1565 lines
58 KiB
C++
1565 lines
58 KiB
C++
//===- InstCombinePHI.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitPHINode function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
static cl::opt<unsigned>
|
|
MaxNumPhis("instcombine-max-num-phis", cl::init(512),
|
|
cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
|
|
|
|
STATISTIC(NumPHIsOfInsertValues,
|
|
"Number of phi-of-insertvalue turned into insertvalue-of-phis");
|
|
STATISTIC(NumPHIsOfExtractValues,
|
|
"Number of phi-of-extractvalue turned into extractvalue-of-phi");
|
|
STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
|
|
|
|
/// The PHI arguments will be folded into a single operation with a PHI node
|
|
/// as input. The debug location of the single operation will be the merged
|
|
/// locations of the original PHI node arguments.
|
|
void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
|
|
auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
|
|
Inst->setDebugLoc(FirstInst->getDebugLoc());
|
|
// We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
|
|
// will be inefficient.
|
|
assert(!isa<CallInst>(Inst));
|
|
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
auto *I = cast<Instruction>(V);
|
|
Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
|
|
}
|
|
}
|
|
|
|
// Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
|
|
// If there is an existing pointer typed PHI that produces the same value as PN,
|
|
// replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
|
|
// PHI node:
|
|
//
|
|
// Case-1:
|
|
// bb1:
|
|
// int_init = PtrToInt(ptr_init)
|
|
// br label %bb2
|
|
// bb2:
|
|
// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
|
|
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
|
|
// ptr_val2 = IntToPtr(int_val)
|
|
// ...
|
|
// use(ptr_val2)
|
|
// ptr_val_inc = ...
|
|
// inc_val_inc = PtrToInt(ptr_val_inc)
|
|
//
|
|
// ==>
|
|
// bb1:
|
|
// br label %bb2
|
|
// bb2:
|
|
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
|
|
// ...
|
|
// use(ptr_val)
|
|
// ptr_val_inc = ...
|
|
//
|
|
// Case-2:
|
|
// bb1:
|
|
// int_ptr = BitCast(ptr_ptr)
|
|
// int_init = Load(int_ptr)
|
|
// br label %bb2
|
|
// bb2:
|
|
// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
|
|
// ptr_val2 = IntToPtr(int_val)
|
|
// ...
|
|
// use(ptr_val2)
|
|
// ptr_val_inc = ...
|
|
// inc_val_inc = PtrToInt(ptr_val_inc)
|
|
// ==>
|
|
// bb1:
|
|
// ptr_init = Load(ptr_ptr)
|
|
// br label %bb2
|
|
// bb2:
|
|
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
|
|
// ...
|
|
// use(ptr_val)
|
|
// ptr_val_inc = ...
|
|
// ...
|
|
//
|
|
bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
|
|
if (!PN.getType()->isIntegerTy())
|
|
return false;
|
|
if (!PN.hasOneUse())
|
|
return false;
|
|
|
|
auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
|
|
if (!IntToPtr)
|
|
return false;
|
|
|
|
// Check if the pointer is actually used as pointer:
|
|
auto HasPointerUse = [](Instruction *IIP) {
|
|
for (User *U : IIP->users()) {
|
|
Value *Ptr = nullptr;
|
|
if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
|
|
Ptr = LoadI->getPointerOperand();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
Ptr = SI->getPointerOperand();
|
|
} else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
|
|
Ptr = GI->getPointerOperand();
|
|
}
|
|
|
|
if (Ptr && Ptr == IIP)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (!HasPointerUse(IntToPtr))
|
|
return false;
|
|
|
|
if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
|
|
DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
|
|
return false;
|
|
|
|
SmallVector<Value *, 4> AvailablePtrVals;
|
|
for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *Arg = std::get<1>(Incoming);
|
|
|
|
// First look backward:
|
|
if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
|
|
AvailablePtrVals.emplace_back(PI->getOperand(0));
|
|
continue;
|
|
}
|
|
|
|
// Next look forward:
|
|
Value *ArgIntToPtr = nullptr;
|
|
for (User *U : Arg->users()) {
|
|
if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
|
|
(DT.dominates(cast<Instruction>(U), BB) ||
|
|
cast<Instruction>(U)->getParent() == BB)) {
|
|
ArgIntToPtr = U;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ArgIntToPtr) {
|
|
AvailablePtrVals.emplace_back(ArgIntToPtr);
|
|
continue;
|
|
}
|
|
|
|
// If Arg is defined by a PHI, allow it. This will also create
|
|
// more opportunities iteratively.
|
|
if (isa<PHINode>(Arg)) {
|
|
AvailablePtrVals.emplace_back(Arg);
|
|
continue;
|
|
}
|
|
|
|
// For a single use integer load:
|
|
auto *LoadI = dyn_cast<LoadInst>(Arg);
|
|
if (!LoadI)
|
|
return false;
|
|
|
|
if (!LoadI->hasOneUse())
|
|
return false;
|
|
|
|
// Push the integer typed Load instruction into the available
|
|
// value set, and fix it up later when the pointer typed PHI
|
|
// is synthesized.
|
|
AvailablePtrVals.emplace_back(LoadI);
|
|
}
|
|
|
|
// Now search for a matching PHI
|
|
auto *BB = PN.getParent();
|
|
assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
|
|
"Not enough available ptr typed incoming values");
|
|
PHINode *MatchingPtrPHI = nullptr;
|
|
unsigned NumPhis = 0;
|
|
for (PHINode &PtrPHI : BB->phis()) {
|
|
// FIXME: consider handling this in AggressiveInstCombine
|
|
if (NumPhis++ > MaxNumPhis)
|
|
return false;
|
|
if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
|
|
continue;
|
|
if (any_of(zip(PN.blocks(), AvailablePtrVals),
|
|
[&](const auto &BlockAndValue) {
|
|
BasicBlock *BB = std::get<0>(BlockAndValue);
|
|
Value *V = std::get<1>(BlockAndValue);
|
|
return PtrPHI.getIncomingValueForBlock(BB) != V;
|
|
}))
|
|
continue;
|
|
MatchingPtrPHI = &PtrPHI;
|
|
break;
|
|
}
|
|
|
|
if (MatchingPtrPHI) {
|
|
assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
|
|
"Phi's Type does not match with IntToPtr");
|
|
// Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
|
|
// to make sure another transform can't undo it in the meantime.
|
|
replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
|
|
eraseInstFromFunction(*IntToPtr);
|
|
eraseInstFromFunction(PN);
|
|
return true;
|
|
}
|
|
|
|
// If it requires a conversion for every PHI operand, do not do it.
|
|
if (all_of(AvailablePtrVals, [&](Value *V) {
|
|
return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
|
|
}))
|
|
return false;
|
|
|
|
// If any of the operand that requires casting is a terminator
|
|
// instruction, do not do it. Similarly, do not do the transform if the value
|
|
// is PHI in a block with no insertion point, for example, a catchswitch
|
|
// block, since we will not be able to insert a cast after the PHI.
|
|
if (any_of(AvailablePtrVals, [&](Value *V) {
|
|
if (V->getType() == IntToPtr->getType())
|
|
return false;
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
if (!Inst)
|
|
return false;
|
|
if (Inst->isTerminator())
|
|
return true;
|
|
auto *BB = Inst->getParent();
|
|
if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
|
|
return true;
|
|
return false;
|
|
}))
|
|
return false;
|
|
|
|
PHINode *NewPtrPHI = PHINode::Create(
|
|
IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
|
|
|
|
InsertNewInstBefore(NewPtrPHI, PN);
|
|
SmallDenseMap<Value *, Instruction *> Casts;
|
|
for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
|
|
auto *IncomingBB = std::get<0>(Incoming);
|
|
auto *IncomingVal = std::get<1>(Incoming);
|
|
|
|
if (IncomingVal->getType() == IntToPtr->getType()) {
|
|
NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
|
|
assert((isa<PHINode>(IncomingVal) ||
|
|
IncomingVal->getType()->isPointerTy() ||
|
|
(LoadI && LoadI->hasOneUse())) &&
|
|
"Can not replace LoadInst with multiple uses");
|
|
#endif
|
|
// Need to insert a BitCast.
|
|
// For an integer Load instruction with a single use, the load + IntToPtr
|
|
// cast will be simplified into a pointer load:
|
|
// %v = load i64, i64* %a.ip, align 8
|
|
// %v.cast = inttoptr i64 %v to float **
|
|
// ==>
|
|
// %v.ptrp = bitcast i64 * %a.ip to float **
|
|
// %v.cast = load float *, float ** %v.ptrp, align 8
|
|
Instruction *&CI = Casts[IncomingVal];
|
|
if (!CI) {
|
|
CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
|
|
IncomingVal->getName() + ".ptr");
|
|
if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
|
|
BasicBlock::iterator InsertPos(IncomingI);
|
|
InsertPos++;
|
|
BasicBlock *BB = IncomingI->getParent();
|
|
if (isa<PHINode>(IncomingI))
|
|
InsertPos = BB->getFirstInsertionPt();
|
|
assert(InsertPos != BB->end() && "should have checked above");
|
|
InsertNewInstBefore(CI, *InsertPos);
|
|
} else {
|
|
auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
|
|
InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
|
|
}
|
|
}
|
|
NewPtrPHI->addIncoming(CI, IncomingBB);
|
|
}
|
|
|
|
// Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
|
|
// to make sure another transform can't undo it in the meantime.
|
|
replaceInstUsesWith(*IntToPtr, NewPtrPHI);
|
|
eraseInstFromFunction(*IntToPtr);
|
|
eraseInstFromFunction(PN);
|
|
return true;
|
|
}
|
|
|
|
// Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
|
|
// fold Phi-operand to bitcast.
|
|
Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
|
|
// convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
|
|
// Make sure all uses of phi are ptr2int.
|
|
if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
|
|
return nullptr;
|
|
|
|
// Iterating over all operands to check presence of target pointers for
|
|
// optimization.
|
|
bool OperandWithRoundTripCast = false;
|
|
for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
|
|
if (auto *NewOp =
|
|
simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
|
|
PN.setIncomingValue(OpNum, NewOp);
|
|
OperandWithRoundTripCast = true;
|
|
}
|
|
}
|
|
if (!OperandWithRoundTripCast)
|
|
return nullptr;
|
|
return &PN;
|
|
}
|
|
|
|
/// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
|
|
/// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
|
|
Instruction *
|
|
InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
|
|
auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
|
|
|
|
// Scan to see if all operands are `insertvalue`'s with the same indicies,
|
|
// and all have a single use.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
auto *I = dyn_cast<InsertValueInst>(V);
|
|
if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
|
|
return nullptr;
|
|
}
|
|
|
|
// For each operand of an `insertvalue`
|
|
std::array<PHINode *, 2> NewOperands;
|
|
for (int OpIdx : {0, 1}) {
|
|
auto *&NewOperand = NewOperands[OpIdx];
|
|
// Create a new PHI node to receive the values the operand has in each
|
|
// incoming basic block.
|
|
NewOperand = PHINode::Create(
|
|
FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
|
|
FirstIVI->getOperand(OpIdx)->getName() + ".pn");
|
|
// And populate each operand's PHI with said values.
|
|
for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
|
|
NewOperand->addIncoming(
|
|
cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
|
|
std::get<0>(Incoming));
|
|
InsertNewInstBefore(NewOperand, PN);
|
|
}
|
|
|
|
// And finally, create `insertvalue` over the newly-formed PHI nodes.
|
|
auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
|
|
FirstIVI->getIndices(), PN.getName());
|
|
|
|
PHIArgMergedDebugLoc(NewIVI, PN);
|
|
++NumPHIsOfInsertValues;
|
|
return NewIVI;
|
|
}
|
|
|
|
/// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
|
|
/// turn this into a phi[a,b] and a single extractvalue.
|
|
Instruction *
|
|
InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
|
|
auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
|
|
|
|
// Scan to see if all operands are `extractvalue`'s with the same indicies,
|
|
// and all have a single use.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
auto *I = dyn_cast<ExtractValueInst>(V);
|
|
if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
|
|
I->getAggregateOperand()->getType() !=
|
|
FirstEVI->getAggregateOperand()->getType())
|
|
return nullptr;
|
|
}
|
|
|
|
// Create a new PHI node to receive the values the aggregate operand has
|
|
// in each incoming basic block.
|
|
auto *NewAggregateOperand = PHINode::Create(
|
|
FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
|
|
FirstEVI->getAggregateOperand()->getName() + ".pn");
|
|
// And populate the PHI with said values.
|
|
for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
|
|
NewAggregateOperand->addIncoming(
|
|
cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
|
|
std::get<0>(Incoming));
|
|
InsertNewInstBefore(NewAggregateOperand, PN);
|
|
|
|
// And finally, create `extractvalue` over the newly-formed PHI nodes.
|
|
auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
|
|
FirstEVI->getIndices(), PN.getName());
|
|
|
|
PHIArgMergedDebugLoc(NewEVI, PN);
|
|
++NumPHIsOfExtractValues;
|
|
return NewEVI;
|
|
}
|
|
|
|
/// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
|
|
/// adds all have a single user, turn this into a phi and a single binop.
|
|
Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
|
|
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
|
|
assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
|
|
unsigned Opc = FirstInst->getOpcode();
|
|
Value *LHSVal = FirstInst->getOperand(0);
|
|
Value *RHSVal = FirstInst->getOperand(1);
|
|
|
|
Type *LHSType = LHSVal->getType();
|
|
Type *RHSType = RHSVal->getType();
|
|
|
|
// Scan to see if all operands are the same opcode, and all have one user.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
|
|
// Verify type of the LHS matches so we don't fold cmp's of different
|
|
// types.
|
|
I->getOperand(0)->getType() != LHSType ||
|
|
I->getOperand(1)->getType() != RHSType)
|
|
return nullptr;
|
|
|
|
// If they are CmpInst instructions, check their predicates
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(I))
|
|
if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
|
|
return nullptr;
|
|
|
|
// Keep track of which operand needs a phi node.
|
|
if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
|
|
if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
|
|
}
|
|
|
|
// If both LHS and RHS would need a PHI, don't do this transformation,
|
|
// because it would increase the number of PHIs entering the block,
|
|
// which leads to higher register pressure. This is especially
|
|
// bad when the PHIs are in the header of a loop.
|
|
if (!LHSVal && !RHSVal)
|
|
return nullptr;
|
|
|
|
// Otherwise, this is safe to transform!
|
|
|
|
Value *InLHS = FirstInst->getOperand(0);
|
|
Value *InRHS = FirstInst->getOperand(1);
|
|
PHINode *NewLHS = nullptr, *NewRHS = nullptr;
|
|
if (!LHSVal) {
|
|
NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
|
|
FirstInst->getOperand(0)->getName() + ".pn");
|
|
NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
|
|
InsertNewInstBefore(NewLHS, PN);
|
|
LHSVal = NewLHS;
|
|
}
|
|
|
|
if (!RHSVal) {
|
|
NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
|
|
FirstInst->getOperand(1)->getName() + ".pn");
|
|
NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
|
|
InsertNewInstBefore(NewRHS, PN);
|
|
RHSVal = NewRHS;
|
|
}
|
|
|
|
// Add all operands to the new PHIs.
|
|
if (NewLHS || NewRHS) {
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *InBB = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
Instruction *InInst = cast<Instruction>(InVal);
|
|
if (NewLHS) {
|
|
Value *NewInLHS = InInst->getOperand(0);
|
|
NewLHS->addIncoming(NewInLHS, InBB);
|
|
}
|
|
if (NewRHS) {
|
|
Value *NewInRHS = InInst->getOperand(1);
|
|
NewRHS->addIncoming(NewInRHS, InBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
|
|
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
|
|
LHSVal, RHSVal);
|
|
PHIArgMergedDebugLoc(NewCI, PN);
|
|
return NewCI;
|
|
}
|
|
|
|
BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
|
|
BinaryOperator *NewBinOp =
|
|
BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
|
|
|
|
NewBinOp->copyIRFlags(PN.getIncomingValue(0));
|
|
|
|
for (Value *V : drop_begin(PN.incoming_values()))
|
|
NewBinOp->andIRFlags(V);
|
|
|
|
PHIArgMergedDebugLoc(NewBinOp, PN);
|
|
return NewBinOp;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
|
|
GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
|
|
|
|
SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
|
|
FirstInst->op_end());
|
|
// This is true if all GEP bases are allocas and if all indices into them are
|
|
// constants.
|
|
bool AllBasePointersAreAllocas = true;
|
|
|
|
// We don't want to replace this phi if the replacement would require
|
|
// more than one phi, which leads to higher register pressure. This is
|
|
// especially bad when the PHIs are in the header of a loop.
|
|
bool NeededPhi = false;
|
|
|
|
bool AllInBounds = true;
|
|
|
|
// Scan to see if all operands are the same opcode, and all have one user.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
|
|
if (!GEP || !GEP->hasOneUser() ||
|
|
GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
|
|
GEP->getNumOperands() != FirstInst->getNumOperands())
|
|
return nullptr;
|
|
|
|
AllInBounds &= GEP->isInBounds();
|
|
|
|
// Keep track of whether or not all GEPs are of alloca pointers.
|
|
if (AllBasePointersAreAllocas &&
|
|
(!isa<AllocaInst>(GEP->getOperand(0)) ||
|
|
!GEP->hasAllConstantIndices()))
|
|
AllBasePointersAreAllocas = false;
|
|
|
|
// Compare the operand lists.
|
|
for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
|
|
if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
|
|
continue;
|
|
|
|
// Don't merge two GEPs when two operands differ (introducing phi nodes)
|
|
// if one of the PHIs has a constant for the index. The index may be
|
|
// substantially cheaper to compute for the constants, so making it a
|
|
// variable index could pessimize the path. This also handles the case
|
|
// for struct indices, which must always be constant.
|
|
if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
|
|
isa<ConstantInt>(GEP->getOperand(Op)))
|
|
return nullptr;
|
|
|
|
if (FirstInst->getOperand(Op)->getType() !=
|
|
GEP->getOperand(Op)->getType())
|
|
return nullptr;
|
|
|
|
// If we already needed a PHI for an earlier operand, and another operand
|
|
// also requires a PHI, we'd be introducing more PHIs than we're
|
|
// eliminating, which increases register pressure on entry to the PHI's
|
|
// block.
|
|
if (NeededPhi)
|
|
return nullptr;
|
|
|
|
FixedOperands[Op] = nullptr; // Needs a PHI.
|
|
NeededPhi = true;
|
|
}
|
|
}
|
|
|
|
// If all of the base pointers of the PHI'd GEPs are from allocas, don't
|
|
// bother doing this transformation. At best, this will just save a bit of
|
|
// offset calculation, but all the predecessors will have to materialize the
|
|
// stack address into a register anyway. We'd actually rather *clone* the
|
|
// load up into the predecessors so that we have a load of a gep of an alloca,
|
|
// which can usually all be folded into the load.
|
|
if (AllBasePointersAreAllocas)
|
|
return nullptr;
|
|
|
|
// Otherwise, this is safe to transform. Insert PHI nodes for each operand
|
|
// that is variable.
|
|
SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
|
|
|
|
bool HasAnyPHIs = false;
|
|
for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
|
|
if (FixedOperands[I])
|
|
continue; // operand doesn't need a phi.
|
|
Value *FirstOp = FirstInst->getOperand(I);
|
|
PHINode *NewPN =
|
|
PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
|
|
InsertNewInstBefore(NewPN, PN);
|
|
|
|
NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
|
|
OperandPhis[I] = NewPN;
|
|
FixedOperands[I] = NewPN;
|
|
HasAnyPHIs = true;
|
|
}
|
|
|
|
// Add all operands to the new PHIs.
|
|
if (HasAnyPHIs) {
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *InBB = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
|
|
|
|
for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
|
|
if (PHINode *OpPhi = OperandPhis[Op])
|
|
OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
|
|
}
|
|
}
|
|
|
|
Value *Base = FixedOperands[0];
|
|
GetElementPtrInst *NewGEP =
|
|
GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
|
|
ArrayRef(FixedOperands).slice(1));
|
|
if (AllInBounds) NewGEP->setIsInBounds();
|
|
PHIArgMergedDebugLoc(NewGEP, PN);
|
|
return NewGEP;
|
|
}
|
|
|
|
/// Return true if we know that it is safe to sink the load out of the block
|
|
/// that defines it. This means that it must be obvious the value of the load is
|
|
/// not changed from the point of the load to the end of the block it is in.
|
|
///
|
|
/// Finally, it is safe, but not profitable, to sink a load targeting a
|
|
/// non-address-taken alloca. Doing so will cause us to not promote the alloca
|
|
/// to a register.
|
|
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
|
|
BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
|
|
|
|
for (++BBI; BBI != E; ++BBI)
|
|
if (BBI->mayWriteToMemory()) {
|
|
// Calls that only access inaccessible memory do not block sinking the
|
|
// load.
|
|
if (auto *CB = dyn_cast<CallBase>(BBI))
|
|
if (CB->onlyAccessesInaccessibleMemory())
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
// Check for non-address taken alloca. If not address-taken already, it isn't
|
|
// profitable to do this xform.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
|
|
bool IsAddressTaken = false;
|
|
for (User *U : AI->users()) {
|
|
if (isa<LoadInst>(U)) continue;
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
// If storing TO the alloca, then the address isn't taken.
|
|
if (SI->getOperand(1) == AI) continue;
|
|
}
|
|
IsAddressTaken = true;
|
|
break;
|
|
}
|
|
|
|
if (!IsAddressTaken && AI->isStaticAlloca())
|
|
return false;
|
|
}
|
|
|
|
// If this load is a load from a GEP with a constant offset from an alloca,
|
|
// then we don't want to sink it. In its present form, it will be
|
|
// load [constant stack offset]. Sinking it will cause us to have to
|
|
// materialize the stack addresses in each predecessor in a register only to
|
|
// do a shared load from register in the successor.
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
|
|
if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
|
|
LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
|
|
|
|
// Can't forward swifterror through a phi.
|
|
if (FirstLI->getOperand(0)->isSwiftError())
|
|
return nullptr;
|
|
|
|
// FIXME: This is overconservative; this transform is allowed in some cases
|
|
// for atomic operations.
|
|
if (FirstLI->isAtomic())
|
|
return nullptr;
|
|
|
|
// When processing loads, we need to propagate two bits of information to the
|
|
// sunk load: whether it is volatile, and what its alignment is.
|
|
bool IsVolatile = FirstLI->isVolatile();
|
|
Align LoadAlignment = FirstLI->getAlign();
|
|
const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
|
|
|
|
// We can't sink the load if the loaded value could be modified between the
|
|
// load and the PHI.
|
|
if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
|
|
!isSafeAndProfitableToSinkLoad(FirstLI))
|
|
return nullptr;
|
|
|
|
// If the PHI is of volatile loads and the load block has multiple
|
|
// successors, sinking it would remove a load of the volatile value from
|
|
// the path through the other successor.
|
|
if (IsVolatile &&
|
|
FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *InBB = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
LoadInst *LI = dyn_cast<LoadInst>(InVal);
|
|
if (!LI || !LI->hasOneUser() || LI->isAtomic())
|
|
return nullptr;
|
|
|
|
// Make sure all arguments are the same type of operation.
|
|
if (LI->isVolatile() != IsVolatile ||
|
|
LI->getPointerAddressSpace() != LoadAddrSpace)
|
|
return nullptr;
|
|
|
|
// Can't forward swifterror through a phi.
|
|
if (LI->getOperand(0)->isSwiftError())
|
|
return nullptr;
|
|
|
|
// We can't sink the load if the loaded value could be modified between
|
|
// the load and the PHI.
|
|
if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
|
|
return nullptr;
|
|
|
|
LoadAlignment = std::min(LoadAlignment, LI->getAlign());
|
|
|
|
// If the PHI is of volatile loads and the load block has multiple
|
|
// successors, sinking it would remove a load of the volatile value from
|
|
// the path through the other successor.
|
|
if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
}
|
|
|
|
// Okay, they are all the same operation. Create a new PHI node of the
|
|
// correct type, and PHI together all of the LHS's of the instructions.
|
|
PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
|
|
PN.getNumIncomingValues(),
|
|
PN.getName()+".in");
|
|
|
|
Value *InVal = FirstLI->getOperand(0);
|
|
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
|
|
LoadInst *NewLI =
|
|
new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
|
|
|
|
unsigned KnownIDs[] = {
|
|
LLVMContext::MD_tbaa,
|
|
LLVMContext::MD_range,
|
|
LLVMContext::MD_invariant_load,
|
|
LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias,
|
|
LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_align,
|
|
LLVMContext::MD_dereferenceable,
|
|
LLVMContext::MD_dereferenceable_or_null,
|
|
LLVMContext::MD_access_group,
|
|
LLVMContext::MD_noundef,
|
|
};
|
|
|
|
for (unsigned ID : KnownIDs)
|
|
NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
|
|
|
|
// Add all operands to the new PHI and combine TBAA metadata.
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *V = std::get<1>(Incoming);
|
|
LoadInst *LI = cast<LoadInst>(V);
|
|
combineMetadata(NewLI, LI, KnownIDs, true);
|
|
Value *NewInVal = LI->getOperand(0);
|
|
if (NewInVal != InVal)
|
|
InVal = nullptr;
|
|
NewPN->addIncoming(NewInVal, BB);
|
|
}
|
|
|
|
if (InVal) {
|
|
// The new PHI unions all of the same values together. This is really
|
|
// common, so we handle it intelligently here for compile-time speed.
|
|
NewLI->setOperand(0, InVal);
|
|
delete NewPN;
|
|
} else {
|
|
InsertNewInstBefore(NewPN, PN);
|
|
}
|
|
|
|
// If this was a volatile load that we are merging, make sure to loop through
|
|
// and mark all the input loads as non-volatile. If we don't do this, we will
|
|
// insert a new volatile load and the old ones will not be deletable.
|
|
if (IsVolatile)
|
|
for (Value *IncValue : PN.incoming_values())
|
|
cast<LoadInst>(IncValue)->setVolatile(false);
|
|
|
|
PHIArgMergedDebugLoc(NewLI, PN);
|
|
return NewLI;
|
|
}
|
|
|
|
/// TODO: This function could handle other cast types, but then it might
|
|
/// require special-casing a cast from the 'i1' type. See the comment in
|
|
/// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
|
|
Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
|
|
// We cannot create a new instruction after the PHI if the terminator is an
|
|
// EHPad because there is no valid insertion point.
|
|
if (Instruction *TI = Phi.getParent()->getTerminator())
|
|
if (TI->isEHPad())
|
|
return nullptr;
|
|
|
|
// Early exit for the common case of a phi with two operands. These are
|
|
// handled elsewhere. See the comment below where we check the count of zexts
|
|
// and constants for more details.
|
|
unsigned NumIncomingValues = Phi.getNumIncomingValues();
|
|
if (NumIncomingValues < 3)
|
|
return nullptr;
|
|
|
|
// Find the narrower type specified by the first zext.
|
|
Type *NarrowType = nullptr;
|
|
for (Value *V : Phi.incoming_values()) {
|
|
if (auto *Zext = dyn_cast<ZExtInst>(V)) {
|
|
NarrowType = Zext->getSrcTy();
|
|
break;
|
|
}
|
|
}
|
|
if (!NarrowType)
|
|
return nullptr;
|
|
|
|
// Walk the phi operands checking that we only have zexts or constants that
|
|
// we can shrink for free. Store the new operands for the new phi.
|
|
SmallVector<Value *, 4> NewIncoming;
|
|
unsigned NumZexts = 0;
|
|
unsigned NumConsts = 0;
|
|
for (Value *V : Phi.incoming_values()) {
|
|
if (auto *Zext = dyn_cast<ZExtInst>(V)) {
|
|
// All zexts must be identical and have one user.
|
|
if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
|
|
return nullptr;
|
|
NewIncoming.push_back(Zext->getOperand(0));
|
|
NumZexts++;
|
|
} else if (auto *C = dyn_cast<Constant>(V)) {
|
|
// Make sure that constants can fit in the new type.
|
|
Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
|
|
if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
|
|
return nullptr;
|
|
NewIncoming.push_back(Trunc);
|
|
NumConsts++;
|
|
} else {
|
|
// If it's not a cast or a constant, bail out.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// The more common cases of a phi with no constant operands or just one
|
|
// variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
|
|
// respectively. foldOpIntoPhi() wants to do the opposite transform that is
|
|
// performed here. It tries to replicate a cast in the phi operand's basic
|
|
// block to expose other folding opportunities. Thus, InstCombine will
|
|
// infinite loop without this check.
|
|
if (NumConsts == 0 || NumZexts < 2)
|
|
return nullptr;
|
|
|
|
// All incoming values are zexts or constants that are safe to truncate.
|
|
// Create a new phi node of the narrow type, phi together all of the new
|
|
// operands, and zext the result back to the original type.
|
|
PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
|
|
Phi.getName() + ".shrunk");
|
|
for (unsigned I = 0; I != NumIncomingValues; ++I)
|
|
NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
|
|
|
|
InsertNewInstBefore(NewPhi, Phi);
|
|
return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
|
|
}
|
|
|
|
/// If all operands to a PHI node are the same "unary" operator and they all are
|
|
/// only used by the PHI, PHI together their inputs, and do the operation once,
|
|
/// to the result of the PHI.
|
|
Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
|
|
// We cannot create a new instruction after the PHI if the terminator is an
|
|
// EHPad because there is no valid insertion point.
|
|
if (Instruction *TI = PN.getParent()->getTerminator())
|
|
if (TI->isEHPad())
|
|
return nullptr;
|
|
|
|
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
|
|
|
|
if (isa<GetElementPtrInst>(FirstInst))
|
|
return foldPHIArgGEPIntoPHI(PN);
|
|
if (isa<LoadInst>(FirstInst))
|
|
return foldPHIArgLoadIntoPHI(PN);
|
|
if (isa<InsertValueInst>(FirstInst))
|
|
return foldPHIArgInsertValueInstructionIntoPHI(PN);
|
|
if (isa<ExtractValueInst>(FirstInst))
|
|
return foldPHIArgExtractValueInstructionIntoPHI(PN);
|
|
|
|
// Scan the instruction, looking for input operations that can be folded away.
|
|
// If all input operands to the phi are the same instruction (e.g. a cast from
|
|
// the same type or "+42") we can pull the operation through the PHI, reducing
|
|
// code size and simplifying code.
|
|
Constant *ConstantOp = nullptr;
|
|
Type *CastSrcTy = nullptr;
|
|
|
|
if (isa<CastInst>(FirstInst)) {
|
|
CastSrcTy = FirstInst->getOperand(0)->getType();
|
|
|
|
// Be careful about transforming integer PHIs. We don't want to pessimize
|
|
// the code by turning an i32 into an i1293.
|
|
if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
|
|
if (!shouldChangeType(PN.getType(), CastSrcTy))
|
|
return nullptr;
|
|
}
|
|
} else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
|
|
// Can fold binop, compare or shift here if the RHS is a constant,
|
|
// otherwise call FoldPHIArgBinOpIntoPHI.
|
|
ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
|
|
if (!ConstantOp)
|
|
return foldPHIArgBinOpIntoPHI(PN);
|
|
} else {
|
|
return nullptr; // Cannot fold this operation.
|
|
}
|
|
|
|
// Check to see if all arguments are the same operation.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
|
|
return nullptr;
|
|
if (CastSrcTy) {
|
|
if (I->getOperand(0)->getType() != CastSrcTy)
|
|
return nullptr; // Cast operation must match.
|
|
} else if (I->getOperand(1) != ConstantOp) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Okay, they are all the same operation. Create a new PHI node of the
|
|
// correct type, and PHI together all of the LHS's of the instructions.
|
|
PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
|
|
PN.getNumIncomingValues(),
|
|
PN.getName()+".in");
|
|
|
|
Value *InVal = FirstInst->getOperand(0);
|
|
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
|
|
|
|
// Add all operands to the new PHI.
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *V = std::get<1>(Incoming);
|
|
Value *NewInVal = cast<Instruction>(V)->getOperand(0);
|
|
if (NewInVal != InVal)
|
|
InVal = nullptr;
|
|
NewPN->addIncoming(NewInVal, BB);
|
|
}
|
|
|
|
Value *PhiVal;
|
|
if (InVal) {
|
|
// The new PHI unions all of the same values together. This is really
|
|
// common, so we handle it intelligently here for compile-time speed.
|
|
PhiVal = InVal;
|
|
delete NewPN;
|
|
} else {
|
|
InsertNewInstBefore(NewPN, PN);
|
|
PhiVal = NewPN;
|
|
}
|
|
|
|
// Insert and return the new operation.
|
|
if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
|
|
CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
|
|
PN.getType());
|
|
PHIArgMergedDebugLoc(NewCI, PN);
|
|
return NewCI;
|
|
}
|
|
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
|
|
BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
|
|
BinOp->copyIRFlags(PN.getIncomingValue(0));
|
|
|
|
for (Value *V : drop_begin(PN.incoming_values()))
|
|
BinOp->andIRFlags(V);
|
|
|
|
PHIArgMergedDebugLoc(BinOp, PN);
|
|
return BinOp;
|
|
}
|
|
|
|
CmpInst *CIOp = cast<CmpInst>(FirstInst);
|
|
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
|
|
PhiVal, ConstantOp);
|
|
PHIArgMergedDebugLoc(NewCI, PN);
|
|
return NewCI;
|
|
}
|
|
|
|
/// Return true if this PHI node is only used by a PHI node cycle that is dead.
|
|
static bool isDeadPHICycle(PHINode *PN,
|
|
SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) {
|
|
if (PN->use_empty()) return true;
|
|
if (!PN->hasOneUse()) return false;
|
|
|
|
// Remember this node, and if we find the cycle, return.
|
|
if (!PotentiallyDeadPHIs.insert(PN).second)
|
|
return true;
|
|
|
|
// Don't scan crazily complex things.
|
|
if (PotentiallyDeadPHIs.size() == 16)
|
|
return false;
|
|
|
|
if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
|
|
return isDeadPHICycle(PU, PotentiallyDeadPHIs);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return true if this phi node is always equal to NonPhiInVal.
|
|
/// This happens with mutually cyclic phi nodes like:
|
|
/// z = some value; x = phi (y, z); y = phi (x, z)
|
|
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
|
|
SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
|
|
// See if we already saw this PHI node.
|
|
if (!ValueEqualPHIs.insert(PN).second)
|
|
return true;
|
|
|
|
// Don't scan crazily complex things.
|
|
if (ValueEqualPHIs.size() == 16)
|
|
return false;
|
|
|
|
// Scan the operands to see if they are either phi nodes or are equal to
|
|
// the value.
|
|
for (Value *Op : PN->incoming_values()) {
|
|
if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
|
|
if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
|
|
return false;
|
|
} else if (Op != NonPhiInVal)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return an existing non-zero constant if this phi node has one, otherwise
|
|
/// return constant 1.
|
|
static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
|
|
assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
|
|
for (Value *V : PN.operands())
|
|
if (auto *ConstVA = dyn_cast<ConstantInt>(V))
|
|
if (!ConstVA->isZero())
|
|
return ConstVA;
|
|
return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
|
|
}
|
|
|
|
namespace {
|
|
struct PHIUsageRecord {
|
|
unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
|
|
unsigned Shift; // The amount shifted.
|
|
Instruction *Inst; // The trunc instruction.
|
|
|
|
PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
|
|
: PHIId(Pn), Shift(Sh), Inst(User) {}
|
|
|
|
bool operator<(const PHIUsageRecord &RHS) const {
|
|
if (PHIId < RHS.PHIId) return true;
|
|
if (PHIId > RHS.PHIId) return false;
|
|
if (Shift < RHS.Shift) return true;
|
|
if (Shift > RHS.Shift) return false;
|
|
return Inst->getType()->getPrimitiveSizeInBits() <
|
|
RHS.Inst->getType()->getPrimitiveSizeInBits();
|
|
}
|
|
};
|
|
|
|
struct LoweredPHIRecord {
|
|
PHINode *PN; // The PHI that was lowered.
|
|
unsigned Shift; // The amount shifted.
|
|
unsigned Width; // The width extracted.
|
|
|
|
LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
|
|
: PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
|
|
|
|
// Ctor form used by DenseMap.
|
|
LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
|
|
};
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DenseMapInfo<LoweredPHIRecord> {
|
|
static inline LoweredPHIRecord getEmptyKey() {
|
|
return LoweredPHIRecord(nullptr, 0);
|
|
}
|
|
static inline LoweredPHIRecord getTombstoneKey() {
|
|
return LoweredPHIRecord(nullptr, 1);
|
|
}
|
|
static unsigned getHashValue(const LoweredPHIRecord &Val) {
|
|
return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
|
|
(Val.Width>>3);
|
|
}
|
|
static bool isEqual(const LoweredPHIRecord &LHS,
|
|
const LoweredPHIRecord &RHS) {
|
|
return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
|
|
LHS.Width == RHS.Width;
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
|
|
/// This is an integer PHI and we know that it has an illegal type: see if it is
|
|
/// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
|
|
/// the various pieces being extracted. This sort of thing is introduced when
|
|
/// SROA promotes an aggregate to large integer values.
|
|
///
|
|
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
|
|
/// inttoptr. We should produce new PHIs in the right type.
|
|
///
|
|
Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
|
|
// PHIUsers - Keep track of all of the truncated values extracted from a set
|
|
// of PHIs, along with their offset. These are the things we want to rewrite.
|
|
SmallVector<PHIUsageRecord, 16> PHIUsers;
|
|
|
|
// PHIs are often mutually cyclic, so we keep track of a whole set of PHI
|
|
// nodes which are extracted from. PHIsToSlice is a set we use to avoid
|
|
// revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
|
|
// check the uses of (to ensure they are all extracts).
|
|
SmallVector<PHINode*, 8> PHIsToSlice;
|
|
SmallPtrSet<PHINode*, 8> PHIsInspected;
|
|
|
|
PHIsToSlice.push_back(&FirstPhi);
|
|
PHIsInspected.insert(&FirstPhi);
|
|
|
|
for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
|
|
PHINode *PN = PHIsToSlice[PHIId];
|
|
|
|
// Scan the input list of the PHI. If any input is an invoke, and if the
|
|
// input is defined in the predecessor, then we won't be split the critical
|
|
// edge which is required to insert a truncate. Because of this, we have to
|
|
// bail out.
|
|
for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *V = std::get<1>(Incoming);
|
|
InvokeInst *II = dyn_cast<InvokeInst>(V);
|
|
if (!II)
|
|
continue;
|
|
if (II->getParent() != BB)
|
|
continue;
|
|
|
|
// If we have a phi, and if it's directly in the predecessor, then we have
|
|
// a critical edge where we need to put the truncate. Since we can't
|
|
// split the edge in instcombine, we have to bail out.
|
|
return nullptr;
|
|
}
|
|
|
|
// If the incoming value is a PHI node before a catchswitch, we cannot
|
|
// extract the value within that BB because we cannot insert any non-PHI
|
|
// instructions in the BB.
|
|
for (auto *Pred : PN->blocks())
|
|
if (Pred->getFirstInsertionPt() == Pred->end())
|
|
return nullptr;
|
|
|
|
for (User *U : PN->users()) {
|
|
Instruction *UserI = cast<Instruction>(U);
|
|
|
|
// If the user is a PHI, inspect its uses recursively.
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
|
|
if (PHIsInspected.insert(UserPN).second)
|
|
PHIsToSlice.push_back(UserPN);
|
|
continue;
|
|
}
|
|
|
|
// Truncates are always ok.
|
|
if (isa<TruncInst>(UserI)) {
|
|
PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
|
|
continue;
|
|
}
|
|
|
|
// Otherwise it must be a lshr which can only be used by one trunc.
|
|
if (UserI->getOpcode() != Instruction::LShr ||
|
|
!UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
|
|
!isa<ConstantInt>(UserI->getOperand(1)))
|
|
return nullptr;
|
|
|
|
// Bail on out of range shifts.
|
|
unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
|
|
if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
|
|
return nullptr;
|
|
|
|
unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
|
|
PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
|
|
}
|
|
}
|
|
|
|
// If we have no users, they must be all self uses, just nuke the PHI.
|
|
if (PHIUsers.empty())
|
|
return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
|
|
|
|
// If this phi node is transformable, create new PHIs for all the pieces
|
|
// extracted out of it. First, sort the users by their offset and size.
|
|
array_pod_sort(PHIUsers.begin(), PHIUsers.end());
|
|
|
|
LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
|
|
for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
|
|
<< "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
|
|
|
|
// PredValues - This is a temporary used when rewriting PHI nodes. It is
|
|
// hoisted out here to avoid construction/destruction thrashing.
|
|
DenseMap<BasicBlock*, Value*> PredValues;
|
|
|
|
// ExtractedVals - Each new PHI we introduce is saved here so we don't
|
|
// introduce redundant PHIs.
|
|
DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
|
|
|
|
for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
|
|
unsigned PHIId = PHIUsers[UserI].PHIId;
|
|
PHINode *PN = PHIsToSlice[PHIId];
|
|
unsigned Offset = PHIUsers[UserI].Shift;
|
|
Type *Ty = PHIUsers[UserI].Inst->getType();
|
|
|
|
PHINode *EltPHI;
|
|
|
|
// If we've already lowered a user like this, reuse the previously lowered
|
|
// value.
|
|
if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
|
|
|
|
// Otherwise, Create the new PHI node for this user.
|
|
EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
|
|
PN->getName()+".off"+Twine(Offset), PN);
|
|
assert(EltPHI->getType() != PN->getType() &&
|
|
"Truncate didn't shrink phi?");
|
|
|
|
for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
|
|
BasicBlock *Pred = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
Value *&PredVal = PredValues[Pred];
|
|
|
|
// If we already have a value for this predecessor, reuse it.
|
|
if (PredVal) {
|
|
EltPHI->addIncoming(PredVal, Pred);
|
|
continue;
|
|
}
|
|
|
|
// Handle the PHI self-reuse case.
|
|
if (InVal == PN) {
|
|
PredVal = EltPHI;
|
|
EltPHI->addIncoming(PredVal, Pred);
|
|
continue;
|
|
}
|
|
|
|
if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
|
|
// If the incoming value was a PHI, and if it was one of the PHIs we
|
|
// already rewrote it, just use the lowered value.
|
|
if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
|
|
PredVal = Res;
|
|
EltPHI->addIncoming(PredVal, Pred);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, do an extract in the predecessor.
|
|
Builder.SetInsertPoint(Pred->getTerminator());
|
|
Value *Res = InVal;
|
|
if (Offset)
|
|
Res = Builder.CreateLShr(
|
|
Res, ConstantInt::get(InVal->getType(), Offset), "extract");
|
|
Res = Builder.CreateTrunc(Res, Ty, "extract.t");
|
|
PredVal = Res;
|
|
EltPHI->addIncoming(Res, Pred);
|
|
|
|
// If the incoming value was a PHI, and if it was one of the PHIs we are
|
|
// rewriting, we will ultimately delete the code we inserted. This
|
|
// means we need to revisit that PHI to make sure we extract out the
|
|
// needed piece.
|
|
if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
|
|
if (PHIsInspected.count(OldInVal)) {
|
|
unsigned RefPHIId =
|
|
find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
|
|
PHIUsers.push_back(
|
|
PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
|
|
++UserE;
|
|
}
|
|
}
|
|
PredValues.clear();
|
|
|
|
LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
|
|
<< *EltPHI << '\n');
|
|
ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
|
|
}
|
|
|
|
// Replace the use of this piece with the PHI node.
|
|
replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
|
|
}
|
|
|
|
// Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
|
|
// with poison.
|
|
Value *Poison = PoisonValue::get(FirstPhi.getType());
|
|
for (PHINode *PHI : drop_begin(PHIsToSlice))
|
|
replaceInstUsesWith(*PHI, Poison);
|
|
return replaceInstUsesWith(FirstPhi, Poison);
|
|
}
|
|
|
|
static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
|
|
const DominatorTree &DT) {
|
|
// Simplify the following patterns:
|
|
// if (cond)
|
|
// / \
|
|
// ... ...
|
|
// \ /
|
|
// phi [true] [false]
|
|
// and
|
|
// switch (cond)
|
|
// case v1: / \ case v2:
|
|
// ... ...
|
|
// \ /
|
|
// phi [v1] [v2]
|
|
// Make sure all inputs are constants.
|
|
if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
|
|
return nullptr;
|
|
|
|
BasicBlock *BB = PN.getParent();
|
|
// Do not bother with unreachable instructions.
|
|
if (!DT.isReachableFromEntry(BB))
|
|
return nullptr;
|
|
|
|
// Determine which value the condition of the idom has for which successor.
|
|
LLVMContext &Context = PN.getContext();
|
|
auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
|
|
Value *Cond;
|
|
SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
|
|
SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
|
|
auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
|
|
SuccForValue[C] = Succ;
|
|
++SuccCount[Succ];
|
|
};
|
|
if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
|
|
if (BI->isUnconditional())
|
|
return nullptr;
|
|
|
|
Cond = BI->getCondition();
|
|
AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
|
|
AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
|
|
} else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
|
|
Cond = SI->getCondition();
|
|
++SuccCount[SI->getDefaultDest()];
|
|
for (auto Case : SI->cases())
|
|
AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
if (Cond->getType() != PN.getType())
|
|
return nullptr;
|
|
|
|
// Check that edges outgoing from the idom's terminators dominate respective
|
|
// inputs of the Phi.
|
|
std::optional<bool> Invert;
|
|
for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
|
|
auto *Input = cast<ConstantInt>(std::get<0>(Pair));
|
|
BasicBlock *Pred = std::get<1>(Pair);
|
|
auto IsCorrectInput = [&](ConstantInt *Input) {
|
|
// The input needs to be dominated by the corresponding edge of the idom.
|
|
// This edge cannot be a multi-edge, as that would imply that multiple
|
|
// different condition values follow the same edge.
|
|
auto It = SuccForValue.find(Input);
|
|
return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
|
|
DT.dominates(BasicBlockEdge(IDom, It->second),
|
|
BasicBlockEdge(Pred, BB));
|
|
};
|
|
|
|
// Depending on the constant, the condition may need to be inverted.
|
|
bool NeedsInvert;
|
|
if (IsCorrectInput(Input))
|
|
NeedsInvert = false;
|
|
else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
|
|
NeedsInvert = true;
|
|
else
|
|
return nullptr;
|
|
|
|
// Make sure the inversion requirement is always the same.
|
|
if (Invert && *Invert != NeedsInvert)
|
|
return nullptr;
|
|
|
|
Invert = NeedsInvert;
|
|
}
|
|
|
|
if (!*Invert)
|
|
return Cond;
|
|
|
|
// This Phi is actually opposite to branching condition of IDom. We invert
|
|
// the condition that will potentially open up some opportunities for
|
|
// sinking.
|
|
auto InsertPt = BB->getFirstInsertionPt();
|
|
if (InsertPt != BB->end()) {
|
|
Self.Builder.SetInsertPoint(&*InsertPt);
|
|
return Self.Builder.CreateNot(Cond);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// PHINode simplification
|
|
//
|
|
Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
|
|
if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
|
|
return replaceInstUsesWith(PN, V);
|
|
|
|
if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
|
|
return Result;
|
|
|
|
if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
|
|
return Result;
|
|
|
|
// If all PHI operands are the same operation, pull them through the PHI,
|
|
// reducing code size.
|
|
auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
|
|
auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
|
|
if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
|
|
Inst0->hasOneUser())
|
|
if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
|
|
return Result;
|
|
|
|
// If the incoming values are pointer casts of the same original value,
|
|
// replace the phi with a single cast iff we can insert a non-PHI instruction.
|
|
if (PN.getType()->isPointerTy() &&
|
|
PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
|
|
Value *IV0 = PN.getIncomingValue(0);
|
|
Value *IV0Stripped = IV0->stripPointerCasts();
|
|
// Set to keep track of values known to be equal to IV0Stripped after
|
|
// stripping pointer casts.
|
|
SmallPtrSet<Value *, 4> CheckedIVs;
|
|
CheckedIVs.insert(IV0);
|
|
if (IV0 != IV0Stripped &&
|
|
all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
|
|
return !CheckedIVs.insert(IV).second ||
|
|
IV0Stripped == IV->stripPointerCasts();
|
|
})) {
|
|
return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
|
|
}
|
|
}
|
|
|
|
// If this is a trivial cycle in the PHI node graph, remove it. Basically, if
|
|
// this PHI only has a single use (a PHI), and if that PHI only has one use (a
|
|
// PHI)... break the cycle.
|
|
if (PN.hasOneUse()) {
|
|
if (foldIntegerTypedPHI(PN))
|
|
return nullptr;
|
|
|
|
Instruction *PHIUser = cast<Instruction>(PN.user_back());
|
|
if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
|
|
SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
|
|
PotentiallyDeadPHIs.insert(&PN);
|
|
if (isDeadPHICycle(PU, PotentiallyDeadPHIs))
|
|
return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
|
|
}
|
|
|
|
// If this phi has a single use, and if that use just computes a value for
|
|
// the next iteration of a loop, delete the phi. This occurs with unused
|
|
// induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
|
|
// common case here is good because the only other things that catch this
|
|
// are induction variable analysis (sometimes) and ADCE, which is only run
|
|
// late.
|
|
if (PHIUser->hasOneUse() &&
|
|
(isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
|
|
PHIUser->user_back() == &PN) {
|
|
return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
|
|
}
|
|
// When a PHI is used only to be compared with zero, it is safe to replace
|
|
// an incoming value proved as known nonzero with any non-zero constant.
|
|
// For example, in the code below, the incoming value %v can be replaced
|
|
// with any non-zero constant based on the fact that the PHI is only used to
|
|
// be compared with zero and %v is a known non-zero value:
|
|
// %v = select %cond, 1, 2
|
|
// %p = phi [%v, BB] ...
|
|
// icmp eq, %p, 0
|
|
auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
|
|
// FIXME: To be simple, handle only integer type for now.
|
|
if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
|
|
match(CmpInst->getOperand(1), m_Zero())) {
|
|
ConstantInt *NonZeroConst = nullptr;
|
|
bool MadeChange = false;
|
|
for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
|
|
Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
|
|
Value *VA = PN.getIncomingValue(I);
|
|
if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
|
|
if (!NonZeroConst)
|
|
NonZeroConst = getAnyNonZeroConstInt(PN);
|
|
|
|
if (NonZeroConst != VA) {
|
|
replaceOperand(PN, I, NonZeroConst);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
if (MadeChange)
|
|
return &PN;
|
|
}
|
|
}
|
|
|
|
// We sometimes end up with phi cycles that non-obviously end up being the
|
|
// same value, for example:
|
|
// z = some value; x = phi (y, z); y = phi (x, z)
|
|
// where the phi nodes don't necessarily need to be in the same block. Do a
|
|
// quick check to see if the PHI node only contains a single non-phi value, if
|
|
// so, scan to see if the phi cycle is actually equal to that value.
|
|
{
|
|
unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
|
|
// Scan for the first non-phi operand.
|
|
while (InValNo != NumIncomingVals &&
|
|
isa<PHINode>(PN.getIncomingValue(InValNo)))
|
|
++InValNo;
|
|
|
|
if (InValNo != NumIncomingVals) {
|
|
Value *NonPhiInVal = PN.getIncomingValue(InValNo);
|
|
|
|
// Scan the rest of the operands to see if there are any conflicts, if so
|
|
// there is no need to recursively scan other phis.
|
|
for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
|
|
Value *OpVal = PN.getIncomingValue(InValNo);
|
|
if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
|
|
break;
|
|
}
|
|
|
|
// If we scanned over all operands, then we have one unique value plus
|
|
// phi values. Scan PHI nodes to see if they all merge in each other or
|
|
// the value.
|
|
if (InValNo == NumIncomingVals) {
|
|
SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
|
|
if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
|
|
return replaceInstUsesWith(PN, NonPhiInVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are multiple PHIs, sort their operands so that they all list
|
|
// the blocks in the same order. This will help identical PHIs be eliminated
|
|
// by other passes. Other passes shouldn't depend on this for correctness
|
|
// however.
|
|
PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
|
|
if (&PN != FirstPN)
|
|
for (unsigned I = 0, E = FirstPN->getNumIncomingValues(); I != E; ++I) {
|
|
BasicBlock *BBA = PN.getIncomingBlock(I);
|
|
BasicBlock *BBB = FirstPN->getIncomingBlock(I);
|
|
if (BBA != BBB) {
|
|
Value *VA = PN.getIncomingValue(I);
|
|
unsigned J = PN.getBasicBlockIndex(BBB);
|
|
Value *VB = PN.getIncomingValue(J);
|
|
PN.setIncomingBlock(I, BBB);
|
|
PN.setIncomingValue(I, VB);
|
|
PN.setIncomingBlock(J, BBA);
|
|
PN.setIncomingValue(J, VA);
|
|
// NOTE: Instcombine normally would want us to "return &PN" if we
|
|
// modified any of the operands of an instruction. However, since we
|
|
// aren't adding or removing uses (just rearranging them) we don't do
|
|
// this in this case.
|
|
}
|
|
}
|
|
|
|
// Is there an identical PHI node in this basic block?
|
|
for (PHINode &IdenticalPN : PN.getParent()->phis()) {
|
|
// Ignore the PHI node itself.
|
|
if (&IdenticalPN == &PN)
|
|
continue;
|
|
// Note that even though we've just canonicalized this PHI, due to the
|
|
// worklist visitation order, there are no guarantess that *every* PHI
|
|
// has been canonicalized, so we can't just compare operands ranges.
|
|
if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
|
|
continue;
|
|
// Just use that PHI instead then.
|
|
++NumPHICSEs;
|
|
return replaceInstUsesWith(PN, &IdenticalPN);
|
|
}
|
|
|
|
// If this is an integer PHI and we know that it has an illegal type, see if
|
|
// it is only used by trunc or trunc(lshr) operations. If so, we split the
|
|
// PHI into the various pieces being extracted. This sort of thing is
|
|
// introduced when SROA promotes an aggregate to a single large integer type.
|
|
if (PN.getType()->isIntegerTy() &&
|
|
!DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
|
|
if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
|
|
return Res;
|
|
|
|
// Ultimately, try to replace this Phi with a dominating condition.
|
|
if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
|
|
return replaceInstUsesWith(PN, V);
|
|
|
|
return nullptr;
|
|
}
|