llvm-project/clang/lib/Basic/Module.cpp
Jan Svoboda c3efd52770 [clang][modules] Disallow importing private framework in the implementation
Whenever we are compiling implementation of a framework (with the `-fmodule-name=FW` option), we never translate `#import <FW/Header.h>` to an import, regardless of whether "Header.h" belongs to "FW" or "FW_Private". For the same reasons, we also disallow `@import FW`. However, we still allow `@import FW_Private`. This patch disallows that a well, to be consistent with the rest of the rules.

Reviewed By: benlangmuir

Differential Revision: https://reviews.llvm.org/D142167
2023-01-20 13:37:36 -08:00

715 lines
22 KiB
C++

//===- Module.cpp - Describe a module -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Module class, which describes a module in the source
// code.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Module.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <string>
#include <utility>
#include <vector>
using namespace clang;
Module::Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent,
bool IsFramework, bool IsExplicit, unsigned VisibilityID)
: Name(Name), DefinitionLoc(DefinitionLoc), Parent(Parent),
VisibilityID(VisibilityID), IsUnimportable(false),
HasIncompatibleModuleFile(false), IsAvailable(true),
IsFromModuleFile(false), IsFramework(IsFramework), IsExplicit(IsExplicit),
IsSystem(false), IsExternC(false), IsInferred(false),
InferSubmodules(false), InferExplicitSubmodules(false),
InferExportWildcard(false), ConfigMacrosExhaustive(false),
NoUndeclaredIncludes(false), ModuleMapIsPrivate(false),
NameVisibility(Hidden) {
if (Parent) {
IsAvailable = Parent->isAvailable();
IsUnimportable = Parent->isUnimportable();
IsSystem = Parent->IsSystem;
IsExternC = Parent->IsExternC;
NoUndeclaredIncludes = Parent->NoUndeclaredIncludes;
ModuleMapIsPrivate = Parent->ModuleMapIsPrivate;
Parent->SubModuleIndex[Name] = Parent->SubModules.size();
Parent->SubModules.push_back(this);
}
}
Module::~Module() {
for (submodule_iterator I = submodule_begin(), IEnd = submodule_end();
I != IEnd; ++I) {
delete *I;
}
}
static bool isPlatformEnvironment(const TargetInfo &Target, StringRef Feature) {
StringRef Platform = Target.getPlatformName();
StringRef Env = Target.getTriple().getEnvironmentName();
// Attempt to match platform and environment.
if (Platform == Feature || Target.getTriple().getOSName() == Feature ||
Env == Feature)
return true;
auto CmpPlatformEnv = [](StringRef LHS, StringRef RHS) {
auto Pos = LHS.find('-');
if (Pos == StringRef::npos)
return false;
SmallString<128> NewLHS = LHS.slice(0, Pos);
NewLHS += LHS.slice(Pos+1, LHS.size());
return NewLHS == RHS;
};
SmallString<128> PlatformEnv = Target.getTriple().getOSAndEnvironmentName();
// Darwin has different but equivalent variants for simulators, example:
// 1. x86_64-apple-ios-simulator
// 2. x86_64-apple-iossimulator
// where both are valid examples of the same platform+environment but in the
// variant (2) the simulator is hardcoded as part of the platform name. Both
// forms above should match for "iossimulator" requirement.
if (Target.getTriple().isOSDarwin() && PlatformEnv.endswith("simulator"))
return PlatformEnv == Feature || CmpPlatformEnv(PlatformEnv, Feature);
return PlatformEnv == Feature;
}
/// Determine whether a translation unit built using the current
/// language options has the given feature.
static bool hasFeature(StringRef Feature, const LangOptions &LangOpts,
const TargetInfo &Target) {
bool HasFeature = llvm::StringSwitch<bool>(Feature)
.Case("altivec", LangOpts.AltiVec)
.Case("blocks", LangOpts.Blocks)
.Case("coroutines", LangOpts.Coroutines)
.Case("cplusplus", LangOpts.CPlusPlus)
.Case("cplusplus11", LangOpts.CPlusPlus11)
.Case("cplusplus14", LangOpts.CPlusPlus14)
.Case("cplusplus17", LangOpts.CPlusPlus17)
.Case("c99", LangOpts.C99)
.Case("c11", LangOpts.C11)
.Case("c17", LangOpts.C17)
.Case("freestanding", LangOpts.Freestanding)
.Case("gnuinlineasm", LangOpts.GNUAsm)
.Case("objc", LangOpts.ObjC)
.Case("objc_arc", LangOpts.ObjCAutoRefCount)
.Case("opencl", LangOpts.OpenCL)
.Case("tls", Target.isTLSSupported())
.Case("zvector", LangOpts.ZVector)
.Default(Target.hasFeature(Feature) ||
isPlatformEnvironment(Target, Feature));
if (!HasFeature)
HasFeature = llvm::is_contained(LangOpts.ModuleFeatures, Feature);
return HasFeature;
}
bool Module::isUnimportable(const LangOptions &LangOpts,
const TargetInfo &Target, Requirement &Req,
Module *&ShadowingModule) const {
if (!IsUnimportable)
return false;
for (const Module *Current = this; Current; Current = Current->Parent) {
if (Current->ShadowingModule) {
ShadowingModule = Current->ShadowingModule;
return true;
}
for (unsigned I = 0, N = Current->Requirements.size(); I != N; ++I) {
if (hasFeature(Current->Requirements[I].first, LangOpts, Target) !=
Current->Requirements[I].second) {
Req = Current->Requirements[I];
return true;
}
}
}
llvm_unreachable("could not find a reason why module is unimportable");
}
// The -fmodule-name option tells the compiler to textually include headers in
// the specified module, meaning Clang won't build the specified module. This
// is useful in a number of situations, for instance, when building a library
// that vends a module map, one might want to avoid hitting intermediate build
// products containing the module map or avoid finding the system installed
// modulemap for that library.
bool Module::isForBuilding(const LangOptions &LangOpts) const {
StringRef TopLevelName = getTopLevelModuleName();
StringRef CurrentModule = LangOpts.CurrentModule;
// When building framework Foo, we want to make sure that Foo *and*
// Foo_Private are textually included and no modules are built for both.
if (getTopLevelModule()->IsFramework &&
CurrentModule == LangOpts.ModuleName &&
!CurrentModule.endswith("_Private") && TopLevelName.endswith("_Private"))
TopLevelName = TopLevelName.drop_back(8);
return TopLevelName == CurrentModule;
}
bool Module::isAvailable(const LangOptions &LangOpts, const TargetInfo &Target,
Requirement &Req,
UnresolvedHeaderDirective &MissingHeader,
Module *&ShadowingModule) const {
if (IsAvailable)
return true;
if (isUnimportable(LangOpts, Target, Req, ShadowingModule))
return false;
// FIXME: All missing headers are listed on the top-level module. Should we
// just look there?
for (const Module *Current = this; Current; Current = Current->Parent) {
if (!Current->MissingHeaders.empty()) {
MissingHeader = Current->MissingHeaders.front();
return false;
}
}
llvm_unreachable("could not find a reason why module is unavailable");
}
bool Module::isSubModuleOf(const Module *Other) const {
for (auto *Parent = this; Parent; Parent = Parent->Parent) {
if (Parent == Other)
return true;
}
return false;
}
const Module *Module::getTopLevelModule() const {
const Module *Result = this;
while (Result->Parent)
Result = Result->Parent;
return Result;
}
static StringRef getModuleNameFromComponent(
const std::pair<std::string, SourceLocation> &IdComponent) {
return IdComponent.first;
}
static StringRef getModuleNameFromComponent(StringRef R) { return R; }
template<typename InputIter>
static void printModuleId(raw_ostream &OS, InputIter Begin, InputIter End,
bool AllowStringLiterals = true) {
for (InputIter It = Begin; It != End; ++It) {
if (It != Begin)
OS << ".";
StringRef Name = getModuleNameFromComponent(*It);
if (!AllowStringLiterals || isValidAsciiIdentifier(Name))
OS << Name;
else {
OS << '"';
OS.write_escaped(Name);
OS << '"';
}
}
}
template<typename Container>
static void printModuleId(raw_ostream &OS, const Container &C) {
return printModuleId(OS, C.begin(), C.end());
}
std::string Module::getFullModuleName(bool AllowStringLiterals) const {
SmallVector<StringRef, 2> Names;
// Build up the set of module names (from innermost to outermost).
for (const Module *M = this; M; M = M->Parent)
Names.push_back(M->Name);
std::string Result;
llvm::raw_string_ostream Out(Result);
printModuleId(Out, Names.rbegin(), Names.rend(), AllowStringLiterals);
Out.flush();
return Result;
}
bool Module::fullModuleNameIs(ArrayRef<StringRef> nameParts) const {
for (const Module *M = this; M; M = M->Parent) {
if (nameParts.empty() || M->Name != nameParts.back())
return false;
nameParts = nameParts.drop_back();
}
return nameParts.empty();
}
Module::DirectoryName Module::getUmbrellaDir() const {
if (Header U = getUmbrellaHeader())
return {"", "", U.Entry->getDir()};
return {UmbrellaAsWritten, UmbrellaRelativeToRootModuleDirectory,
Umbrella.dyn_cast<const DirectoryEntry *>()};
}
void Module::addTopHeader(const FileEntry *File) {
assert(File);
TopHeaders.insert(File);
}
ArrayRef<const FileEntry *> Module::getTopHeaders(FileManager &FileMgr) {
if (!TopHeaderNames.empty()) {
for (std::vector<std::string>::iterator
I = TopHeaderNames.begin(), E = TopHeaderNames.end(); I != E; ++I) {
if (auto FE = FileMgr.getFile(*I))
TopHeaders.insert(*FE);
}
TopHeaderNames.clear();
}
return llvm::ArrayRef(TopHeaders.begin(), TopHeaders.end());
}
bool Module::directlyUses(const Module *Requested) {
auto *Top = getTopLevelModule();
// A top-level module implicitly uses itself.
if (Requested->isSubModuleOf(Top))
return true;
for (auto *Use : Top->DirectUses)
if (Requested->isSubModuleOf(Use))
return true;
// Anyone is allowed to use our builtin stddef.h and its accompanying module.
if (!Requested->Parent && Requested->Name == "_Builtin_stddef_max_align_t")
return true;
if (NoUndeclaredIncludes)
UndeclaredUses.insert(Requested);
return false;
}
void Module::addRequirement(StringRef Feature, bool RequiredState,
const LangOptions &LangOpts,
const TargetInfo &Target) {
Requirements.push_back(Requirement(std::string(Feature), RequiredState));
// If this feature is currently available, we're done.
if (hasFeature(Feature, LangOpts, Target) == RequiredState)
return;
markUnavailable(/*Unimportable*/true);
}
void Module::markUnavailable(bool Unimportable) {
auto needUpdate = [Unimportable](Module *M) {
return M->IsAvailable || (!M->IsUnimportable && Unimportable);
};
if (!needUpdate(this))
return;
SmallVector<Module *, 2> Stack;
Stack.push_back(this);
while (!Stack.empty()) {
Module *Current = Stack.back();
Stack.pop_back();
if (!needUpdate(Current))
continue;
Current->IsAvailable = false;
Current->IsUnimportable |= Unimportable;
for (submodule_iterator Sub = Current->submodule_begin(),
SubEnd = Current->submodule_end();
Sub != SubEnd; ++Sub) {
if (needUpdate(*Sub))
Stack.push_back(*Sub);
}
}
}
Module *Module::findSubmodule(StringRef Name) const {
llvm::StringMap<unsigned>::const_iterator Pos = SubModuleIndex.find(Name);
if (Pos == SubModuleIndex.end())
return nullptr;
return SubModules[Pos->getValue()];
}
Module *Module::findOrInferSubmodule(StringRef Name) {
llvm::StringMap<unsigned>::const_iterator Pos = SubModuleIndex.find(Name);
if (Pos != SubModuleIndex.end())
return SubModules[Pos->getValue()];
if (!InferSubmodules)
return nullptr;
Module *Result = new Module(Name, SourceLocation(), this, false, InferExplicitSubmodules, 0);
Result->InferExplicitSubmodules = InferExplicitSubmodules;
Result->InferSubmodules = InferSubmodules;
Result->InferExportWildcard = InferExportWildcard;
if (Result->InferExportWildcard)
Result->Exports.push_back(Module::ExportDecl(nullptr, true));
return Result;
}
void Module::getExportedModules(SmallVectorImpl<Module *> &Exported) const {
// All non-explicit submodules are exported.
for (std::vector<Module *>::const_iterator I = SubModules.begin(),
E = SubModules.end();
I != E; ++I) {
Module *Mod = *I;
if (!Mod->IsExplicit)
Exported.push_back(Mod);
}
// Find re-exported modules by filtering the list of imported modules.
bool AnyWildcard = false;
bool UnrestrictedWildcard = false;
SmallVector<Module *, 4> WildcardRestrictions;
for (unsigned I = 0, N = Exports.size(); I != N; ++I) {
Module *Mod = Exports[I].getPointer();
if (!Exports[I].getInt()) {
// Export a named module directly; no wildcards involved.
Exported.push_back(Mod);
continue;
}
// Wildcard export: export all of the imported modules that match
// the given pattern.
AnyWildcard = true;
if (UnrestrictedWildcard)
continue;
if (Module *Restriction = Exports[I].getPointer())
WildcardRestrictions.push_back(Restriction);
else {
WildcardRestrictions.clear();
UnrestrictedWildcard = true;
}
}
// If there were any wildcards, push any imported modules that were
// re-exported by the wildcard restriction.
if (!AnyWildcard)
return;
for (unsigned I = 0, N = Imports.size(); I != N; ++I) {
Module *Mod = Imports[I];
bool Acceptable = UnrestrictedWildcard;
if (!Acceptable) {
// Check whether this module meets one of the restrictions.
for (unsigned R = 0, NR = WildcardRestrictions.size(); R != NR; ++R) {
Module *Restriction = WildcardRestrictions[R];
if (Mod == Restriction || Mod->isSubModuleOf(Restriction)) {
Acceptable = true;
break;
}
}
}
if (!Acceptable)
continue;
Exported.push_back(Mod);
}
}
void Module::buildVisibleModulesCache() const {
assert(VisibleModulesCache.empty() && "cache does not need building");
// This module is visible to itself.
VisibleModulesCache.insert(this);
// Every imported module is visible.
SmallVector<Module *, 16> Stack(Imports.begin(), Imports.end());
while (!Stack.empty()) {
Module *CurrModule = Stack.pop_back_val();
// Every module transitively exported by an imported module is visible.
if (VisibleModulesCache.insert(CurrModule).second)
CurrModule->getExportedModules(Stack);
}
}
void Module::print(raw_ostream &OS, unsigned Indent, bool Dump) const {
OS.indent(Indent);
if (IsFramework)
OS << "framework ";
if (IsExplicit)
OS << "explicit ";
OS << "module ";
printModuleId(OS, &Name, &Name + 1);
if (IsSystem || IsExternC) {
OS.indent(Indent + 2);
if (IsSystem)
OS << " [system]";
if (IsExternC)
OS << " [extern_c]";
}
OS << " {\n";
if (!Requirements.empty()) {
OS.indent(Indent + 2);
OS << "requires ";
for (unsigned I = 0, N = Requirements.size(); I != N; ++I) {
if (I)
OS << ", ";
if (!Requirements[I].second)
OS << "!";
OS << Requirements[I].first;
}
OS << "\n";
}
if (Header H = getUmbrellaHeader()) {
OS.indent(Indent + 2);
OS << "umbrella header \"";
OS.write_escaped(H.NameAsWritten);
OS << "\"\n";
} else if (DirectoryName D = getUmbrellaDir()) {
OS.indent(Indent + 2);
OS << "umbrella \"";
OS.write_escaped(D.NameAsWritten);
OS << "\"\n";
}
if (!ConfigMacros.empty() || ConfigMacrosExhaustive) {
OS.indent(Indent + 2);
OS << "config_macros ";
if (ConfigMacrosExhaustive)
OS << "[exhaustive]";
for (unsigned I = 0, N = ConfigMacros.size(); I != N; ++I) {
if (I)
OS << ", ";
OS << ConfigMacros[I];
}
OS << "\n";
}
struct {
StringRef Prefix;
HeaderKind Kind;
} Kinds[] = {{"", HK_Normal},
{"textual ", HK_Textual},
{"private ", HK_Private},
{"private textual ", HK_PrivateTextual},
{"exclude ", HK_Excluded}};
for (auto &K : Kinds) {
assert(&K == &Kinds[K.Kind] && "kinds in wrong order");
for (auto &H : Headers[K.Kind]) {
OS.indent(Indent + 2);
OS << K.Prefix << "header \"";
OS.write_escaped(H.NameAsWritten);
OS << "\" { size " << H.Entry->getSize()
<< " mtime " << H.Entry->getModificationTime() << " }\n";
}
}
for (auto *Unresolved : {&UnresolvedHeaders, &MissingHeaders}) {
for (auto &U : *Unresolved) {
OS.indent(Indent + 2);
OS << Kinds[U.Kind].Prefix << "header \"";
OS.write_escaped(U.FileName);
OS << "\"";
if (U.Size || U.ModTime) {
OS << " {";
if (U.Size)
OS << " size " << *U.Size;
if (U.ModTime)
OS << " mtime " << *U.ModTime;
OS << " }";
}
OS << "\n";
}
}
if (!ExportAsModule.empty()) {
OS.indent(Indent + 2);
OS << "export_as" << ExportAsModule << "\n";
}
for (submodule_const_iterator MI = submodule_begin(), MIEnd = submodule_end();
MI != MIEnd; ++MI)
// Print inferred subframework modules so that we don't need to re-infer
// them (requires expensive directory iteration + stat calls) when we build
// the module. Regular inferred submodules are OK, as we need to look at all
// those header files anyway.
if (!(*MI)->IsInferred || (*MI)->IsFramework)
(*MI)->print(OS, Indent + 2, Dump);
for (unsigned I = 0, N = Exports.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "export ";
if (Module *Restriction = Exports[I].getPointer()) {
OS << Restriction->getFullModuleName(true);
if (Exports[I].getInt())
OS << ".*";
} else {
OS << "*";
}
OS << "\n";
}
for (unsigned I = 0, N = UnresolvedExports.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "export ";
printModuleId(OS, UnresolvedExports[I].Id);
if (UnresolvedExports[I].Wildcard)
OS << (UnresolvedExports[I].Id.empty() ? "*" : ".*");
OS << "\n";
}
if (Dump) {
for (Module *M : Imports) {
OS.indent(Indent + 2);
llvm::errs() << "import " << M->getFullModuleName() << "\n";
}
}
for (unsigned I = 0, N = DirectUses.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "use ";
OS << DirectUses[I]->getFullModuleName(true);
OS << "\n";
}
for (unsigned I = 0, N = UnresolvedDirectUses.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "use ";
printModuleId(OS, UnresolvedDirectUses[I]);
OS << "\n";
}
for (unsigned I = 0, N = LinkLibraries.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "link ";
if (LinkLibraries[I].IsFramework)
OS << "framework ";
OS << "\"";
OS.write_escaped(LinkLibraries[I].Library);
OS << "\"";
}
for (unsigned I = 0, N = UnresolvedConflicts.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "conflict ";
printModuleId(OS, UnresolvedConflicts[I].Id);
OS << ", \"";
OS.write_escaped(UnresolvedConflicts[I].Message);
OS << "\"\n";
}
for (unsigned I = 0, N = Conflicts.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "conflict ";
OS << Conflicts[I].Other->getFullModuleName(true);
OS << ", \"";
OS.write_escaped(Conflicts[I].Message);
OS << "\"\n";
}
if (InferSubmodules) {
OS.indent(Indent + 2);
if (InferExplicitSubmodules)
OS << "explicit ";
OS << "module * {\n";
if (InferExportWildcard) {
OS.indent(Indent + 4);
OS << "export *\n";
}
OS.indent(Indent + 2);
OS << "}\n";
}
OS.indent(Indent);
OS << "}\n";
}
LLVM_DUMP_METHOD void Module::dump() const {
print(llvm::errs(), 0, true);
}
void VisibleModuleSet::setVisible(Module *M, SourceLocation Loc,
VisibleCallback Vis, ConflictCallback Cb) {
// We can't import a global module fragment so the location can be invalid.
assert((M->isGlobalModule() || Loc.isValid()) &&
"setVisible expects a valid import location");
if (isVisible(M))
return;
++Generation;
struct Visiting {
Module *M;
Visiting *ExportedBy;
};
std::function<void(Visiting)> VisitModule = [&](Visiting V) {
// Nothing to do for a module that's already visible.
unsigned ID = V.M->getVisibilityID();
if (ImportLocs.size() <= ID)
ImportLocs.resize(ID + 1);
else if (ImportLocs[ID].isValid())
return;
ImportLocs[ID] = Loc;
Vis(V.M);
// Make any exported modules visible.
SmallVector<Module *, 16> Exports;
V.M->getExportedModules(Exports);
for (Module *E : Exports) {
// Don't import non-importable modules.
if (!E->isUnimportable())
VisitModule({E, &V});
}
for (auto &C : V.M->Conflicts) {
if (isVisible(C.Other)) {
llvm::SmallVector<Module*, 8> Path;
for (Visiting *I = &V; I; I = I->ExportedBy)
Path.push_back(I->M);
Cb(Path, C.Other, C.Message);
}
}
};
VisitModule({M, nullptr});
}
ASTSourceDescriptor::ASTSourceDescriptor(Module &M)
: Signature(M.Signature), ClangModule(&M) {
if (M.Directory)
Path = M.Directory->getName();
if (auto File = M.getASTFile())
ASTFile = File->getName();
}
std::string ASTSourceDescriptor::getModuleName() const {
if (ClangModule)
return ClangModule->Name;
else
return std::string(PCHModuleName);
}