elvish/pkg/eval/builtin_fn_num.go

597 lines
12 KiB
Go

package eval
import (
"math"
"math/big"
"math/rand"
"src.elv.sh/pkg/eval/errs"
"src.elv.sh/pkg/eval/vals"
)
// Numerical operations.
//elvdoc:fn rand
//
// ```elvish
// rand
// ```
//
// Output a pseudo-random number in the interval [0, 1). Example:
//
// ```elvish-transcript
// ~> rand
// ▶ 0.17843564133528436
// ```
func init() {
addBuiltinFns(map[string]interface{}{
// Constructor
"float64": toFloat64,
"num": num,
"exact-num": exactNum,
// Comparison
"<": lt,
"<=": le,
"==": eqNum,
"!=": ne,
">": gt,
">=": ge,
// Arithmetic
"+": add,
"-": sub,
"*": mul,
// Also handles cd /
"/": slash,
"%": rem,
// Random
"rand": rand.Float64,
"randint": randint,
})
}
//elvdoc:fn num
//
// ```elvish
// num $string-or-number
// ```
//
// Constructs a [typed number](./language.html#number).
//
// If the argument is a string, this command outputs the typed number the
// argument represents, or raises an exception if the argument is not a valid
// representation of a number. If the argument is already a typed number, this
// command outputs it as is.
//
// This command is usually not needed for working with numbers; see the
// discussion of [numerical commands](#numerical-commands).
//
// Examples:
//
// ```elvish-transcript
// ~> num 10
// ▶ (num 10)
// ~> num 0x10
// ▶ (num 16)
// ~> num 1/12
// ▶ (num 1/12)
// ~> num 3.14
// ▶ (num 3.14)
// ~> num (num 10)
// ▶ (num 10)
// ```
func num(n vals.Num) vals.Num {
// Conversion is actually handled in vals/conversion.go.
return n
}
//elvdoc:fn exact-num
//
// ```elvish
// exact-num $string-or-number
// ```
//
// Coerces the argument to an exact number. If the argument is infinity or NaN,
// an exception is thrown.
//
// If the argument is a string, it is converted to a typed number first. If the
// argument is already an exact number, it is returned as is.
//
// Examples:
//
// ```elvish-transcript
// ~> exact-num (num 0.125)
// ▶ (num 1/8)
// ~> exact-num 0.125
// ▶ (num 1/8)
// ~> exact-num (num 1)
// ▶ (num 1)
// ```
//
// Beware that seemingly simple fractions that can't be represented precisely in
// binary can result in the denominator being a very large power of 2:
//
// ```elvish-transcript
// ~> exact-num 0.1
// ▶ (num 3602879701896397/36028797018963968)
// ```
func exactNum(n vals.Num) (vals.Num, error) {
if f, ok := n.(float64); ok {
r := new(big.Rat).SetFloat64(f)
if r == nil {
return nil, errs.BadValue{What: "argument here",
Valid: "finite float", Actual: vals.ToString(f)}
}
return r, nil
}
return n, nil
}
//elvdoc:fn float64
//
// ```elvish
// float64 $string-or-number
// ```
//
// Constructs a floating-point number.
//
// This command is deprecated; use [`num`](#num) instead.
func toFloat64(f float64) float64 {
return f
}
//elvdoc:fn &lt; &lt;= == != &gt; &gt;= {#num-cmp}
//
// ```elvish
// < $number... # less
// <= $number... # less or equal
// == $number... # equal
// != $number... # not equal
// > $number... # greater
// >= $number... # greater or equal
// ```
//
// Number comparisons. All of them accept an arbitrary number of arguments:
//
// 1. When given fewer than two arguments, all output `$true`.
//
// 2. When given two arguments, output whether the two arguments satisfy the named
// relationship.
//
// 3. When given more than two arguments, output whether every adjacent pair of
// numbers satisfy the named relationship.
//
// Examples:
//
// ```elvish-transcript
// ~> == 3 3.0
// ▶ $true
// ~> < 3 4
// ▶ $true
// ~> < 3 4 10
// ▶ $true
// ~> < 6 9 1
// ▶ $false
// ```
//
// As a consequence of rule 3, the `!=` command outputs `$true` as long as any
// _adjacent_ pair of numbers are not equal, even if some numbers that are not
// adjacent are equal:
//
// ```elvish-transcript
// ~> != 5 5 4
// ▶ $false
// ~> != 5 6 5
// ▶ $true
// ```
func lt(nums ...vals.Num) bool {
return chainCompare(nums,
func(a, b int) bool { return a < b },
func(a, b *big.Int) bool { return a.Cmp(b) < 0 },
func(a, b *big.Rat) bool { return a.Cmp(b) < 0 },
func(a, b float64) bool { return a < b })
}
func le(nums ...vals.Num) bool {
return chainCompare(nums,
func(a, b int) bool { return a <= b },
func(a, b *big.Int) bool { return a.Cmp(b) <= 0 },
func(a, b *big.Rat) bool { return a.Cmp(b) <= 0 },
func(a, b float64) bool { return a <= b })
}
func eqNum(nums ...vals.Num) bool {
return chainCompare(nums,
func(a, b int) bool { return a == b },
func(a, b *big.Int) bool { return a.Cmp(b) == 0 },
func(a, b *big.Rat) bool { return a.Cmp(b) == 0 },
func(a, b float64) bool { return a == b })
}
func ne(nums ...vals.Num) bool {
return chainCompare(nums,
func(a, b int) bool { return a != b },
func(a, b *big.Int) bool { return a.Cmp(b) != 0 },
func(a, b *big.Rat) bool { return a.Cmp(b) != 0 },
func(a, b float64) bool { return a != b })
}
func gt(nums ...vals.Num) bool {
return chainCompare(nums,
func(a, b int) bool { return a > b },
func(a, b *big.Int) bool { return a.Cmp(b) > 0 },
func(a, b *big.Rat) bool { return a.Cmp(b) > 0 },
func(a, b float64) bool { return a > b })
}
func ge(nums ...vals.Num) bool {
return chainCompare(nums,
func(a, b int) bool { return a >= b },
func(a, b *big.Int) bool { return a.Cmp(b) >= 0 },
func(a, b *big.Rat) bool { return a.Cmp(b) >= 0 },
func(a, b float64) bool { return a >= b })
}
func chainCompare(nums []vals.Num,
p1 func(a, b int) bool, p2 func(a, b *big.Int) bool,
p3 func(a, b *big.Rat) bool, p4 func(a, b float64) bool) bool {
for i := 0; i < len(nums)-1; i++ {
var r bool
a, b := vals.UnifyNums2(nums[i], nums[i+1], 0)
switch a := a.(type) {
case int:
r = p1(a, b.(int))
case *big.Int:
r = p2(a, b.(*big.Int))
case *big.Rat:
r = p3(a, b.(*big.Rat))
case float64:
r = p4(a, b.(float64))
}
if !r {
return false
}
}
return true
}
//elvdoc:fn + {#add}
//
// ```elvish
// + $num...
// ```
//
// Outputs the sum of all arguments, or 0 when there are no arguments.
//
// This command is [exactness-preserving](#exactness-preserving).
//
// Examples:
//
// ```elvish-transcript
// ~> + 5 2 7
// ▶ (num 14)
// ~> + 1/2 1/3 1/4
// ▶ (num 13/12)
// ~> + 1/2 0.5
// ▶ (num 1.0)
// ```
func add(rawNums ...vals.Num) vals.Num {
nums := vals.UnifyNums(rawNums, vals.BigInt)
switch nums := nums.(type) {
case []*big.Int:
acc := big.NewInt(0)
for _, num := range nums {
acc.Add(acc, num)
}
return vals.NormalizeBigInt(acc)
case []*big.Rat:
acc := big.NewRat(0, 1)
for _, num := range nums {
acc.Add(acc, num)
}
return vals.NormalizeBigRat(acc)
case []float64:
acc := float64(0)
for _, num := range nums {
acc += num
}
return acc
default:
panic("unreachable")
}
}
//elvdoc:fn - {#sub}
//
// ```elvish
// - $x-num $y-num...
// ```
//
// Outputs the result of substracting from `$x-num` all the `$y-num`s, working
// from left to right. When no `$y-num` is given, outputs the negation of
// `$x-num` instead (in other words, `- $x-num` is equivalent to `- 0 $x-num`).
//
// This command is [exactness-preserving](#exactness-preserving).
//
// Examples:
//
// ```elvish-transcript
// ~> - 5
// ▶ (num -5)
// ~> - 5 2
// ▶ (num 3)
// ~> - 5 2 7
// ▶ (num -4)
// ~> - 1/2 1/3
// ▶ (num 1/6)
// ~> - 1/2 0.3
// ▶ (num 0.2)
// ~> - 10
// ▶ (num -10)
// ```
func sub(rawNums ...vals.Num) (vals.Num, error) {
if len(rawNums) == 0 {
return nil, errs.ArityMismatch{
What: "arguments here",
ValidLow: 1, ValidHigh: -1, Actual: 0,
}
}
nums := vals.UnifyNums(rawNums, vals.BigInt)
switch nums := nums.(type) {
case []*big.Int:
acc := &big.Int{}
if len(nums) == 1 {
acc.Neg(nums[0])
return acc, nil
}
acc.Set(nums[0])
for _, num := range nums[1:] {
acc.Sub(acc, num)
}
return acc, nil
case []*big.Rat:
acc := &big.Rat{}
if len(nums) == 1 {
acc.Neg(nums[0])
return acc, nil
}
acc.Set(nums[0])
for _, num := range nums[1:] {
acc.Sub(acc, num)
}
return acc, nil
case []float64:
if len(nums) == 1 {
return -nums[0], nil
}
acc := nums[0]
for _, num := range nums[1:] {
acc -= num
}
return acc, nil
default:
panic("unreachable")
}
}
//elvdoc:fn * {#mul}
//
// ```elvish
// * $num...
// ```
//
// Outputs the product of all arguments, or 1 when there are no arguments.
//
// This command is [exactness-preserving](#exactness-preserving). Additionally,
// when any argument is exact 0 and no other argument is a floating-point
// infinity, the result is exact 0.
//
// Examples:
//
// ```elvish-transcript
// ~> * 2 5 7
// ▶ (num 70)
// ~> * 1/2 0.5
// ▶ (num 0.25)
// ~> * 0 0.5
// ▶ (num 0)
// ```
func mul(rawNums ...vals.Num) vals.Num {
hasExact0 := false
hasInf := false
for _, num := range rawNums {
if num == 0 {
hasExact0 = true
}
if f, ok := num.(float64); ok && math.IsInf(f, 0) {
hasInf = true
break
}
}
if hasExact0 && !hasInf {
return 0
}
nums := vals.UnifyNums(rawNums, vals.BigInt)
switch nums := nums.(type) {
case []*big.Int:
acc := big.NewInt(1)
for _, num := range nums {
acc.Mul(acc, num)
}
return vals.NormalizeBigInt(acc)
case []*big.Rat:
acc := big.NewRat(1, 1)
for _, num := range nums {
acc.Mul(acc, num)
}
return vals.NormalizeBigRat(acc)
case []float64:
acc := float64(1)
for _, num := range nums {
acc *= num
}
return acc
default:
panic("unreachable")
}
}
//elvdoc:fn / {#div}
//
// ```elvish
// / $x-num $y-num...
// ```
//
// Outputs the result of dividing `$x-num` with all the `$y-num`s, working from
// left to right. When no `$y-num` is given, outputs the reciprocal of `$x-num`
// instead (in other words, `/ $y-num` is equivalent to `/ 1 $y-num`).
//
// Dividing by exact 0 raises an exception. Dividing by inexact 0 results with
// either infinity or NaN according to floating-point semantics.
//
// This command is [exactness-preserving](#exactness-preserving). Additionally,
// when `$x-num` is exact 0 and no `$y-num` is exact 0, the result is exact 0.
//
// Examples:
//
// ```elvish-transcript
// ~> / 2
// ▶ (num 1/2)
// ~> / 2.0
// ▶ (num 0.5)
// ~> / 10 5
// ▶ (num 2)
// ~> / 2 5
// ▶ (num 2/5)
// ~> / 2 5 7
// ▶ (num 2/35)
// ~> / 0 1.0
// ▶ (num 0)
// ~> / 2 0
// Exception: bad value: divisor must be number other than exact 0, but is exact 0
// [tty 6], line 1: / 2 0
// ~> / 2 0.0
// ▶ (num +Inf)
// ```
//
// When given no argument, this command is equivalent to `cd /`, due to the
// implicit cd feature. (The implicit cd feature will probably change to avoid
// this oddity).
func slash(fm *Frame, args ...vals.Num) error {
if len(args) == 0 {
// cd /
return fm.Evaler.Chdir("/")
}
// Division
result, err := div(args...)
if err == nil {
fm.OutputChan() <- vals.FromGo(result)
}
return err
}
// ErrDivideByZero is thrown when attempting to divide by zero.
var ErrDivideByZero = errs.BadValue{
What: "divisor", Valid: "number other than exact 0", Actual: "exact 0"}
func div(rawNums ...vals.Num) (vals.Num, error) {
for _, num := range rawNums[1:] {
if num == 0 {
return nil, ErrDivideByZero
}
}
if rawNums[0] == 0 {
return 0, nil
}
nums := vals.UnifyNums(rawNums, vals.BigRat)
switch nums := nums.(type) {
case []*big.Rat:
acc := &big.Rat{}
acc.Set(nums[0])
if len(nums) == 1 {
acc.Inv(acc)
return acc, nil
}
for _, num := range nums[1:] {
acc.Quo(acc, num)
}
return acc, nil
case []float64:
acc := nums[0]
if len(nums) == 1 {
return 1 / acc, nil
}
for _, num := range nums[1:] {
acc /= num
}
return acc, nil
default:
panic("unreachable")
}
}
//elvdoc:fn % {#rem}
//
// ```elvish
// % $x $y
// ```
//
// Output the remainder after dividing `$x` by `$y`. The result has the same
// sign as `$x`. Both must be integers that can represented in a machine word
// (this limit may be lifted in future).
//
// Examples:
//
// ```elvish-transcript
// ~> % 10 3
// ▶ 1
// ~> % -10 3
// ▶ -1
// ~> % 10 -3
// ▶ 1
// ```
func rem(a, b int) (int, error) {
// TODO: Support other number types
if b == 0 {
return 0, ErrDivideByZero
}
return a % b, nil
}
//elvdoc:fn randint
//
// ```elvish
// randint $low $high
// ```
//
// Output a pseudo-random integer in the interval [$low, $high). Example:
//
// ```elvish-transcript
// ~> # Emulate dice
// randint 1 7
// ▶ 6
// ```
func randint(low, high int) (int, error) {
if low >= high {
return 0, ErrArgs
}
return low + rand.Intn(high-low), nil
}