tmp_kernel_5.15/fs/f2fs/xattr.c
2023-06-26 10:03:39 +08:00

827 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/xattr.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Portions of this code from linux/fs/ext2/xattr.c
*
* Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
*
* Fix by Harrison Xing <harrison@mountainviewdata.com>.
* Extended attributes for symlinks and special files added per
* suggestion of Luka Renko <luka.renko@hermes.si>.
* xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
* Red Hat Inc.
*/
#include <linux/rwsem.h>
#include <linux/f2fs_fs.h>
#include <linux/security.h>
#include <linux/posix_acl_xattr.h>
#include "f2fs.h"
#include "xattr.h"
#include "segment.h"
static void *xattr_alloc(struct f2fs_sb_info *sbi, int size, bool *is_inline)
{
if (likely(size == sbi->inline_xattr_slab_size)) {
*is_inline = true;
return f2fs_kmem_cache_alloc(sbi->inline_xattr_slab,
GFP_F2FS_ZERO, false, sbi);
}
*is_inline = false;
return f2fs_kzalloc(sbi, size, GFP_NOFS);
}
static void xattr_free(struct f2fs_sb_info *sbi, void *xattr_addr,
bool is_inline)
{
if (is_inline)
kmem_cache_free(sbi->inline_xattr_slab, xattr_addr);
else
kfree(xattr_addr);
}
static int f2fs_xattr_generic_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
switch (handler->flags) {
case F2FS_XATTR_INDEX_USER:
if (!test_opt(sbi, XATTR_USER))
return -EOPNOTSUPP;
break;
case F2FS_XATTR_INDEX_TRUSTED:
case F2FS_XATTR_INDEX_SECURITY:
break;
default:
return -EINVAL;
}
return f2fs_getxattr(inode, handler->flags, name,
buffer, size, NULL);
}
static int f2fs_xattr_generic_set(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
switch (handler->flags) {
case F2FS_XATTR_INDEX_USER:
if (!test_opt(sbi, XATTR_USER))
return -EOPNOTSUPP;
break;
case F2FS_XATTR_INDEX_TRUSTED:
case F2FS_XATTR_INDEX_SECURITY:
break;
default:
return -EINVAL;
}
return f2fs_setxattr(inode, handler->flags, name,
value, size, NULL, flags);
}
static bool f2fs_xattr_user_list(struct dentry *dentry)
{
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
return test_opt(sbi, XATTR_USER);
}
static bool f2fs_xattr_trusted_list(struct dentry *dentry)
{
return capable(CAP_SYS_ADMIN);
}
static int f2fs_xattr_advise_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
if (buffer)
*((char *)buffer) = F2FS_I(inode)->i_advise;
return sizeof(char);
}
static int f2fs_xattr_advise_set(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
unsigned char old_advise = F2FS_I(inode)->i_advise;
unsigned char new_advise;
if (!inode_owner_or_capable(&init_user_ns, inode))
return -EPERM;
if (value == NULL)
return -EINVAL;
new_advise = *(char *)value;
if (new_advise & ~FADVISE_MODIFIABLE_BITS)
return -EINVAL;
new_advise = new_advise & FADVISE_MODIFIABLE_BITS;
new_advise |= old_advise & ~FADVISE_MODIFIABLE_BITS;
F2FS_I(inode)->i_advise = new_advise;
f2fs_mark_inode_dirty_sync(inode, true);
return 0;
}
#ifdef CONFIG_F2FS_FS_SECURITY
static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
void *page)
{
const struct xattr *xattr;
int err = 0;
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY,
xattr->name, xattr->value,
xattr->value_len, (struct page *)page, 0);
if (err < 0)
break;
}
return err;
}
int f2fs_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr, struct page *ipage)
{
return security_inode_init_security(inode, dir, qstr,
&f2fs_initxattrs, ipage);
}
#endif
const struct xattr_handler f2fs_xattr_user_handler = {
.prefix = XATTR_USER_PREFIX,
.flags = F2FS_XATTR_INDEX_USER,
.list = f2fs_xattr_user_list,
.get = f2fs_xattr_generic_get,
.set = f2fs_xattr_generic_set,
};
const struct xattr_handler f2fs_xattr_trusted_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.flags = F2FS_XATTR_INDEX_TRUSTED,
.list = f2fs_xattr_trusted_list,
.get = f2fs_xattr_generic_get,
.set = f2fs_xattr_generic_set,
};
const struct xattr_handler f2fs_xattr_advise_handler = {
.name = F2FS_SYSTEM_ADVISE_NAME,
.flags = F2FS_XATTR_INDEX_ADVISE,
.get = f2fs_xattr_advise_get,
.set = f2fs_xattr_advise_set,
};
const struct xattr_handler f2fs_xattr_security_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.flags = F2FS_XATTR_INDEX_SECURITY,
.get = f2fs_xattr_generic_get,
.set = f2fs_xattr_generic_set,
};
static const struct xattr_handler *f2fs_xattr_handler_map[] = {
[F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
#ifdef CONFIG_F2FS_FS_POSIX_ACL
[F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler,
[F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler,
#endif
[F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
#ifdef CONFIG_F2FS_FS_SECURITY
[F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler,
#endif
[F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
};
const struct xattr_handler *f2fs_xattr_handlers[] = {
&f2fs_xattr_user_handler,
#ifdef CONFIG_F2FS_FS_POSIX_ACL
&posix_acl_access_xattr_handler,
&posix_acl_default_xattr_handler,
#endif
&f2fs_xattr_trusted_handler,
#ifdef CONFIG_F2FS_FS_SECURITY
&f2fs_xattr_security_handler,
#endif
&f2fs_xattr_advise_handler,
NULL,
};
static inline const struct xattr_handler *f2fs_xattr_handler(int index)
{
const struct xattr_handler *handler = NULL;
if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map))
handler = f2fs_xattr_handler_map[index];
return handler;
}
static struct f2fs_xattr_entry *__find_xattr(void *base_addr,
void *last_base_addr, int index,
size_t len, const char *name)
{
struct f2fs_xattr_entry *entry;
list_for_each_xattr(entry, base_addr) {
if ((void *)(entry) + sizeof(__u32) > last_base_addr ||
(void *)XATTR_NEXT_ENTRY(entry) > last_base_addr)
return NULL;
if (entry->e_name_index != index)
continue;
if (entry->e_name_len != len)
continue;
if (!memcmp(entry->e_name, name, len))
break;
}
return entry;
}
static struct f2fs_xattr_entry *__find_inline_xattr(struct inode *inode,
void *base_addr, void **last_addr, int index,
size_t len, const char *name)
{
struct f2fs_xattr_entry *entry;
unsigned int inline_size = inline_xattr_size(inode);
void *max_addr = base_addr + inline_size;
list_for_each_xattr(entry, base_addr) {
if ((void *)entry + sizeof(__u32) > max_addr ||
(void *)XATTR_NEXT_ENTRY(entry) > max_addr) {
*last_addr = entry;
return NULL;
}
if (entry->e_name_index != index)
continue;
if (entry->e_name_len != len)
continue;
if (!memcmp(entry->e_name, name, len))
break;
}
/* inline xattr header or entry across max inline xattr size */
if (IS_XATTR_LAST_ENTRY(entry) &&
(void *)entry + sizeof(__u32) > max_addr) {
*last_addr = entry;
return NULL;
}
return entry;
}
static int read_inline_xattr(struct inode *inode, struct page *ipage,
void *txattr_addr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int inline_size = inline_xattr_size(inode);
struct page *page = NULL;
void *inline_addr;
if (ipage) {
inline_addr = inline_xattr_addr(inode, ipage);
} else {
page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(page))
return PTR_ERR(page);
inline_addr = inline_xattr_addr(inode, page);
}
memcpy(txattr_addr, inline_addr, inline_size);
f2fs_put_page(page, 1);
return 0;
}
static int read_xattr_block(struct inode *inode, void *txattr_addr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
unsigned int inline_size = inline_xattr_size(inode);
struct page *xpage;
void *xattr_addr;
/* The inode already has an extended attribute block. */
xpage = f2fs_get_node_page(sbi, xnid);
if (IS_ERR(xpage))
return PTR_ERR(xpage);
xattr_addr = page_address(xpage);
memcpy(txattr_addr + inline_size, xattr_addr, VALID_XATTR_BLOCK_SIZE);
f2fs_put_page(xpage, 1);
return 0;
}
static int lookup_all_xattrs(struct inode *inode, struct page *ipage,
unsigned int index, unsigned int len,
const char *name, struct f2fs_xattr_entry **xe,
void **base_addr, int *base_size,
bool *is_inline)
{
void *cur_addr, *txattr_addr, *last_txattr_addr;
void *last_addr = NULL;
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
unsigned int inline_size = inline_xattr_size(inode);
int err;
if (!xnid && !inline_size)
return -ENODATA;
*base_size = XATTR_SIZE(inode) + XATTR_PADDING_SIZE;
txattr_addr = xattr_alloc(F2FS_I_SB(inode), *base_size, is_inline);
if (!txattr_addr)
return -ENOMEM;
last_txattr_addr = (void *)txattr_addr + XATTR_SIZE(inode);
/* read from inline xattr */
if (inline_size) {
err = read_inline_xattr(inode, ipage, txattr_addr);
if (err)
goto out;
*xe = __find_inline_xattr(inode, txattr_addr, &last_addr,
index, len, name);
if (*xe) {
*base_size = inline_size;
goto check;
}
}
/* read from xattr node block */
if (xnid) {
err = read_xattr_block(inode, txattr_addr);
if (err)
goto out;
}
if (last_addr)
cur_addr = XATTR_HDR(last_addr) - 1;
else
cur_addr = txattr_addr;
*xe = __find_xattr(cur_addr, last_txattr_addr, index, len, name);
if (!*xe) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr",
inode->i_ino);
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
err = -EFSCORRUPTED;
goto out;
}
check:
if (IS_XATTR_LAST_ENTRY(*xe)) {
err = -ENODATA;
goto out;
}
*base_addr = txattr_addr;
return 0;
out:
xattr_free(F2FS_I_SB(inode), txattr_addr, *is_inline);
return err;
}
static int read_all_xattrs(struct inode *inode, struct page *ipage,
void **base_addr)
{
struct f2fs_xattr_header *header;
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
unsigned int size = VALID_XATTR_BLOCK_SIZE;
unsigned int inline_size = inline_xattr_size(inode);
void *txattr_addr;
int err;
txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode),
inline_size + size + XATTR_PADDING_SIZE, GFP_NOFS);
if (!txattr_addr)
return -ENOMEM;
/* read from inline xattr */
if (inline_size) {
err = read_inline_xattr(inode, ipage, txattr_addr);
if (err)
goto fail;
}
/* read from xattr node block */
if (xnid) {
err = read_xattr_block(inode, txattr_addr);
if (err)
goto fail;
}
header = XATTR_HDR(txattr_addr);
/* never been allocated xattrs */
if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
header->h_refcount = cpu_to_le32(1);
}
*base_addr = txattr_addr;
return 0;
fail:
kfree(txattr_addr);
return err;
}
static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
void *txattr_addr, struct page *ipage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
size_t inline_size = inline_xattr_size(inode);
struct page *in_page = NULL;
void *xattr_addr;
void *inline_addr = NULL;
struct page *xpage;
nid_t new_nid = 0;
int err = 0;
if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
if (!f2fs_alloc_nid(sbi, &new_nid))
return -ENOSPC;
/* write to inline xattr */
if (inline_size) {
if (ipage) {
inline_addr = inline_xattr_addr(inode, ipage);
} else {
in_page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(in_page)) {
f2fs_alloc_nid_failed(sbi, new_nid);
return PTR_ERR(in_page);
}
inline_addr = inline_xattr_addr(inode, in_page);
}
f2fs_wait_on_page_writeback(ipage ? ipage : in_page,
NODE, true, true);
/* no need to use xattr node block */
if (hsize <= inline_size) {
err = f2fs_truncate_xattr_node(inode);
f2fs_alloc_nid_failed(sbi, new_nid);
if (err) {
f2fs_put_page(in_page, 1);
return err;
}
memcpy(inline_addr, txattr_addr, inline_size);
set_page_dirty(ipage ? ipage : in_page);
goto in_page_out;
}
}
/* write to xattr node block */
if (F2FS_I(inode)->i_xattr_nid) {
xpage = f2fs_get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
if (IS_ERR(xpage)) {
err = PTR_ERR(xpage);
f2fs_alloc_nid_failed(sbi, new_nid);
goto in_page_out;
}
f2fs_bug_on(sbi, new_nid);
f2fs_wait_on_page_writeback(xpage, NODE, true, true);
} else {
struct dnode_of_data dn;
set_new_dnode(&dn, inode, NULL, NULL, new_nid);
xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
if (IS_ERR(xpage)) {
err = PTR_ERR(xpage);
f2fs_alloc_nid_failed(sbi, new_nid);
goto in_page_out;
}
f2fs_alloc_nid_done(sbi, new_nid);
}
xattr_addr = page_address(xpage);
if (inline_size)
memcpy(inline_addr, txattr_addr, inline_size);
memcpy(xattr_addr, txattr_addr + inline_size, VALID_XATTR_BLOCK_SIZE);
if (inline_size)
set_page_dirty(ipage ? ipage : in_page);
set_page_dirty(xpage);
f2fs_put_page(xpage, 1);
in_page_out:
f2fs_put_page(in_page, 1);
return err;
}
int f2fs_getxattr(struct inode *inode, int index, const char *name,
void *buffer, size_t buffer_size, struct page *ipage)
{
struct f2fs_xattr_entry *entry = NULL;
int error;
unsigned int size, len;
void *base_addr = NULL;
int base_size;
bool is_inline;
if (name == NULL)
return -EINVAL;
len = strlen(name);
if (len > F2FS_NAME_LEN)
return -ERANGE;
down_read(&F2FS_I(inode)->i_xattr_sem);
error = lookup_all_xattrs(inode, ipage, index, len, name,
&entry, &base_addr, &base_size, &is_inline);
up_read(&F2FS_I(inode)->i_xattr_sem);
if (error)
return error;
size = le16_to_cpu(entry->e_value_size);
if (buffer && size > buffer_size) {
error = -ERANGE;
goto out;
}
if (buffer) {
char *pval = entry->e_name + entry->e_name_len;
if (base_size - (pval - (char *)base_addr) < size) {
error = -ERANGE;
goto out;
}
memcpy(buffer, pval, size);
}
error = size;
out:
xattr_free(F2FS_I_SB(inode), base_addr, is_inline);
return error;
}
ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
{
struct inode *inode = d_inode(dentry);
struct f2fs_xattr_entry *entry;
void *base_addr, *last_base_addr;
int error;
size_t rest = buffer_size;
down_read(&F2FS_I(inode)->i_xattr_sem);
error = read_all_xattrs(inode, NULL, &base_addr);
up_read(&F2FS_I(inode)->i_xattr_sem);
if (error)
return error;
last_base_addr = (void *)base_addr + XATTR_SIZE(inode);
list_for_each_xattr(entry, base_addr) {
const struct xattr_handler *handler =
f2fs_xattr_handler(entry->e_name_index);
const char *prefix;
size_t prefix_len;
size_t size;
if ((void *)(entry) + sizeof(__u32) > last_base_addr ||
(void *)XATTR_NEXT_ENTRY(entry) > last_base_addr) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr",
inode->i_ino);
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
error = -EFSCORRUPTED;
goto cleanup;
}
if (!handler || (handler->list && !handler->list(dentry)))
continue;
prefix = xattr_prefix(handler);
prefix_len = strlen(prefix);
size = prefix_len + entry->e_name_len + 1;
if (buffer) {
if (size > rest) {
error = -ERANGE;
goto cleanup;
}
memcpy(buffer, prefix, prefix_len);
buffer += prefix_len;
memcpy(buffer, entry->e_name, entry->e_name_len);
buffer += entry->e_name_len;
*buffer++ = 0;
}
rest -= size;
}
error = buffer_size - rest;
cleanup:
kfree(base_addr);
return error;
}
static bool f2fs_xattr_value_same(struct f2fs_xattr_entry *entry,
const void *value, size_t size)
{
void *pval = entry->e_name + entry->e_name_len;
return (le16_to_cpu(entry->e_value_size) == size) &&
!memcmp(pval, value, size);
}
static int __f2fs_setxattr(struct inode *inode, int index,
const char *name, const void *value, size_t size,
struct page *ipage, int flags)
{
struct f2fs_xattr_entry *here, *last;
void *base_addr, *last_base_addr;
int found, newsize;
size_t len;
__u32 new_hsize;
int error;
if (name == NULL)
return -EINVAL;
if (value == NULL)
size = 0;
len = strlen(name);
if (len > F2FS_NAME_LEN)
return -ERANGE;
if (size > MAX_VALUE_LEN(inode))
return -E2BIG;
error = read_all_xattrs(inode, ipage, &base_addr);
if (error)
return error;
last_base_addr = (void *)base_addr + XATTR_SIZE(inode);
/* find entry with wanted name. */
here = __find_xattr(base_addr, last_base_addr, index, len, name);
if (!here) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr",
inode->i_ino);
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
error = -EFSCORRUPTED;
goto exit;
}
found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1;
if (found) {
if ((flags & XATTR_CREATE)) {
error = -EEXIST;
goto exit;
}
if (value && f2fs_xattr_value_same(here, value, size))
goto same;
} else if ((flags & XATTR_REPLACE)) {
error = -ENODATA;
goto exit;
}
last = here;
while (!IS_XATTR_LAST_ENTRY(last)) {
if ((void *)(last) + sizeof(__u32) > last_base_addr ||
(void *)XATTR_NEXT_ENTRY(last) > last_base_addr) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has invalid last xattr entry, entry_size: %zu",
inode->i_ino, ENTRY_SIZE(last));
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
error = -EFSCORRUPTED;
goto exit;
}
last = XATTR_NEXT_ENTRY(last);
}
newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size);
/* 1. Check space */
if (value) {
int free;
/*
* If value is NULL, it is remove operation.
* In case of update operation, we calculate free.
*/
free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr);
if (found)
free = free + ENTRY_SIZE(here);
if (unlikely(free < newsize)) {
error = -E2BIG;
goto exit;
}
}
/* 2. Remove old entry */
if (found) {
/*
* If entry is found, remove old entry.
* If not found, remove operation is not needed.
*/
struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
int oldsize = ENTRY_SIZE(here);
memmove(here, next, (char *)last - (char *)next);
last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
memset(last, 0, oldsize);
}
new_hsize = (char *)last - (char *)base_addr;
/* 3. Write new entry */
if (value) {
char *pval;
/*
* Before we come here, old entry is removed.
* We just write new entry.
*/
last->e_name_index = index;
last->e_name_len = len;
memcpy(last->e_name, name, len);
pval = last->e_name + len;
memcpy(pval, value, size);
last->e_value_size = cpu_to_le16(size);
new_hsize += newsize;
}
error = write_all_xattrs(inode, new_hsize, base_addr, ipage);
if (error)
goto exit;
if (index == F2FS_XATTR_INDEX_ENCRYPTION &&
!strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT))
f2fs_set_encrypted_inode(inode);
f2fs_mark_inode_dirty_sync(inode, true);
if (!error && S_ISDIR(inode->i_mode))
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_CP);
same:
if (is_inode_flag_set(inode, FI_ACL_MODE)) {
inode->i_mode = F2FS_I(inode)->i_acl_mode;
inode->i_ctime = current_time(inode);
clear_inode_flag(inode, FI_ACL_MODE);
}
exit:
kfree(base_addr);
return error;
}
int f2fs_setxattr(struct inode *inode, int index, const char *name,
const void *value, size_t size,
struct page *ipage, int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int err;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
if (!f2fs_is_checkpoint_ready(sbi))
return -ENOSPC;
err = f2fs_dquot_initialize(inode);
if (err)
return err;
/* this case is only from f2fs_init_inode_metadata */
if (ipage)
return __f2fs_setxattr(inode, index, name, value,
size, ipage, flags);
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
down_write(&F2FS_I(inode)->i_xattr_sem);
err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags);
up_write(&F2FS_I(inode)->i_xattr_sem);
f2fs_unlock_op(sbi);
f2fs_update_time(sbi, REQ_TIME);
return err;
}
int f2fs_init_xattr_caches(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
char slab_name[32];
sprintf(slab_name, "f2fs_xattr_entry-%u:%u", MAJOR(dev), MINOR(dev));
sbi->inline_xattr_slab_size = F2FS_OPTION(sbi).inline_xattr_size *
sizeof(__le32) + XATTR_PADDING_SIZE;
sbi->inline_xattr_slab = f2fs_kmem_cache_create(slab_name,
sbi->inline_xattr_slab_size);
if (!sbi->inline_xattr_slab)
return -ENOMEM;
return 0;
}
void f2fs_destroy_xattr_caches(struct f2fs_sb_info *sbi)
{
kmem_cache_destroy(sbi->inline_xattr_slab);
}