llvm-project/lldb/unittests/Core/DumpDataExtractorTest.cpp
Pavel Labath 1400a3cb8d [lldb] Always use APFloat for FP dumping
The DumpDataExtractor function had two branches for printing floating
point values. One branch (APFloat) was used if we had a Target object
around and could query it for the appropriate semantics. If we didn't
have a Target, we used host operations to read and format the value.

This patch changes second path to use APFloat as well. To make it work,
I pick reasonable defaults for different byte size. Notably, I did not
include x87 long double in that list (as it is ambibuous and
architecture-specific). This exposed a bug where we were printing
register values using the target-less branch, even though the registers
definitely belong to a target, and we had it available. Fixing this
prompted the update of several tests for register values due to slightly
different floating point outputs.

The most dubious aspect of this patch is the change in
TypeSystemClang::GetFloatTypeSemantics to recognize `10` as a valid size
for x87 long double. This was necessary because because sizeof(long
double) on x86_64 is 16 even though it only holds 10 bytes of useful
data. This generalizes the hackaround present in the target-free branch
of the dumping function.

Differential Revision: https://reviews.llvm.org/D129750
2022-07-27 14:30:35 +02:00

383 lines
17 KiB
C++

//===-- DataDumpExtractorTest.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/StreamString.h"
#include "gtest/gtest.h"
#include <complex>
#include <limits>
using namespace lldb;
using namespace lldb_private;
static void TestDumpWithAddress(uint64_t base_addr, size_t item_count,
llvm::StringRef expected) {
std::vector<uint8_t> data{0x11, 0x22};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatHex,
/*item_byte_size=*/1, item_count,
/*num_per_line=*/1, base_addr, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
TEST(DumpDataExtractorTest, BaseAddress) {
TestDumpWithAddress(0x12341234, 1, "0x12341234: 0x11");
TestDumpWithAddress(LLDB_INVALID_ADDRESS, 1, "0x11");
TestDumpWithAddress(0x12341234, 2, "0x12341234: 0x11\n0x12341235: 0x22");
TestDumpWithAddress(LLDB_INVALID_ADDRESS, 2, "0x11\n0x22");
}
static void TestDumpWithOffset(offset_t start_offset,
llvm::StringRef expected) {
std::vector<uint8_t> data{0x11, 0x22, 0x33};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, start_offset, lldb::Format::eFormatHex,
/*item_byte_size=*/1, /*item_count=*/data.size(),
/*num_per_line=*/data.size(), /*base_addr=*/0, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
TEST(DumpDataExtractorTest, StartOffset) {
TestDumpWithOffset(0, "0x00000000: 0x11 0x22 0x33");
// The offset applies to the DataExtractor, not the address used when
// formatting.
TestDumpWithOffset(1, "0x00000000: 0x22 0x33");
// If the offset is outside the DataExtractor's range we do nothing.
TestDumpWithOffset(3, "");
}
TEST(DumpDataExtractorTest, NullStream) {
// We don't do any work if there is no output stream.
uint8_t c = 0x11;
StreamString result;
DataBufferHeap dumpbuffer(&c, 0);
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, nullptr, 0, lldb::Format::eFormatHex,
/*item_byte_size=*/1, /*item_count=*/1,
/*num_per_line=*/1, /*base_addr=*/0, 0, 0);
ASSERT_EQ("", result.GetString());
}
static void TestDumpImpl(const void *data, size_t data_size,
size_t item_byte_size, size_t item_count,
size_t num_per_line, uint64_t base_addr,
lldb::Format format, llvm::StringRef expected) {
StreamString result;
DataBufferHeap dumpbuffer(data, data_size);
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(),
/*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, format, item_byte_size, item_count,
num_per_line, base_addr, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
template <typename T>
static void TestDump(T data, lldb::Format format, llvm::StringRef expected) {
TestDumpImpl(&data, sizeof(T), sizeof(T), 1, 1, LLDB_INVALID_ADDRESS, format,
expected);
}
static void TestDump(llvm::StringRef str, lldb::Format format,
llvm::StringRef expected) {
TestDumpImpl(str.bytes_begin(),
// +1 to include the NULL char as the last byte
str.size() + 1, str.size() + 1, 1, 1, LLDB_INVALID_ADDRESS,
format, expected);
}
template <typename T>
static void TestDump(const std::vector<T> data, lldb::Format format,
llvm::StringRef expected) {
size_t sz_bytes = data.size() * sizeof(T);
TestDumpImpl(&data[0], sz_bytes, sz_bytes, data.size(), 1,
LLDB_INVALID_ADDRESS, format, expected);
}
TEST(DumpDataExtractorTest, Formats) {
TestDump<uint8_t>(1, lldb::eFormatDefault, "0x01");
TestDump<uint8_t>(1, lldb::eFormatBoolean, "true");
TestDump<uint8_t>(0xAA, lldb::eFormatBinary, "0b10101010");
TestDump<uint8_t>(1, lldb::eFormatBytes, "01");
TestDump<uint8_t>(1, lldb::eFormatBytesWithASCII, "01 .");
TestDump('?', lldb::eFormatChar, "'?'");
TestDump('\x1A', lldb::eFormatCharPrintable, ".");
TestDump('#', lldb::eFormatCharPrintable, "#");
TestDump(std::complex<float>(1.2, 3.4), lldb::eFormatComplex, "1.2 + 3.4i");
TestDump(std::complex<double>(4.5, 6.7), lldb::eFormatComplex, "4.5 + 6.7i");
// long double is not tested here because for some platforms we treat it as 10
// bytes when the compiler allocates 16 bytes of space for it. (see
// DataExtractor::GetLongDouble) Meaning that when we extract the second one,
// it gets the wrong value (it's 6 bytes off). You could manually construct a
// set of bytes to match the 10 byte format but then if the test runs on a
// machine where we don't use 10 it'll break.
TestDump(llvm::StringRef("aardvark"), lldb::Format::eFormatCString,
"\"aardvark\"");
TestDump<uint16_t>(99, lldb::Format::eFormatDecimal, "99");
// Just prints as a signed integer.
TestDump(-1, lldb::Format::eFormatEnum, "-1");
TestDump(0xcafef00d, lldb::Format::eFormatHex, "0xcafef00d");
TestDump(0xcafef00d, lldb::Format::eFormatHexUppercase, "0xCAFEF00D");
TestDump(0.456, lldb::Format::eFormatFloat, "0.45600000000000002");
TestDump(9, lldb::Format::eFormatOctal, "011");
// Chars packed into an integer.
TestDump<uint32_t>(0x4C4C4442, lldb::Format::eFormatOSType, "'LLDB'");
// Unicode8 doesn't have a specific formatter.
TestDump<uint8_t>(0x34, lldb::Format::eFormatUnicode8, "0x34");
TestDump<uint16_t>(0x1122, lldb::Format::eFormatUnicode16, "U+1122");
TestDump<uint32_t>(0x12345678, lldb::Format::eFormatUnicode32,
"U+0x12345678");
TestDump<unsigned int>(654321, lldb::Format::eFormatUnsigned, "654321");
// This pointer is printed based on the size of uint64_t, so the test is the
// same for 32/64 bit host.
TestDump<uint64_t>(0x4444555566667777, lldb::Format::eFormatPointer,
"0x4444555566667777");
TestDump(std::vector<char>{'A', '\x01', 'C'},
lldb::Format::eFormatVectorOfChar, "{A\\x01C}");
TestDump(std::vector<int8_t>{0, -1, std::numeric_limits<int8_t>::max()},
lldb::Format::eFormatVectorOfSInt8, "{0 -1 127}");
TestDump(std::vector<uint8_t>{12, 0xFF, 34},
lldb::Format::eFormatVectorOfUInt8, "{0x0c 0xff 0x22}");
TestDump(std::vector<int16_t>{-1, 1234, std::numeric_limits<int16_t>::max()},
lldb::Format::eFormatVectorOfSInt16, "{-1 1234 32767}");
TestDump(std::vector<uint16_t>{0xffff, 0xabcd, 0x1234},
lldb::Format::eFormatVectorOfUInt16, "{0xffff 0xabcd 0x1234}");
TestDump(std::vector<int32_t>{0, -1, std::numeric_limits<int32_t>::max()},
lldb::Format::eFormatVectorOfSInt32, "{0 -1 2147483647}");
TestDump(std::vector<uint32_t>{0, 0xffffffff, 0x1234abcd},
lldb::Format::eFormatVectorOfUInt32,
"{0x00000000 0xffffffff 0x1234abcd}");
TestDump(std::vector<int64_t>{0, -1, std::numeric_limits<int64_t>::max()},
lldb::Format::eFormatVectorOfSInt64, "{0 -1 9223372036854775807}");
TestDump(std::vector<uint64_t>{0, 0xaaaabbbbccccdddd},
lldb::Format::eFormatVectorOfUInt64,
"{0x0000000000000000 0xaaaabbbbccccdddd}");
// See half2float for format details.
// Test zeroes.
TestDump(std::vector<uint16_t>{0x0000, 0x8000},
lldb::Format::eFormatVectorOfFloat16, "{0 -0}");
// Some subnormal numbers.
TestDump(std::vector<uint16_t>{0x0001, 0x8001},
lldb::Format::eFormatVectorOfFloat16, "{5.9605E-8 -5.9605E-8}");
// A full mantisse and empty expontent.
TestDump(std::vector<uint16_t>{0x83ff, 0x03ff},
lldb::Format::eFormatVectorOfFloat16, "{-6.0976E-5 6.0976E-5}");
// Some normal numbers.
TestDump(std::vector<uint16_t>{0b0100001001001000},
lldb::Format::eFormatVectorOfFloat16, "{3.1406}");
// Largest and smallest normal number.
TestDump(std::vector<uint16_t>{0x0400, 0x7bff},
lldb::Format::eFormatVectorOfFloat16, "{6.1035E-5 65504}");
TestDump(std::vector<uint16_t>{0xabcd, 0x1234},
lldb::Format::eFormatVectorOfFloat16, "{-0.060944 7.5722E-4}");
// quiet/signaling NaNs.
TestDump(std::vector<uint16_t>{0xffff, 0xffc0, 0x7fff, 0x7fc0},
lldb::Format::eFormatVectorOfFloat16, "{NaN NaN NaN NaN}");
// +/-Inf.
TestDump(std::vector<uint16_t>{0xfc00, 0x7c00},
lldb::Format::eFormatVectorOfFloat16, "{-Inf +Inf}");
TestDump(std::vector<float>{std::numeric_limits<float>::min(),
std::numeric_limits<float>::max()},
lldb::Format::eFormatVectorOfFloat32,
"{1.17549435E-38 3.40282347E+38}");
TestDump(std::vector<float>{std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::signaling_NaN(),
-std::numeric_limits<float>::quiet_NaN(),
-std::numeric_limits<float>::signaling_NaN()},
lldb::Format::eFormatVectorOfFloat32, "{NaN NaN NaN NaN}");
TestDump(std::vector<double>{std::numeric_limits<double>::min(),
std::numeric_limits<double>::max()},
lldb::Format::eFormatVectorOfFloat64,
"{2.2250738585072014E-308 1.7976931348623157E+308}");
TestDump(
std::vector<double>{
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::signaling_NaN(),
-std::numeric_limits<double>::quiet_NaN(),
-std::numeric_limits<double>::signaling_NaN(),
},
lldb::Format::eFormatVectorOfFloat64, "{NaN NaN NaN NaN}");
// Not sure we can rely on having uint128_t everywhere so emulate with
// uint64_t.
TestDump(
std::vector<uint64_t>{0x1, 0x1111222233334444, 0xaaaabbbbccccdddd, 0x0},
lldb::Format::eFormatVectorOfUInt128,
"{0x11112222333344440000000000000001 "
"0x0000000000000000aaaabbbbccccdddd}");
TestDump(std::vector<int>{2, 4}, lldb::Format::eFormatComplexInteger,
"2 + 4i");
// Without an execution context this just prints the pointer on its own.
TestDump<uint32_t>(0x11223344, lldb::Format::eFormatAddressInfo,
"0x11223344");
// Input not written in hex form because that requires C++17.
TestDump<float>(10, lldb::Format::eFormatHexFloat, "0x1.4p3");
TestDump<double>(10, lldb::Format::eFormatHexFloat, "0x1.4p3");
// long double not supported, see ItemByteSizeErrors.
// Can't disassemble without an execution context.
TestDump<uint32_t>(0xcafef00d, lldb::Format::eFormatInstruction,
"invalid target");
// Has no special handling, intended for use elsewhere.
TestDump<int>(99, lldb::Format::eFormatVoid, "0x00000063");
}
TEST(DumpDataExtractorTest, FormatCharArray) {
// Unlike the other formats, charArray isn't 1 array of N chars.
// It must be passed as N chars of 1 byte each.
// (eFormatVectorOfChar does this swap for you)
std::vector<char> data{'A', '\x01', '#'};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatCharArray,
/*item_byte_size=*/1,
/*item_count=*/data.size(),
/*num_per_line=*/data.size(), 0, 0, 0);
ASSERT_EQ("0x00000000: A\\x01#", result.GetString());
result.Clear();
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatCharArray, 1,
data.size(), 1, 0, 0, 0);
// ASSERT macro thinks the split strings are multiple arguments so make a var.
const char *expected = "0x00000000: A\n"
"0x00000001: \\x01\n"
"0x00000002: #";
ASSERT_EQ(expected, result.GetString());
}
template <typename T>
void TestDumpMultiLine(std::vector<T> data, lldb::Format format,
size_t num_per_line, llvm::StringRef expected) {
size_t sz_bytes = data.size() * sizeof(T);
TestDumpImpl(&data[0], sz_bytes, data.size(), sz_bytes, num_per_line,
0x80000000, format, expected);
}
template <typename T>
void TestDumpMultiLine(const T *data, size_t num_items, lldb::Format format,
size_t num_per_line, llvm::StringRef expected) {
TestDumpImpl(data, sizeof(T) * num_items, sizeof(T), num_items, num_per_line,
0x80000000, format, expected);
}
TEST(DumpDataExtractorTest, MultiLine) {
// A vector counts as 1 item regardless of size.
TestDumpMultiLine(std::vector<uint8_t>{0x11},
lldb::Format::eFormatVectorOfUInt8, 1,
"0x80000000: {0x11}");
TestDumpMultiLine(std::vector<uint8_t>{0x11, 0x22},
lldb::Format::eFormatVectorOfUInt8, 1,
"0x80000000: {0x11 0x22}");
// If you have multiple vectors then that's multiple items.
// Here we say that these 2 bytes are actually 2 1 byte vectors.
const std::vector<uint8_t> vector_data{0x11, 0x22};
TestDumpMultiLine(vector_data.data(), 2, lldb::Format::eFormatVectorOfUInt8,
1, "0x80000000: {0x11}\n0x80000001: {0x22}");
// Single value formats can span multiple lines.
const std::vector<uint8_t> bytes{0x11, 0x22, 0x33};
const char *expected_bytes_3_line = "0x80000000: 0x11\n"
"0x80000001: 0x22\n"
"0x80000002: 0x33";
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 1,
expected_bytes_3_line);
// Lines may not have the full number of items.
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 4,
"0x80000000: 0x11 0x22 0x33");
const char *expected_bytes_2_line = "0x80000000: 0x11 0x22\n"
"0x80000002: 0x33";
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 2,
expected_bytes_2_line);
// The line address accounts for item sizes other than 1 byte.
const std::vector<uint16_t> shorts{0x1111, 0x2222, 0x3333};
const char *expected_shorts_2_line = "0x80000000: 0x1111 0x2222\n"
"0x80000004: 0x3333";
TestDumpMultiLine(shorts.data(), shorts.size(), lldb::Format::eFormatHex, 2,
expected_shorts_2_line);
// The ascii column is positioned using the maximum line length.
const std::vector<char> chars{'L', 'L', 'D', 'B'};
const char *expected_chars_2_lines = "0x80000000: 4c 4c 44 LLD\n"
"0x80000003: 42 B";
TestDumpMultiLine(chars.data(), chars.size(),
lldb::Format::eFormatBytesWithASCII, 3,
expected_chars_2_lines);
}
void TestDumpWithItemByteSize(size_t item_byte_size, lldb::Format format,
llvm::StringRef expected) {
// We won't be reading this data so anything will do.
uint8_t dummy = 0;
TestDumpImpl(&dummy, 1, item_byte_size, 1, 1, LLDB_INVALID_ADDRESS, format,
expected);
}
TEST(DumpDataExtractorTest, ItemByteSizeErrors) {
TestDumpWithItemByteSize(
16, lldb::Format::eFormatBoolean,
"error: unsupported byte size (16) for boolean format");
TestDumpWithItemByteSize(21, lldb::Format::eFormatChar,
"error: unsupported byte size (21) for char format");
TestDumpWithItemByteSize(
18, lldb::Format::eFormatComplexInteger,
"error: unsupported byte size (18) for complex integer format");
// The code uses sizeof(long double) for these checks. This changes by host
// but we know it won't be >16.
TestDumpWithItemByteSize(
34, lldb::Format::eFormatComplex,
"error: unsupported byte size (34) for complex float format");
TestDumpWithItemByteSize(
18, lldb::Format::eFormatFloat,
"error: unsupported byte size (18) for float format");
// We want sizes to exactly match one of float/double.
TestDumpWithItemByteSize(
14, lldb::Format::eFormatComplex,
"error: unsupported byte size (14) for complex float format");
TestDumpWithItemByteSize(3, lldb::Format::eFormatFloat,
"error: unsupported byte size (3) for float format");
// We only allow float and double size.
TestDumpWithItemByteSize(
1, lldb::Format::eFormatHexFloat,
"error: unsupported byte size (1) for hex float format");
TestDumpWithItemByteSize(
17, lldb::Format::eFormatHexFloat,
"error: unsupported byte size (17) for hex float format");
}