wayland/tests/event-loop-test.c
Simon Ser 0d314c4a04 build: don't rely on implicit GNU extensions
Currently libwayland assumes GNU extensions will be available, but
doesn't define the C standard to use. Instead, let's unconditionally
enable POSIX extensions, and enable GNU extensions on a case-by-case
basis as needed.

Signed-off-by: Simon Ser <contact@emersion.fr>
2022-01-10 15:08:46 +01:00

556 lines
15 KiB
C

/*
* Copyright © 2012 Intel Corporation
* Copyright © 2012 Jason Ekstrand
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <unistd.h>
#include <signal.h>
#include <string.h>
#include <sys/time.h>
#include "wayland-private.h"
#include "wayland-server.h"
#include "test-runner.h"
static int
fd_dispatch(int fd, uint32_t mask, void *data)
{
int *p = data;
assert(mask == 0);
++(*p);
return 0;
}
TEST(event_loop_post_dispatch_check)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct wl_event_source *source;
int dispatch_ran = 0;
int p[2];
assert(loop);
assert(pipe(p) == 0);
source = wl_event_loop_add_fd(loop, p[0], WL_EVENT_READABLE,
fd_dispatch, &dispatch_ran);
assert(source);
wl_event_source_check(source);
wl_event_loop_dispatch(loop, 0);
assert(dispatch_ran == 1);
assert(close(p[0]) == 0);
assert(close(p[1]) == 0);
wl_event_source_remove(source);
wl_event_loop_destroy(loop);
}
struct free_source_context {
struct wl_event_source *source1, *source2;
int p1[2], p2[2];
int count;
};
static int
free_source_callback(int fd, uint32_t mask, void *data)
{
struct free_source_context *context = data;
context->count++;
/* Remove other source */
if (fd == context->p1[0]) {
wl_event_source_remove(context->source2);
context->source2 = NULL;
} else if (fd == context->p2[0]) {
wl_event_source_remove(context->source1);
context->source1 = NULL;
} else {
assert(0);
}
return 1;
}
TEST(event_loop_free_source_with_data)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct free_source_context context;
int data;
/* This test is a little tricky to get right, since we don't
* have any guarantee from the event loop (ie epoll) on the
* order of which it reports events. We want to have one
* source free the other, but we don't know which one is going
* to run first. So we add two fd sources with a callback
* that frees the other source and check that only one of them
* run (and that we don't crash, of course).
*/
assert(loop);
context.count = 0;
assert(pipe(context.p1) == 0);
assert(pipe(context.p2) == 0);
context.source1 =
wl_event_loop_add_fd(loop, context.p1[0], WL_EVENT_READABLE,
free_source_callback, &context);
assert(context.source1);
context.source2 =
wl_event_loop_add_fd(loop, context.p2[0], WL_EVENT_READABLE,
free_source_callback, &context);
assert(context.source2);
data = 5;
assert(write(context.p1[1], &data, sizeof data) == sizeof data);
assert(write(context.p2[1], &data, sizeof data) == sizeof data);
wl_event_loop_dispatch(loop, 0);
assert(context.count == 1);
if (context.source1)
wl_event_source_remove(context.source1);
if (context.source2)
wl_event_source_remove(context.source2);
wl_event_loop_destroy(loop);
assert(close(context.p1[0]) == 0);
assert(close(context.p1[1]) == 0);
assert(close(context.p2[0]) == 0);
assert(close(context.p2[1]) == 0);
}
static int
signal_callback(int signal_number, void *data)
{
int *got_it = data;
assert(signal_number == SIGUSR1);
++(*got_it);
return 1;
}
TEST(event_loop_signal)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct wl_event_source *source;
int got_it = 0;
source = wl_event_loop_add_signal(loop, SIGUSR1,
signal_callback, &got_it);
assert(source);
assert(wl_event_loop_dispatch(loop, 0) == 0);
assert(!got_it);
assert(kill(getpid(), SIGUSR1) == 0);
/*
* On Linux the signal will be immediately visible in the epoll_wait()
* call. However, on FreeBSD we may need a small delay between kill()
* call and the signal being visible to the kevent() call. This
* sometimes happens when the signal processing and kevent processing
* runs on different CPUs, so becomes more likely when the system is
* under load (e.g. running all tests in parallel).
* See https://github.com/jiixyj/epoll-shim/pull/32
* Passing 1ms as the timeout appears to avoid this race condition in
* all cases tested so far, but to be safe we use 1000ms which should
* be enough time even on a really slow (or emulated) system.
*/
assert(wl_event_loop_dispatch(loop, 1000) == 0);
assert(got_it == 1);
wl_event_source_remove(source);
wl_event_loop_destroy(loop);
}
TEST(event_loop_multiple_same_signals)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct wl_event_source *s1, *s2;
int calls_no = 0;
int i;
s1 = wl_event_loop_add_signal(loop, SIGUSR1,
signal_callback, &calls_no);
assert(s1);
s2 = wl_event_loop_add_signal(loop, SIGUSR1,
signal_callback, &calls_no);
assert(s2);
assert(wl_event_loop_dispatch(loop, 0) == 0);
assert(!calls_no);
/* Try it more times */
for (i = 0; i < 5; ++i) {
calls_no = 0;
assert(kill(getpid(), SIGUSR1) == 0);
/*
* We need a non-zero timeout here to allow the test to pass
* on non-Linux systems (see comment in event_loop_signal).
*/
assert(wl_event_loop_dispatch(loop, 1000) == 0);
assert(calls_no == 2);
}
wl_event_source_remove(s1);
/* Try it again with one source */
calls_no = 0;
assert(kill(getpid(), SIGUSR1) == 0);
/*
* We need a non-zero timeout here to allow the test to pass
* on non-Linux systems (see comment in event_loop_signal).
*/
assert(wl_event_loop_dispatch(loop, 1000) == 0);
assert(calls_no == 1);
wl_event_source_remove(s2);
wl_event_loop_destroy(loop);
}
static int
timer_callback(void *data)
{
int *got_it = data;
++(*got_it);
return 1;
}
TEST(event_loop_timer)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct wl_event_source *source1, *source2;
int got_it = 0;
source1 = wl_event_loop_add_timer(loop, timer_callback, &got_it);
assert(source1);
wl_event_source_timer_update(source1, 20);
source2 = wl_event_loop_add_timer(loop, timer_callback, &got_it);
assert(source2);
wl_event_source_timer_update(source2, 100);
/* Check that the timer marked for 20 msec from now fires within 30
* msec, and that the timer marked for 100 msec is expected to fire
* within an additional 90 msec. (Some extra wait time is provided to
* account for reasonable code execution / thread preemption delays.) */
wl_event_loop_dispatch(loop, 0);
assert(got_it == 0);
wl_event_loop_dispatch(loop, 30);
assert(got_it == 1);
wl_event_loop_dispatch(loop, 0);
assert(got_it == 1);
wl_event_loop_dispatch(loop, 90);
assert(got_it == 2);
wl_event_source_remove(source1);
wl_event_source_remove(source2);
wl_event_loop_destroy(loop);
}
#define MSEC_TO_USEC(msec) ((msec) * 1000)
struct timer_update_context {
struct wl_event_source *source1, *source2;
int count;
};
static int
timer_update_callback_1(void *data)
{
struct timer_update_context *context = data;
context->count++;
wl_event_source_timer_update(context->source2, 1000);
return 1;
}
static int
timer_update_callback_2(void *data)
{
struct timer_update_context *context = data;
context->count++;
wl_event_source_timer_update(context->source1, 1000);
return 1;
}
TEST(event_loop_timer_updates)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct timer_update_context context;
struct timeval start_time, end_time, interval;
/* Create two timers that should expire at the same time (after 10ms).
* The first timer to receive its expiry callback updates the other timer
* with a much larger timeout (1s). This highlights a bug where
* wl_event_source_timer_dispatch would block for this larger timeout
* when reading from the timer fd, before calling the second timer's
* callback.
*/
context.source1 = wl_event_loop_add_timer(loop, timer_update_callback_1,
&context);
assert(context.source1);
assert(wl_event_source_timer_update(context.source1, 10) == 0);
context.source2 = wl_event_loop_add_timer(loop, timer_update_callback_2,
&context);
assert(context.source2);
assert(wl_event_source_timer_update(context.source2, 10) == 0);
context.count = 0;
/* Since calling the functions between source2's update and
* wl_event_loop_dispatch() takes some time, it may happen
* that only one timer expires until we call epoll_wait.
* This naturally means that only one source is dispatched
* and the test fails. To fix that, sleep 15 ms before
* calling wl_event_loop_dispatch(). That should be enough
* for the second timer to expire.
*
* https://bugs.freedesktop.org/show_bug.cgi?id=80594
*/
usleep(MSEC_TO_USEC(15));
gettimeofday(&start_time, NULL);
wl_event_loop_dispatch(loop, 20);
gettimeofday(&end_time, NULL);
assert(context.count == 2);
/* Dispatching the events should not have taken much more than 20ms,
* since this is the timeout passed to wl_event_loop_dispatch. If it
* blocked, then it will have taken over 1s.
* Of course, it could take over 1s anyway on a very slow or heavily
* loaded system, so this test isn't 100% perfect.
*/
timersub(&end_time, &start_time, &interval);
assert(interval.tv_sec < 1);
wl_event_source_remove(context.source1);
wl_event_source_remove(context.source2);
wl_event_loop_destroy(loop);
}
struct timer_order_data {
struct wl_event_source *source;
int *last_number;
int number;
};
static int
timer_order_callback(void *data)
{
struct timer_order_data *tod = data;
/* Check that the timers have the correct sequence */
assert(tod->number == *tod->last_number + 2);
*tod->last_number = tod->number;
return 0;
}
TEST(event_loop_timer_order)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct timer_order_data order[20];
int i, j;
int last = -1;
/* Configure a set of timers so that only timers 1, 3, 5, ..., 19
* (in that order) will be dispatched when the event loop is run */
for (i = 0; i < 20; i++) {
order[i].number = i;
order[i].last_number = &last;
order[i].source =
wl_event_loop_add_timer(loop, timer_order_callback,
&order[i]);
assert(order[i].source);
assert(wl_event_source_timer_update(order[i].source, 10) == 0);
}
for (i = 0; i < 20; i++) {
/* Permute the order in which timers are updated, so as to
* more exhaustively test the underlying priority queue code */
j = ((i + 3) * 17) % 20;
assert(wl_event_source_timer_update(order[j].source, j) == 0);
}
for (i = 0; i < 20; i += 2) {
assert(wl_event_source_timer_update(order[i].source, 0) == 0);
}
/* Wait until all timers are due */
usleep(MSEC_TO_USEC(21));
wl_event_loop_dispatch(loop, 0);
assert(last == 19);
for (i = 0; i < 20; i++) {
wl_event_source_remove(order[i].source);
}
wl_event_loop_destroy(loop);
}
struct timer_cancel_context {
struct wl_event_source *timers[4];
struct timer_cancel_context *back_refs[4];
int order[4];
int called, first;
};
static int
timer_cancel_callback(void *data) {
struct timer_cancel_context **context_ref = data;
struct timer_cancel_context *context = *context_ref;
int i = (int)(context_ref - context->back_refs);
context->called++;
context->order[i] = context->called;
if (context->called == 1) {
context->first = i;
/* Removing a timer always prevents its callback from
* being called ... */
wl_event_source_remove(context->timers[(i + 1) % 4]);
/* ... but disarming or rescheduling a timer does not,
* (in the case where the modified timers had already expired
* as of when `wl_event_loop_dispatch` was called.) */
assert(wl_event_source_timer_update(context->timers[(i + 2) % 4],
0) == 0);
assert(wl_event_source_timer_update(context->timers[(i + 3) % 4],
2000000000) == 0);
}
return 0;
}
TEST(event_loop_timer_cancellation)
{
struct wl_event_loop *loop = wl_event_loop_create();
struct timer_cancel_context context;
int i;
memset(&context, 0, sizeof(context));
/* Test that when multiple timers are dispatched in a single call
* of `wl_event_loop_dispatch`, that having some timers run code
* to modify the other timers only actually prevents the other timers
* from running their callbacks when the those timers are removed, not
* when they are disarmed or rescheduled. */
for (i = 0; i < 4; i++) {
context.back_refs[i] = &context;
context.timers[i] =
wl_event_loop_add_timer(loop, timer_cancel_callback,
&context.back_refs[i]);
assert(context.timers[i]);
assert(wl_event_source_timer_update(context.timers[i], 1) == 0);
}
usleep(MSEC_TO_USEC(2));
assert(wl_event_loop_dispatch(loop, 0) == 0);
/* Tracking which timer was first makes this test independent of the
* actual timer dispatch order, which is not guaranteed by the docs */
assert(context.order[context.first] == 1);
assert(context.order[(context.first + 1) % 4] == 0);
assert(context.order[(context.first + 2) % 4] > 1);
assert(context.order[(context.first + 3) % 4] > 1);
wl_event_source_remove(context.timers[context.first]);
wl_event_source_remove(context.timers[(context.first + 2) % 4]);
wl_event_source_remove(context.timers[(context.first + 3) % 4]);
wl_event_loop_destroy(loop);
}
struct event_loop_destroy_listener {
struct wl_listener listener;
int done;
};
static void
event_loop_destroy_notify(struct wl_listener *l, void *data)
{
struct event_loop_destroy_listener *listener =
wl_container_of(l, listener, listener);
listener->done = 1;
}
TEST(event_loop_destroy)
{
struct wl_event_loop *loop;
struct wl_display * display;
struct event_loop_destroy_listener a, b;
loop = wl_event_loop_create();
assert(loop);
a.listener.notify = &event_loop_destroy_notify;
a.done = 0;
wl_event_loop_add_destroy_listener(loop, &a.listener);
assert(wl_event_loop_get_destroy_listener(loop,
event_loop_destroy_notify) == &a.listener);
b.listener.notify = &event_loop_destroy_notify;
b.done = 0;
wl_event_loop_add_destroy_listener(loop, &b.listener);
wl_list_remove(&a.listener.link);
wl_event_loop_destroy(loop);
assert(!a.done);
assert(b.done);
/* Test to make sure it gets fired on display destruction */
display = wl_display_create();
assert(display);
loop = wl_display_get_event_loop(display);
assert(loop);
a.done = 0;
wl_event_loop_add_destroy_listener(loop, &a.listener);
wl_display_destroy(display);
assert(a.done);
}