tmp_suning_uos_patched/drivers/mfd/tc6387xb.c

256 lines
5.7 KiB
C
Raw Normal View History

/*
* Toshiba TC6387XB support
* Copyright (c) 2005 Ian Molton
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This file contains TC6387XB base support.
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mfd/core.h>
#include <linux/mfd/tmio.h>
#include <linux/mfd/tc6387xb.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
enum {
TC6387XB_CELL_MMC,
};
struct tc6387xb {
void __iomem *scr;
struct clk *clk32k;
struct resource rscr;
};
static struct resource tc6387xb_mmc_resources[] = {
{
.start = 0x800,
.end = 0x9ff,
.flags = IORESOURCE_MEM,
},
{
.start = 0,
.end = 0,
.flags = IORESOURCE_IRQ,
},
};
/*--------------------------------------------------------------------------*/
#ifdef CONFIG_PM
static int tc6387xb_suspend(struct platform_device *dev, pm_message_t state)
{
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
struct tc6387xb_platform_data *pdata = dev->dev.platform_data;
if (pdata && pdata->suspend)
pdata->suspend(dev);
clk_disable(tc6387xb->clk32k);
return 0;
}
static int tc6387xb_resume(struct platform_device *dev)
{
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
struct tc6387xb_platform_data *pdata = dev->dev.platform_data;
clk_enable(tc6387xb->clk32k);
if (pdata && pdata->resume)
pdata->resume(dev);
tmio_core_mmc_resume(tc6387xb->scr + 0x200, 0,
tc6387xb_mmc_resources[0].start & 0xfffe);
return 0;
}
#else
#define tc6387xb_suspend NULL
#define tc6387xb_resume NULL
#endif
/*--------------------------------------------------------------------------*/
static void tc6387xb_mmc_pwr(struct platform_device *mmc, int state)
{
struct platform_device *dev = to_platform_device(mmc->dev.parent);
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
tmio_core_mmc_pwr(tc6387xb->scr + 0x200, 0, state);
}
static void tc6387xb_mmc_clk_div(struct platform_device *mmc, int state)
{
struct platform_device *dev = to_platform_device(mmc->dev.parent);
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
tmio_core_mmc_clk_div(tc6387xb->scr + 0x200, 0, state);
}
static int tc6387xb_mmc_enable(struct platform_device *mmc)
{
struct platform_device *dev = to_platform_device(mmc->dev.parent);
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
clk_enable(tc6387xb->clk32k);
tmio_core_mmc_enable(tc6387xb->scr + 0x200, 0,
tc6387xb_mmc_resources[0].start & 0xfffe);
return 0;
}
static int tc6387xb_mmc_disable(struct platform_device *mmc)
{
struct platform_device *dev = to_platform_device(mmc->dev.parent);
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
clk_disable(tc6387xb->clk32k);
return 0;
}
static struct tmio_mmc_data tc6387xb_mmc_data = {
.hclk = 24000000,
.set_pwr = tc6387xb_mmc_pwr,
.set_clk_div = tc6387xb_mmc_clk_div,
};
/*--------------------------------------------------------------------------*/
static struct mfd_cell tc6387xb_cells[] = {
[TC6387XB_CELL_MMC] = {
.name = "tmio-mmc",
.enable = tc6387xb_mmc_enable,
.disable = tc6387xb_mmc_disable,
.platform_data = &tc6387xb_mmc_data,
.pdata_size = sizeof(tc6387xb_mmc_data),
.num_resources = ARRAY_SIZE(tc6387xb_mmc_resources),
.resources = tc6387xb_mmc_resources,
},
};
static int __devinit tc6387xb_probe(struct platform_device *dev)
{
struct tc6387xb_platform_data *pdata = dev->dev.platform_data;
struct resource *iomem, *rscr;
struct clk *clk32k;
struct tc6387xb *tc6387xb;
int irq, ret;
iomem = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (!iomem) {
return -EINVAL;
}
tc6387xb = kzalloc(sizeof *tc6387xb, GFP_KERNEL);
if (!tc6387xb)
return -ENOMEM;
ret = platform_get_irq(dev, 0);
if (ret >= 0)
irq = ret;
else
goto err_no_irq;
clk32k = clk_get(&dev->dev, "CLK_CK32K");
if (IS_ERR(clk32k)) {
ret = PTR_ERR(clk32k);
goto err_no_clk;
}
rscr = &tc6387xb->rscr;
rscr->name = "tc6387xb-core";
rscr->start = iomem->start;
rscr->end = iomem->start + 0xff;
rscr->flags = IORESOURCE_MEM;
ret = request_resource(iomem, rscr);
if (ret)
goto err_resource;
tc6387xb->scr = ioremap(rscr->start, rscr->end - rscr->start + 1);
if (!tc6387xb->scr) {
ret = -ENOMEM;
goto err_ioremap;
}
tc6387xb->clk32k = clk32k;
platform_set_drvdata(dev, tc6387xb);
if (pdata && pdata->enable)
pdata->enable(dev);
printk(KERN_INFO "Toshiba tc6387xb initialised\n");
ret = mfd_add_devices(&dev->dev, dev->id, tc6387xb_cells,
ARRAY_SIZE(tc6387xb_cells), iomem, irq);
if (!ret)
return 0;
iounmap(tc6387xb->scr);
err_ioremap:
release_resource(&tc6387xb->rscr);
err_resource:
clk_put(clk32k);
err_no_clk:
err_no_irq:
kfree(tc6387xb);
return ret;
}
static int __devexit tc6387xb_remove(struct platform_device *dev)
{
struct tc6387xb *tc6387xb = platform_get_drvdata(dev);
mfd_remove_devices(&dev->dev);
iounmap(tc6387xb->scr);
release_resource(&tc6387xb->rscr);
clk_disable(tc6387xb->clk32k);
clk_put(tc6387xb->clk32k);
platform_set_drvdata(dev, NULL);
kfree(tc6387xb);
return 0;
}
static struct platform_driver tc6387xb_platform_driver = {
.driver = {
.name = "tc6387xb",
},
.probe = tc6387xb_probe,
.remove = __devexit_p(tc6387xb_remove),
.suspend = tc6387xb_suspend,
.resume = tc6387xb_resume,
};
static int __init tc6387xb_init(void)
{
return platform_driver_register(&tc6387xb_platform_driver);
}
static void __exit tc6387xb_exit(void)
{
platform_driver_unregister(&tc6387xb_platform_driver);
}
module_init(tc6387xb_init);
module_exit(tc6387xb_exit);
MODULE_DESCRIPTION("Toshiba TC6387XB core driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Ian Molton");
MODULE_ALIAS("platform:tc6387xb");