRuntime.c_str()))
ES.setPlatform(std::move(*P));
else
ExitOnErr(P.takeError());
} else if (TT->isOSBinFormatELF()) {
if (auto P = llvm::orc::ELFNixPlatform::Create(
ES, *OLL, J->getMainJITDylib(), OrcRuntime.c_str()))
ES.setPlatform(std::move(*P));
else
ExitOnErr(P.takeError());
} else {
errs() << "No ORC platform support\n";
exit(1);
}
} else {
errs() << "ORC platform requires JITLink\n";
exit(1);
}
}
// Regular modules are greedy: They materialize as a whole and trigger
// materialization for all required symbols recursively. Lazy modules go
// through partitioning and they replace outgoing calls with reexport stubs
// that resolve on call-through.
auto AddModule = [&](orc::JITDylib &JD, orc::ThreadSafeModule M) {
return UseJITKind == JITKind::OrcLazy ? J->addLazyIRModule(JD, std::move(M))
: J->addIRModule(JD, std::move(M));
};
// Add the main module.
ExitOnErr(AddModule(J->getMainJITDylib(), std::move(MainModule)));
// Create JITDylibs and add any extra modules.
{
// Create JITDylibs, keep a map from argument index to dylib. We will use
// -extra-module argument indexes to determine what dylib to use for each
// -extra-module.
std::map<unsigned, orc::JITDylib *> IdxToDylib;
IdxToDylib[0] = &J->getMainJITDylib();
for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end();
JDItr != JDEnd; ++JDItr) {
orc::JITDylib *JD = J->getJITDylibByName(*JDItr);
if (!JD) {
JD = &ExitOnErr(J->createJITDylib(*JDItr));
J->getMainJITDylib().addToLinkOrder(*JD);
JD->addToLinkOrder(J->getMainJITDylib());
}
IdxToDylib[JITDylibs.getPosition(JDItr - JITDylibs.begin())] = JD;
}
for (auto EMItr = ExtraModules.begin(), EMEnd = ExtraModules.end();
EMItr != EMEnd; ++EMItr) {
auto M = ExitOnErr(loadModule(*EMItr, TSCtx));
auto EMIdx = ExtraModules.getPosition(EMItr - ExtraModules.begin());
assert(EMIdx != 0 && "ExtraModule should have index > 0");
auto JDItr = std::prev(IdxToDylib.lower_bound(EMIdx));
auto &JD = *JDItr->second;
ExitOnErr(AddModule(JD, std::move(M)));
}
for (auto EAItr = ExtraArchives.begin(), EAEnd = ExtraArchives.end();
EAItr != EAEnd; ++EAItr) {
auto EAIdx = ExtraArchives.getPosition(EAItr - ExtraArchives.begin());
assert(EAIdx != 0 && "ExtraArchive should have index > 0");
auto JDItr = std::prev(IdxToDylib.lower_bound(EAIdx));
auto &JD = *JDItr->second;
JD.addGenerator(ExitOnErr(orc::StaticLibraryDefinitionGenerator::Load(
J->getObjLinkingLayer(), EAItr->c_str())));
}
}
// Add the objects.
for (auto &ObjPath : ExtraObjects) {
auto Obj = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ObjPath)));
ExitOnErr(J->addObjectFile(std::move(Obj)));
}
// Run any static constructors.
ExitOnErr(J->initialize(J->getMainJITDylib()));
// Run any -thread-entry points.
std::vector<std::thread> AltEntryThreads;
for (auto &ThreadEntryPoint : ThreadEntryPoints) {
auto EntryPointSym = ExitOnErr(J->lookup(ThreadEntryPoint));
typedef void (*EntryPointPtr)();
auto EntryPoint = EntryPointSym.toPtr<EntryPointPtr>();
AltEntryThreads.push_back(std::thread([EntryPoint]() { EntryPoint(); }));
}
// Resolve and run the main function.
auto MainAddr = ExitOnErr(J->lookup(EntryFunc));
int Result;
if (EPC) {
// ExecutorProcessControl-based execution with JITLink.
Result = ExitOnErr(EPC->runAsMain(MainAddr, InputArgv));
} else {
// Manual in-process execution with RuntimeDyld.
using MainFnTy = int(int, char *[]);
auto MainFn = MainAddr.toPtr<MainFnTy *>();
Result = orc::runAsMain(MainFn, InputArgv, StringRef(InputFile));
}
// Wait for -entry-point threads.
for (auto &AltEntryThread : AltEntryThreads)
AltEntryThread.join();
// Run destructors.
ExitOnErr(J->deinitialize(J->getMainJITDylib()));
return Result;
}
void disallowOrcOptions() {
// Make sure nobody used an orc-lazy specific option accidentally.
if (LazyJITCompileThreads != 0) {
errs() << "-compile-threads requires -jit-kind=orc-lazy\n";
exit(1);
}
if (!ThreadEntryPoints.empty()) {
errs() << "-thread-entry requires -jit-kind=orc-lazy\n";
exit(1);
}
if (PerModuleLazy) {
errs() << "-per-module-lazy requires -jit-kind=orc-lazy\n";
exit(1);
}
}
Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote() {
#ifndef LLVM_ON_UNIX
llvm_unreachable("launchRemote not supported on non-Unix platforms");
#else
int PipeFD[2][2];
pid_t ChildPID;
// Create two pipes.
if (pipe(PipeFD[0]) != 0 || pipe(PipeFD[1]) != 0)
perror("Error creating pipe: ");
ChildPID = fork();
if (ChildPID == 0) {
// In the child...
// Close the parent ends of the pipes
close(PipeFD[0][1]);
close(PipeFD[1][0]);
// Execute the child process.
std::unique_ptr<char[]> ChildPath, ChildIn, ChildOut;
{
ChildPath.reset(new char[ChildExecPath.size() + 1]);
std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]);
ChildPath[ChildExecPath.size()] = '\0';
std::string ChildInStr = utostr(PipeFD[0][0]);
ChildIn.reset(new char[ChildInStr.size() + 1]);
std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]);
ChildIn[ChildInStr.size()] = '\0';
std::string ChildOutStr = utostr(PipeFD[1][1]);
ChildOut.reset(new char[ChildOutStr.size() + 1]);
std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]);
ChildOut[ChildOutStr.size()] = '\0';
}
char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr };
int rc = execv(ChildExecPath.c_str(), args);
if (rc != 0)
perror("Error executing child process: ");
llvm_unreachable("Error executing child process");
}
// else we're the parent...
// Close the child ends of the pipes
close(PipeFD[0][0]);
close(PipeFD[1][1]);
// Return a SimpleRemoteEPC instance connected to our end of the pipes.
return orc::SimpleRemoteEPC::Create<orc::FDSimpleRemoteEPCTransport>(
std::make_unique<llvm::orc::InPlaceTaskDispatcher>(),
llvm::orc::SimpleRemoteEPC::Setup(), PipeFD[1][0], PipeFD[0][1]);
#endif
}